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Let A € (—o0,+¢], ® be a continuous function on [a, A) such that for every 2 € R we
have zo — ®(c) — —o0 as 0 T A, ®(z) = max{zo — ®(c): o € [a, A)} be the Young-conjugate
function of ®, ®(x) = ®(x)/x for all sufficiently large z, (\,) be a nonnegative sequence
increasing to +oo, F(s) = Y. a,e** be a Dirichlet series absolutely convergent in the half-
plane Res < A, M(o, F) = sup{|F(s)|: Res = o} and G(0,F) = Y_ |a,|e°*" for each o < A.
It is proved that if In G (o, F) < (1 + 0(1))®(0), o 1 A, then the inequality

—  M(o,F")
lm ——mm———— <
otA M (o, F)® ~1(0)

holds, and this inequality is sharp.

1. Introduction. Let A be the class of all nonnegative sequences A = ()2, increasing to
+00, and A € (—o0, +o0]. For a sequence A € A we put

B _ — Inn(t,N)
n(t,\) = Z 1, 7(\) = lim —

t—4o00
An <t

and denote by D4 (M) the class of all Dirichlet series of the form
F(s) = Zanes% (1)
n=0

such that F'(s) # 0 and 0,(F) > A, where o,(F') is the abscissa of absolute convergence of
series (1). Set Dy = [Jycp Da(N).
For a Dirichlet series F' € D4 of the form (1) and every o < A we put

M(o,F) =sup{|F(s)|: Res =0}, p(o, F)=max{|a,|e”*: n >0},

Ko, F) = MO E) - G by = 3 fanle™.
n=0

M(o,F)’
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Let ®: Dy — R be a real function. We say that & € Q4 if the domain Dg of ® is an
interval of the form [a, A), ® is continuous on Dg, and the following condition

VreR: (l,i%ﬂ(xa —®(0)) = -0 (2)

holds. It is easy to see that in the case A < +oo condition (2) is equivalent to the condition
®(0) — +o00, 0 - A — 0, and in the case A = 400 this condition is equivalent to the
condition ®(0)/oc — +00, ¢ — 400. For ® € Q4 by & we denote the Young-conjugate
function of @, i.e., B

®(z) = max{xo — ®(0): 0 € Dy}, = €R.

Note (see Lemma 1 below), that the function ®(z) = ®(z)/z is continuous and increasing
to A on some interval of the form (xg, +00). Hence the inverse function ® ~! is defined on
some interval of the form (A, A) and ® ~! is continuous and increasing to +oc on (Ag, A).
We say that ® € 7, if @ is a function from the class 24 continuously differentiable on
D¢ such that ®’ is a positive increasing function on Dg.
Let @ € . It is clear that ®'(0) T 400 as ¢ T A. In addition, ®' has the inverse function
@: [xg, +00) = Dg. Set
®(0)

(a):a—m, o€ Ds.

KH)

It is easy to prove that ®(z) = ®(p(x)) for every & € (wo,+00). This implies that
(@7 (o)) = @ (o) for all o € (A, A).
For a Dirichlet series F' € D4 and a function ® € Q24 we put
—InM(o, F) —Inu(o, F) —InG(o, F)
DEND ) e (F) = Tim %) F) = Tim %7
01%’2 @(0’) ) <I>( ) 01%2 @(O') ) 7&’( ) UITI;} @(O')
Suppose that A € A, & € Q4, and F € D4()) is a Dirichlet series such that Te(F) = 1.
Then the following theorem, which is proved in [1], gives an estimate of the growth for the
quantity K (o, F') as o T A by some conditions on A and ®.

To(F) =

Theorem A. Let A € (—o0,+0], A € A, a be a positive increasing to +o0o function on
0, +00) such that a(t) = o(t) ast — 400, F € D4(\), ® € Oy, and y(0) = 2/a(® (o)) for
every o € (Ag, A). Suppose that Inn(t,\) < t/a(t), t > tyg, and 0 + v(0) < A, 0 € |09, A).
If Ty(F) = 1, then

— K(o,F)

lim =

714 &1 (0 4 ()

<1 (3)
It is shown in [1]| that in many cases estimate (3) is sharp. To substantiate the exactness
of inequality (3), in [1], in particular, the following theorem was proved.

Theorem B. Let A € (—oo, +o0], & € Q) be a twice continuously differentiable function
on Dg, and ¢ be the inverse function of ®'. If

((1+0(1))o) ~ (1 +0(1))2(0), o1 A,

and t*¢'(t) 1 +oo as t 1 +oo, then for every sequence A € A there exists a Dirichlet series
F € DA(X) such that Te(F) = te(F) = 1 and

Tim [_((Ua F)
atA § ~1(o)

~1. (4)
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It is easily seen that the conditions of Theorem A imply the equality 7(A) = 0. Therefore,
in the case 7(A\) > 0 Theorem A does not give any information about the growth of the
quantity K (o, F'). Moreover, if A < 400, then even in the case 7(\) = 0 the conclusion of
Theorem A is true only under some conditions on .

Let F' € D4 be a Dirichlet series of the form (1) with nonnegative coefficients a,,. Then
M(o,F) = G(o,F) = F(0), 0 < A. Hence, To(F) = To(F) and K(o, F) = (In M(o, F))’,
o < A. Therefore, as is easy to prove (see Lemma 4 below; see also Lemma 1 in [2]), for such
series, without any conditions on the sequence \ of its exponents and on a function ® € 4,
the equality T4 (F) = 1 (or the identical equality 7¢(F') = 1) implies the inequality

— K(o,F
otA O ~1(o)
It turns out that inequality (5) follows from the equality 7 (F') = 1 for any other Dirichlet

series I’ € D 4. The following theorem confirms this fact.

Theorem 1. Let A € (—o0, +o0], ® € Qy, and F € Dy. If To(F') < 1, then inequality (5)
holds.

For an arbitrary function ® € Qy, inequality (5) is sharp in each of the classes D4(A),
A € A. This conclusion can be drawn from the following theorem which is a generalization
of Theorem B.

Theorem 2. Let A € (—o0,+00] and & € Qy. For every sequence A € A there exists a
Dirichlet series F' € D () such that Te(F') = te(F) = 1 and equality (4) holds.

In order to prove Theorems 1 and 2, we will need some auxiliary results, which are given

in the next section.
2. Auxiliary results. The following lemma is well known (see, for example, [3, § 3.2], [4]).
Lemma 1. Let A € (—o0,+00], ® € Qy4, and ¢(z) = max{o € Dg: z0 — ®(c) = ®(a)},
x € R. Then the following statements are true:

(i) the function ¢ is nondecreasing on R;

(ii) the function ¢ is continuous from the right on R;
(iii) p(z) = A, x — +00;

(iv) the right-hand derivative of %(x) is equal to p(z) at every point x € R;

(v) if zg = inf{zx > 0: ®(p(x)) > 0}, then the function ®(z) = ®(z)/z increase to A on

(an +OO),
(vi) the function a(x) = ®(p(x)) is nondecreasing on [0, +00).

In the following lemmas ¢ and xq are defined by ® in the same way as in Lemma 1.

Lemma 2 ([5]). Let A € (—o0,+00], ® € Qu, 09 = ®(29 + 0), and o € (09, A). Then the
minimum value of the function

h(y) M, y € (0,4),

is ® "!(0) and this value is attained at the point y = p(® ~1(0)).
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Lemma 3 ([5]). Let 0 € (0,1), A € (—oo,+00], ® € Q4, 09 = PB(xo + 0), and
y(o) = p(® (o)) for all o € (09, A). Then

-1 0(y(0))\ _ 27'(0)
P (0’+W)§ 1—s UE(Uo,A).

Lemma 4. Let A € (—o0,+00], ® € Qqu, 09 = P(x0+0), b € [09, A), U be a convex function
on (b, A) such that V(y) < ®(y) for all y € (b, A), and

E={oce (b A): ¥(y)— V(o) < D(y) for ally € (0, A)}.
Then V', (o) < @ ~Y(0) for every o € E.

Proof. Suppose that 0 € E. Then o € (09, A) and therefore, setting y = ¢(® ~!(0)) and
using the convexity of the function ¥ and Lemma 2, we obtain

iy < YW = W0) 0 5
V(o)< S0 < T~ 37 (o),

O
Remark 1. It is easy to see that if functions ® and W satisfy the conditions of Lemma 4,

then there exists a number ¢ € [b, A) such that (¢, A) C E. In addition, the set FE contains
every point o € (b, A) such that (o) > 0.

Lemma 5. Let A € (—o0,+x], ® € Q4, 09 = ®(zy + 0), y(o) = (P ~(0)) for each
o € (09,A), b € [09,A), F € D4 be a Dirichlet series of the form (1), and ¢ > 0. If
InG(y, F) < q®(y) for all y € (b, A), then for every o € (b, A) and arbitrary p > q we have

1
oA\n
> lanle S 0% (6)
An>p® —1(0)

Proof. We first prove inequality (6) in the case p = ¢, i.e. we show that

Z |anle”™ < 1 (7)
An>q® — (o)
for every o € (b, A).
We fix an arbitrary o € (b, A) and consider the function
Hiy)= Y laa|s*™, y<A

An>q® ~1(0)

Note that inequality (7) can be rewritten as H(o) < 1.
Suppose on the contrary that H(c) > 1. For all y < A we get

Hp) = 3 Adads™ > S0 @ 0)aus™ = @ 0)HE).  (8)

An>q® —1(o) An>q® —1(0)
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On the other hand, setting ¥(y) = (In H(y))/q, y < A, we see that the function ¥ is convex
on the interval (—oo, A) and ¥(y) < (InG(y, F))/q < ®(y) for all y € (b, A). Thus by
Lemma 4 (see Remark 1) we have

H'()

qH(O’) - \II/(O-) < ¢~ (0>7

which contradicts (8) with y = o. Therefore, inequality (7) is proved.
We now prove inequality (6) for p > ¢. Put

s_P—a __ 924yl
p o)

Then by Lemma 3 we have q® ~!(o +¢) < p® ~!(0). Using inequality (7) with o + ¢ instead
of o, we get

1 1
Z |an|6‘7)‘n — Z s |an’e(a+s)>\n < m Z |an|€(o+e))\n <

An>p® ~1(0) An>p® ~1(0) An>p® ~1(0)
1 1 1
(o+e)An _
- esp$_1(0') Z |an|€ < ez—:pg_l(a) e(r—a)2(y(o))

An>q® ~1(o+e)

The following lemma was proved by I. V. Ostrovskii (see [1]).

Lemma 6. Suppose that 0 < A\g < A\; < --- < Ay. Then for each exponential polynomial

and every o € R the inequality M (o, P') < AyM (o, P) holds.
Let A € A. Consider a Dirichlet series F' of the form (1) and put

B(F) = lim — In —

It is well known (for instance, see |6, p. 114-115]) that
0a(F) < B(F) < 0a(F) +7(})

and these inequalities are sharp (moreover, it was shown in [7] that for any A, B € [—o0, +00]
such that A < B < A+ 7(\) there exists a Dirichlet series F' of the form (1) such that
0.(F) = A and 5(F) = B).

