TY - JOUR AU - Sheremeta, M.M. PY - 2021/06/23 Y2 - 2024/03/28 TI - On the growth of series in system of functions and Laplace-Stieltjes integrals JF - Matematychni Studii JA - Mat. Stud. VL - 55 IS - 2 SE - Articles DO - 10.30970/ms.55.2.124-131 UR - http://matstud.org.ua/ojs/index.php/matstud/article/view/232 SP - 124-131 AB - For a regularly convergent in ${\Bbb C}$ series $A(z)=\sum olimits_{n=1}^{\infty}a_nf(\lambda_nz)$ in the system ${f(\lambda_nz)}$, where$f(z)=\sum olimits_{k=0}^{\infty}f_kz^k$ is an entire transcendental function and $(\lambda_n)$is a sequence of positive numbers increasing to $+\infty$, it isinvestigated the relationship between the growth of functions $A$ and $f$ in terms of a generalized order. It is proved that if$a_n\ge 0$ for all $n\ge n_0$,$\ln \lambda_n=o\big(\beta^{-1}\big(c\alpha(\frac{1}{\ln \lambda_n}\ln \frac{1}{a_n})\big)\big)$for each $c\in (0, +\infty)$ and $\ln n=O(\Gamma_f(\lambda_n))$ as $n\to\infty$ then$\displaystyle\varlimsup\limits_{r\to+\infty}\frac{\alpha(\ln M_A(r))}{\beta(\ln r)}=\varlimsup\limits_{r\to+\infty}\frac{\alpha(\ln M_f(r))}{\beta(\ln r)},$where $M_f(r)=\max\{|f(z)|\colon |z|=r\}$, $\Gamma_f(r):=\frac{d\ln M_f(r)}{d\ln r}$ and positive continuous on $(x_0, +\infty)$ functions $\alpha$and $\beta$ are such that $\beta((1+o(1))x)=(1+o(1))\beta(x)$, $\alpha(c x)=(1+o(1))\alpha(x)$ and$\frac{d\beta^{-1}(c\alpha(x))}{d\ln x}=O(1)$ as $x\to+\infty$ for each $c\in(0, +\infty)$.\A similar result is obtained for the Laplace-Stieltjes type integral $I(r) = \int\limits_{0}^{\infty}a(x)f(rx) dF(x)$. ER -