On equivalence of compound operators to the operator of differentiation (in Ukrainian) |
|
| Author |
Chernivtsi University
|
| Abstract |
Let $A_R$ ($0 < R < \infty$) be a space of all univalent and analytic in the disc $|z| < R$ functions with uniform convergence topology and $D = d/dz$ be a usual differentiation operator in the $A_R.$ There is also considered the operator $P : (Pf)(z) = f(-z)$ ($\forall f \in A_R$) and
$L = \alpha(D) + \beta(D)P,$ where $\alpha(\lambda)$ and $\beta(\lambda)$ are given entire function from the class $[1,0]$ respectively for $R \ll \infty$. Under such assumptions the opearator $L$ of this form is linear continuous mapping of the space $A_R$ into itself, wchich commute with the operator $D^2$ in the space.
Moreover, the operator of this form (they are called compound) exhaust the set of linear continuous operators, which commutes with $D^2$ and their matrices in power basis $\{z^n\}_{n=0}^\infty$ of the space $A_R$ are uppertriangular.
The goal of this paper is to find conditions of existence such isomorphism $\tau$ of the space $A_R$ onto itself that $TL = DT$ (the property is denited by $L \sim D$).
|
| Keywords |
compound operator, analytic function, differentiation operator
|
| DOI |
doi:10.30970/ms.1.7-15
|
Reference |
1. Фаге М.К., Нагнибида Н.И. Проблема эквивалентности обыкновенных линейных дифференциальных операторов, Новосибирск: Наука, 1987. - 280 с.
2. Коробейник Ю. Ф. Составные операторные уравнения в обобщенных производных и их приложенияк последовательностям Аппеля // Математический сборник - 1977. Т. 102C 1440, N°4.- C.475-498. 3. Маркушевич А. И. Теория аналитических функций :В 2 т.- М.: Наука, 1968. T.2.- 624 c. 4. Нагнибида Н.И. Об эквивалентности составных операторов оператору двукратного дифференцирования Сиб. мат. журн. - 1991. T.32, N°2.- C.113-119. |
| Pages |
7-15
|
| Volume |
1
|
| Year |
1991
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |