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Let A ∈ (−∞,+∞], Φ be a continuous function on [a,A) such that for every x ∈ R we

have xσ −Φ(σ) → −∞ as σ ↑ A, Φ̃(x) = max{xσ −Φ(σ) : σ ∈ [a,A)} be the Young-conjugate

function of Φ, Φ(x) = Φ̃(x)/x for all sufficiently large x, (λn) be a nonnegative sequence
increasing to +∞, F (s) =

∑
ane

sλn be a Dirichlet series absolutely convergent in the half-
plane Re s < A, M(σ, F ) = sup{|F (s)| : Re s = σ} and G(σ, F ) =

∑
|an|eσλn for each σ < A.

It is proved that if lnG(σ, F ) ≤ (1 + o(1))Φ(σ), σ ↑ A, then the inequality

lim
σ↑A

M(σ, F ′)

M(σ, F )Φ−1(σ)
≤ 1

holds, and this inequality is sharp.

1. Introduction. Let Λ be the class of all nonnegative sequences λ = (λn)
∞
n=0 increasing to

+∞, and A ∈ (−∞,+∞]. For a sequence λ ∈ Λ we put

n(t, λ) =
∑
λn≤t

1, τ(λ) = lim
t→+∞

lnn(t, λ)

t
,

and denote by DA(λ) the class of all Dirichlet series of the form

F (s) =
∞∑
n=0

ane
sλn (1)

such that F (s) ̸≡ 0 and σa(F ) ≥ A, where σa(F ) is the abscissa of absolute convergence of
series (1). Set DA =

∪
λ∈ΛDA(λ).

For a Dirichlet series F ∈ DA of the form (1) and every σ < A we put

M(σ, F ) = sup{|F (s)| : Re s = σ}, µ(σ, F ) = max{|an|eσλn : n ≥ 0},

K(σ, F ) =
M(σ, F ′)

M(σ, F )
, G(σ, F ) =

∞∑
n=0

|an|eσλn .
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Let Φ: DΦ → R be a real function. We say that Φ ∈ ΩA if the domain DΦ of Φ is an
interval of the form [a,A), Φ is continuous on DΦ, and the following condition

∀x ∈ R : lim
σ↑A

(xσ − Φ(σ)) = −∞ (2)

holds. It is easy to see that in the case A < +∞ condition (2) is equivalent to the condition
Φ(σ) → +∞, σ → A − 0, and in the case A = +∞ this condition is equivalent to the
condition Φ(σ)/σ → +∞, σ → +∞. For Φ ∈ ΩA by Φ̃ we denote the Young-conjugate
function of Φ, i.e.,

Φ̃(x) = max{xσ − Φ(σ) : σ ∈ DΦ}, x ∈ R.

Note (see Lemma 1 below), that the function Φ(x) = Φ̃(x)/x is continuous and increasing
to A on some interval of the form (x0,+∞). Hence the inverse function Φ −1 is defined on
some interval of the form (A0, A) and Φ −1 is continuous and increasing to +∞ on (A0, A).

We say that Φ ∈ Ω′
A, if Φ is a function from the class ΩA continuously differentiable on

DΦ such that Φ′ is a positive increasing function on DΦ.
Let Φ ∈ Ω′

A. It is clear that Φ′(σ) ↑ +∞ as σ ↑ A. In addition, Φ′ has the inverse function
φ : [x0,+∞) → DΦ. Set

Φ̂(σ) = σ − Φ(σ)

Φ′(σ)
, σ ∈ DΦ.

It is easy to prove that Φ(x) = Φ̂(φ(x)) for every x ∈ (x0,+∞). This implies that
Φ′(Φ̂−1(σ)) = Φ −1(σ) for all σ ∈ (A0, A).

For a Dirichlet series F ∈ DA and a function Φ ∈ ΩA we put

TΦ(F ) = lim
σ↑A

lnM(σ, F )

Φ(σ)
, tΦ(F ) = lim

σ↑A

lnµ(σ, F )

Φ(σ)
, TΦ(F ) = lim

σ↑A

lnG(σ, F )

Φ(σ)
.

Suppose that λ ∈ Λ, Φ ∈ ΩA, and F ∈ DA(λ) is a Dirichlet series such that TΦ(F ) = 1.
Then the following theorem, which is proved in [1], gives an estimate of the growth for the
quantity K(σ, F ) as σ ↑ A by some conditions on λ and Φ.

Theorem A. Let A ∈ (−∞,+∞], λ ∈ Λ, α be a positive increasing to +∞ function on
[0,+∞) such that α(t) = o(t) as t → +∞, F ∈ DA(λ), Φ ∈ Ω′

A, and γ(σ) = 2/α(Φ −1(σ)) for
every σ ∈ (A0, A). Suppose that lnn(t, λ) ≤ t/α(t), t ≥ t0, and σ + γ(σ) < A, σ ∈ [σ0, A).
If TΦ(F ) = 1, then

lim
σ↑A

K(σ, F )

Φ −1(σ + γ(σ))
≤ 1. (3)

It is shown in [1] that in many cases estimate (3) is sharp. To substantiate the exactness
of inequality (3), in [1], in particular, the following theorem was proved.

Theorem B. Let A ∈ (−∞,+∞], Φ ∈ Ω′
A be a twice continuously differentiable function

on DΦ, and φ be the inverse function of Φ′. If

Φ((1 + o(1))σ) ∼ (1 + o(1))Φ(σ), σ ↑ A,

and t2φ′(t) ↑ +∞ as t ↑ +∞, then for every sequence λ ∈ Λ there exists a Dirichlet series
F ∈ DA(λ) such that TΦ(F ) = tΦ(F ) = 1 and

lim
σ↑A

K(σ, F )

Φ −1(σ)
= 1. (4)
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It is easily seen that the conditions of Theorem A imply the equality τ(λ) = 0. Therefore,
in the case τ(λ) > 0 Theorem A does not give any information about the growth of the
quantity K(σ, F ). Moreover, if A < +∞, then even in the case τ(λ) = 0 the conclusion of
Theorem A is true only under some conditions on Φ.

Let F ∈ DA be a Dirichlet series of the form (1) with nonnegative coefficients an. Then
M(σ, F ) = G(σ, F ) = F (σ), σ < A. Hence, TΦ(F ) = TΦ(F ) and K(σ, F ) = (lnM(σ, F ))′,
σ < A. Therefore, as is easy to prove (see Lemma 4 below; see also Lemma 1 in [2]), for such
series, without any conditions on the sequence λ of its exponents and on a function Φ ∈ ΩA,
the equality TΦ(F ) = 1 (or the identical equality TΦ(F ) = 1) implies the inequality

lim
σ↑A

K(σ, F )

Φ −1(σ)
≤ 1. (5)

It turns out that inequality (5) follows from the equality TΦ(F ) = 1 for any other Dirichlet
series F ∈ DA. The following theorem confirms this fact.

Theorem 1. Let A ∈ (−∞,+∞], Φ ∈ ΩA, and F ∈ DA. If TΦ(F ) ≤ 1, then inequality (5)
holds.

For an arbitrary function Φ ∈ ΩA, inequality (5) is sharp in each of the classes DA(λ),
λ ∈ Λ. This conclusion can be drawn from the following theorem which is a generalization
of Theorem B.

Theorem 2. Let A ∈ (−∞,+∞] and Φ ∈ ΩA. For every sequence λ ∈ Λ there exists a
Dirichlet series F ∈ DA(λ) such that TΦ(F ) = tΦ(F ) = 1 and equality (4) holds.

In order to prove Theorems 1 and 2, we will need some auxiliary results, which are given
in the next section.

2. Auxiliary results. The following lemma is well known (see, for example, [3, § 3.2], [4]).

Lemma 1. Let A ∈ (−∞,+∞], Φ ∈ ΩA, and φ(x) = max{σ ∈ DΦ : xσ − Φ(σ) = Φ̃(x)},
x ∈ R. Then the following statements are true:

(i) the function φ is nondecreasing on R;

(ii) the function φ is continuous from the right on R;

(iii) φ(x) → A, x → +∞;

(iv) the right-hand derivative of Φ̃(x) is equal to φ(x) at every point x ∈ R;

(v) if x0 = inf{x > 0: Φ(φ(x)) > 0}, then the function Φ(x) = Φ̃(x)/x increase to A on
(x0,+∞);

(vi) the function α(x) = Φ(φ(x)) is nondecreasing on [0,+∞).

In the following lemmas φ and x0 are defined by Φ in the same way as in Lemma 1.

Lemma 2 ([5]). Let A ∈ (−∞,+∞], Φ ∈ ΩA, σ0 = Φ(x0 + 0), and σ ∈ (σ0, A). Then the
minimum value of the function

h(y) =
Φ(y)

y − σ
, y ∈ (σ,A),

is Φ −1(σ) and this value is attained at the point y = φ(Φ −1(σ)).
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Lemma 3 ([5]). Let δ ∈ (0, 1), A ∈ (−∞,+∞], Φ ∈ ΩA, σ0 = Φ(x0 + 0), and
y(σ) = φ(Φ −1(σ)) for all σ ∈ (σ0, A). Then

Φ −1

(
σ +

δΦ(y(σ))

Φ −1(σ)

)
≤ Φ −1(σ)

1− δ
, σ ∈ (σ0, A).

Lemma 4. Let A ∈ (−∞,+∞], Φ ∈ ΩA, σ0 = Φ(x0+0), b ∈ [σ0, A), Ψ be a convex function
on (b, A) such that Ψ(y) ≤ Φ(y) for all y ∈ (b, A), and

E = {σ ∈ (b, A) : Ψ(y)−Ψ(σ) ≤ Φ(y) for all y ∈ (σ,A)}.

Then Ψ′
+(σ) ≤ Φ −1(σ) for every σ ∈ E.

Proof. Suppose that σ ∈ E. Then σ ∈ (σ0, A) and therefore, setting y = φ(Φ −1(σ)) and
using the convexity of the function Ψ and Lemma 2, we obtain

Ψ′
+(σ) ≤

Ψ(y)−Ψ(σ)

y − σ
≤ Φ(y)

y − σ
= Φ −1(σ).

Remark 1. It is easy to see that if functions Φ and Ψ satisfy the conditions of Lemma 4,
then there exists a number c ∈ [b, A) such that (c, A) ⊂ E. In addition, the set E contains
every point σ ∈ (b, A) such that Ψ(σ) ≥ 0.

Lemma 5. Let A ∈ (−∞,+∞], Φ ∈ ΩA, σ0 = Φ(x0 + 0), y(σ) = φ(Φ −1(σ)) for each
σ ∈ (σ0, A), b ∈ [σ0, A), F ∈ DA be a Dirichlet series of the form (1), and q > 0. If
lnG(y, F ) ≤ qΦ(y) for all y ∈ (b, A), then for every σ ∈ (b, A) and arbitrary p ≥ q we have∑

λn>pΦ−1(σ)

|an|eσλn <
1

e(p−q)Φ(y(σ))
. (6)

Proof. We first prove inequality (6) in the case p = q, i.e. we show that∑
λn>qΦ−1(σ)

|an|eσλn < 1 (7)

for every σ ∈ (b, A).
We fix an arbitrary σ ∈ (b, A) and consider the function

H(y) =
∑

λn>qΦ−1(σ)

|an|syλn , y < A.

Note that inequality (7) can be rewritten as H(σ) < 1.
Suppose on the contrary that H(σ) ≥ 1. For all y < A we get

H ′(y) =
∑

λn>qΦ−1(σ)

λn|an|syλn >
∑

λn>qΦ−1(σ)

qΦ −1(σ)|an|syλn = qΦ −1(σ)H(y). (8)
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On the other hand, setting Ψ(y) = (lnH(y))/q, y < A, we see that the function Ψ is convex
on the interval (−∞, A) and Ψ(y) ≤ (lnG(y, F ))/q ≤ Φ(y) for all y ∈ (b, A). Thus by
Lemma 4 (see Remark 1) we have

H ′(σ)

qH(σ)
= Ψ′(σ) ≤ Φ −1(σ),

which contradicts (8) with y = σ. Therefore, inequality (7) is proved.
We now prove inequality (6) for p > q. Put

δ =
p− q

p
, ε =

δΦ(y(σ))

Φ −1(σ)
.

Then by Lemma 3 we have qΦ −1(σ+ ε) ≤ pΦ −1(σ). Using inequality (7) with σ+ ε instead
of σ, we get∑

λn>pΦ−1(σ)

|an|eσλn =
∑

λn>pΦ−1(σ)

1

eελn
|an|e(σ+ε)λn ≤ 1

eεpΦ−1(σ)

∑
λn>pΦ−1(σ)

|an|e(σ+ε)λn ≤

≤ 1

eεpΦ−1(σ)

∑
λn>qΦ−1(σ+ε)

|an|e(σ+ε)λn <
1

eεpΦ−1(σ)
=

1

e(p−q)Φ(y(σ))
.

The following lemma was proved by I. V. Ostrovskii (see [1]).

Lemma 6. Suppose that 0 ≤ λ0 < λ1 < · · · < λN . Then for each exponential polynomial

P (s) =
N∑

n=0

ane
sλn

and every σ ∈ R the inequality M(σ, P ′) ≤ λNM(σ, P ) holds.

Let λ ∈ Λ. Consider a Dirichlet series F of the form (1) and put

β(F ) = lim
n→∞

1

λn

ln
1

|an|
.

It is well known (for instance, see [6, p. 114–115]) that

σa(F ) ≤ β(F ) ≤ σa(F ) + τ(λ)

and these inequalities are sharp (moreover, it was shown in [7] that for any A,B ∈ [−∞,+∞]
such that A ≤ B ≤ A + τ(λ) there exists a Dirichlet series F of the form (1) such that
σa(F ) = A and β(F ) = B).

Note also that for a Dirichlet series F the interval (−∞, β(F )) is the domain of existence
of the maximum term µ(σ, F ). If F (s) ̸≡ 0, then this interval is also the domain of existence
of the central index

ν(σ, F ) = max{n ≥ 0: |an|eσλn = µ(σ, F )}.
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Lemma 7 ([8]). Let λ ∈ Λ, A ∈ (−∞,+∞]. If for a Dirichlet series of the form (1) there
exists an increasing sequence (nk)

∞
k=0 of nonnegative integers such that an = 0 for all n < n0,

ank
̸= 0 for every k ≥ 0, and

κk :=
ln |ank

| − ln |ank+1
|

λnk+1
− λnk

↑ A, k ↑ ∞, |an| ≤ |ank
|eκk(λnk

−λn), n ∈ (nk, nk+1), k ≥ 0,

then β(F ) = A and, moreover, ν(σ, F ) = n0 for every σ < κ0 and ν(σ, F ) = nk+1 for all
σ ∈ [κk,κk+1) and k ≥ 0.

Lemma 8 ([4]). Let λ ∈ Λ, A ∈ (−∞,+∞], and Φ ∈ ΩA. If the condition

∀t > 0 : lnn = o(Φ(φ(λn/t))), n → ∞, (9)

holds, then each Dirichlet series F of the form (1) such that β(F ) = A belongs to the class
DA(λ) and for this series we have TΦ(F ) = tΦ(F ).

3. Proof of Theorems.

Proof of Theorem 1. Suppose that A ∈ (−∞,+∞], Φ ∈ ΩA, F ∈ DA is a Dirichlet series of
the form (1) such that TΦ(F ) ≤ 1, and prove that inequality (5) holds.

For all s ∈ C with Re z < A and each N ∈ R we put

PN(s) =
∑
λn≤N

ane
sλn , RN(s) =

∑
λn>N

ane
sλn .

Then F (s) = PN(s) +RN(s) and therefore

M(σ, F )−M(σ,RN) ≤ M(σ, PN) ≤ M(σ, F ) +M(σ,RN), σ < A. (10)

As above, let x0 = inf{x > 0: Φ(φ(x)) > 0}, σ0 = Φ(x0 + 0), and y(σ) = φ(Φ −1(σ)) for
all σ ∈ (σ0, A).

We fix an arbitrary η > 1 and choose numbers p and q such that 1 < q < p < η.
Since TΦ(F ) ≤ 1, we have lnG(y, F ) ≤ qΦ(y), y ∈ (b, A), for some b ∈ [σ0, A). Setting
N(σ) = ηΦ −1(σ), by Lemma 5 we obtain

M(σ,RN(σ)) ≤
∑

λn>ηΦ−1(σ)

|an|eσλn <
1

e(η−q)Φ(y(σ))
, σ ∈ (b, A).

Therefore, M(σ,RN(σ)) = o(1), σ ↑ A. Then it follows from (10) that

M(σ, PN(σ)) = M(σ, F ) + o(1), σ ↑ A. (11)

Let ε(σ) = 1/N(σ), y ∈ (b, A). By Lemma 3 we have

Φ −1(σ + ε(σ)) ∼ Φ −1(σ), σ ↑ A.

Hence for some b0 ∈ (b, A) we obtain

ηΦ −1(σ) ≥ pΦ −1(σ + ε(σ)), σ ∈ (b0, A).
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Taking into account that for every fixed ε > 0 and an arbitrary x ≥ 0 the inequality

x

eεx
≤ 1

εe

holds and again using Lemma 5 for all σ ∈ (b0, A) we have

M(σ,R′
N(σ)) ≤

∑
λn>ηΦ−1(σ)

λn|an|syλn =
∑

λn>ηΦ−1(σ)

λn

eε(σ)λn
|an|s(σ+ε(σ))λn ≤

≤ 1

ε(σ)e

∑
λn>ηΦ−1(σ)

|an|s(σ+ε(σ))λn ≤ 1

ε(σ)e

∑
λn>pΦ−1(σ+ε(σ))

|an|s(σ+ε(σ))λn ≤

≤ 1

ε(σ)e

1

e(p−q)Φ(y(σ+ε(σ)))
=

ηΦ −1(σ)

e(p−q)Φ(y(σ+ε(σ)))+1
.

Therefore,
M(σ,R′

N(σ)) = o(Φ −1(σ)), σ ↑ A. (12)

Further, using Lemma 6 and relations (11) and (12), we obtain

M(σ, F ′) ≤ M(σ, P ′
N(σ)) +M(σ,R′

N(σ)) ≤ N(σ)M(σ, PN(σ)) +M(σ,R′
N(σ)) =

= ηΦ −1(σ)M(σ, F ) + o(Φ −1(σ)), σ ↑ A,

so that
lim
σ↑A

K(σ, F )

Φ −1(σ)
≤ η.

Since η > 1 is arbitrary, we have (5).

Proof of Theorem 2. Suppose that Φ ∈ ΩA and λ ∈ Λ, and prove that there exists a Dirichlet
series F ∈ DA(λ) such that TΦ(F ) = tΦ(F ) = 1 and equality (4) holds.

As above, we put x0 = inf{x > 0: Φ(φ(x)) > 0}, σ0 = Φ(x0 + 0), and y(σ) = φ(Φ −1(σ))
for all σ ∈ (σ0, A). From condition (2) and Lemmas 1 and 3 it follows that there exists a
subsequence λ∗ = (λnk

) of the sequence λ such that for it and for the sequences (κk) and
(δk), where

κk = Φ(λnk+1
), δk =

1√
Φ(φ(λnk+1

))
=

1√
Φ(y(κk))

for all integers k ≥ 0, we have n0 = 0, Φ(φ(λn1)) > 1, and also

∀t > 0 : ln2 k = o(Φ(φ(λnk
/t))), n → ∞; (13)

(k + 1)λnk
σ − Φ(σ) ≤ (k + 1)λnk

κ0, σ ∈ [κk, A), k ≥ 0; (14)

τk := κk +
δkΦ(y(κk))

Φ −1(κk)
= κk +

1

δkλnk+1

< κk+1, k ≥ 0; (15)

2λnk
≤ λnk+1

, k ≥ 0. (16)

Note that (δk) is a nonincreasing sequence of points with (0, 1) tending to 0. Therefore, using
(15) and Lemma 3, we obtain

Φ −1(τk) ∼ Φ −1(κk), k → ∞. (17)
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In addition, according to (16) and (15),

(λnk+1
− λnk

)(τk − κk) ≥
1

2
λnk+1

(τk − κk) =
1

2δk
=

1

2

√
Φ(φ(λnk+1

)),

and hence, using (13), we see that

k + 1

e(λnk+1
−λnk

)(τk−κk)
→ 0, k → ∞. (18)

Put a0 = 1,

ank+1
=

k∏
j=0

eκj(λnj−λnj+1 ), k ≥ 0,

and an = 0 if n ∈ (nk, nk+1) for some k ≥ 0. By Lemma 7 for Dirichlet series (1) with
such coefficients an we have β(F ) = A and, moreover, ν(σ, F ) = n0 for every σ < κ0 and
ν(σ, F ) = nk+1 for all σ ∈ [κk,κk+1) and k ≥ 0.

Note that series (1) can be represented as

F (s) =
∞∑

m=0

anme
sλnm .

Since β(F ) = A and condition (13) holds, F ∈ DA(λ
∗) and TΦ(F ) = tΦ(F ) by Lemma 8.

Then also F ∈ DA(λ).
Let σ ∈ [κk,κk+1) and k ≥ 0. Then

κk = Φ(λnk+1
) = max

{
y − Φ(y)

λnk+1

: y ∈ DΦ

}
≥ σ − Φ(σ)

λnk+1

. (19)

From (19) and (14) we obtain, respectively, the following inequalities

λnk+1
(σ − κk) ≤ Φ(σ), λnk

(κk − κ0) ≤ λnk
(σ − κ0) ≤

Φ(σ)

k + 1
.

Using these inequalities, we have

lnµ(σ, F ) =

∫ σ

κ0

λν(t,F )dt =

∫ κk

κ0

λν(t,F )dt+

∫ σ

κk

λν(t,F )dt ≤

≤ λnk
(κk − κ0) + λnk+1

(σ − κk) ≤
Φ(σ)

k + 1
+ Φ(σ) =

k + 2

k + 1
Φ(σ).

Thus we see that tΦ(F ) ≤ 1. Then also TΦ(F ) ≤ 1, and therefore by Theorem 1 for the
constructed series inequality (5) holds.

Next, for an arbitrary σ < A and each integer p ≥ 0 we set

Qp(σ) =
∑
m≤p

λnmanme
σλnm , Rp(σ) =

∑
m>p

λnmanme
σλnm ,

Sp(σ) =
∑
m≤p

anme
σλnm , Tp(σ) =

∑
m>p

anme
σλnm .
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Since Qp(σ)Tp(σ) ≤ Sp(σ)λnpTp(σ) ≤ Sp(σ)Rp(σ), we obtain

K(σ, F ) =
F ′(σ)

F (σ)
=

Qp(σ) +Rp(σ)

Sp(σ) + Tp(σ)
≥ Qp(σ)

Sp(σ)
. (20)

Let k ≥ 0 be an arbitrary integer. According to (15) we have τk ∈ (κk,κk+1), and
therefore µ(τk, F ) = ank+1

eτkλnk+1 . If m ≤ k, then

anme
τkλnm = anme

κkλnme(τk−κk)λnm ≤ µ(κk, F )e(τk−κk)λnk = ank+1
eκkλnk+1e(τk−κk)λnk =

=
ank+1

eτkλnk+1

e(λnk+1
−λnk

)(τk−κk)
=

µ(τk, F )

e(λnk+1
−λnk

)(τk−κk)
,

and so, using (18), we get

Sk(τk) =
∑
m≤k

anme
τkλnm ≤ (k + 1)µ(τk, F )

e(λnk+1
−λnk

)(τk−κk)
= o(µ(τk, F )), k → ∞. (21)

Using (20) with σ = τk and p = k + 1, (21), and (17), we have

K(τk, F ) ≥ Qk+1(τk)

Sk+1(τk)
≥

λnk+1
µ(τk, F )

Sk(τk) + µ(τk, F )
= (1 + o(1))λnk+1

= (1 + o(1))Φ −1(κk) =

= (1 + o(1))Φ −1(τk)

as k → ∞. Consequently,

lim
σ↑A

K(σ, F )

Φ −1(σ)
≥ lim

k→∞

K(τk, F )

Φ −1(τk)
≥ 1.

This and (5) imply (4).
Finally, we prove that TΦ(F ) = 1. Suppose, on the contrary, that TΦ(F ) < 1. We fix some

q ∈ (0, 1) such that TΦ(F ) ≤ q and put Ψ(σ) = qΦ(σ), σ ∈ DΦ. Then TΨ(F ) ≤ 1 and is easy
to see Ψ −1(σ) = qΦ −1(σ) for all σ ∈ (σ0, A). Applying Theorem 1 to Ψ instead of Φ, we
obtain

lim
σ↑A

K(σ, F )

Φ −1(σ)
= q lim

σ↑A

K(σ, F )

Ψ −1(σ)
≤ q.

This contradicts (4).

Remark 2. In view of the above results, it is natural to ask whether we can replace the
condition TΦ(F ) ≤ 1 in Theorem 1 by the condition TΦ(F ) ≤ 1. Nothing as strong as this
is known. It is clear that such replacement is possible, for example, under conditions that
ensure the equality TΦ(F ) = TΦ(F ), in particular, provided that (9) holds. Note that the
equality TΦ(F ) = TΦ(F ) may not be satisfied in the general case (see, for example, [9, 10]).
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