Note also that for a Dirichlet series F' the interval (—oo, B(F")) is the domain of existence
of the maximum term (o, F'). If F'(s) # 0, then this interval is also the domain of existence
of the central index

v(o, F) = max{n > 0: |a,|e”™ = u(o, F)}.
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Lemma 7 ([8]). Let A € A, A € (—o0,+0o0]. If for a Dirichlet series of the form (1) there
exists an increasing sequence (ny )2, of nonnegative integers such that a,, = 0 for all n < ny,
ayn, # 0 for every k > 0, and

Inla,,| —1Inla
s = ’;k’ J\ 8 TA, ktoo, lag| < lan, e e (ng,nps), k>0,
— A,

NE+1

then B(F) = A and, moreover, v(o,F) = ng for every o < s and v(o,F) = nyy, for all
0 € [, 2p1) and k > 0.

Lemma 8 ([4]). Let A € A, A € (—o0,+0o0], and ® € Q4. If the condition
Vi>0: Inn=o(@(e(\. /1)), n— oo, 9)

holds, then each Dirichlet series F' of the form (1) such that 5(F) = A belongs to the class
D4(A) and for this series we have T (F') = to(F).

3. Proof of Theorems.

Proof of Theorem 1. Suppose that A € (—o0,+00], ® € Qy4, F € Dy is a Dirichlet series of
the form (1) such that Te(F) < 1, and prove that inequality (5) holds.
For all s € C with Rez < A and each N € R we put

Pu(s)= 3 ane™, Ry(s)= Y ane™.

An<N An>N
Then F(s) = Pn(s)+ Rn(s) and therefore
M(o,F)— M(o,Ry) < M(o,Py) < M(0,F)+ M(o,Ryn), o <A. (10)

As above, let 79 = inf{z > 0: ®(¢(x)) > 0}, 0o = ®(zo + 0), and y(o) = ¢(® (o)) for
all 0 € (09, A).

We fix an arbitrary 7 > 1 and choose numbers p and ¢ such that 1 < ¢ < p < 7.
Since To(F) < 1, we have InG(y, F') < q®(y), y € (b, A), for some b € [og, A). Setting
N(o) =n® (o), by Lemma 5 we obtain

1
oAn
M(o, Rn(r)) < Z |anle” < PoEnTIOTC) R € (b, A).
An>n® —1(0)
Therefore, M (o, Ryn()) = 0o(1), 0 T A. Then it follows from (10) that
Mo, Pxoy) = M(o, F) +o(1), o1 A ()

Let e(0) =1/N(0), y € (b, A). By Lemma 3 we have

® Ho+e(o)~® (o), o1 A

Hence for some by € (b, A) we obtain

n® (o) > pd o +¢e(0)), o€ (b, A).
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Taking into account that for every fixed € > 0 and an arbitrary x > 0 the inequality

T 1
- S .
ecr ce

holds and again using Lemma 5 for all o € (by, A) we have

An
]\4(0’7 R?\T(a)) < Z )\n‘an|8y)\n — Z _n ’anls(UJrs(o)))\n <

— - e€(@)An
An>n® ~1(0) A >n® ~1(0)
1 1
E (J+8(U)))‘7L (U+5(U)))\7L
An>n® ~1(o) An>p® —1(o+e(0))

1 1 B n® (o)
(0)e er=0®(y(o+e(@)  elp—q)@(y(o+e(0)))+1"

IA

Therefore, B
M(o, Ry () = o(® o)), ot A (12)

Further, using Lemma 6 and relations (11) and (12), we obtain

M(Uu F/) < M(O-7 P]/V(o-)) + M(J7 R?V(a)) < N(U)M(U7 PN(U)) + M(O', R?\/(a)) =
=n® " H(o)M(0, F) +0o(®"}(0)), o1 A,
so that
— K(o,F)
lim = <
otA O ~1(o)

Since n > 1 is arbitrary, we have (5). O

Proof of Theorem 2. Suppose that ® € (24 and A € A, and prove that there exists a Dirichlet
series F' € D () such that To(F) = te(F) = 1 and equality (4) holds.

As above, we put zy = inf{z > 0: ®(p(x)) > 0}, 09 = ®(z9 + 0), and y(o) = ¢( ~1(0))
for all o € (09, A). From condition (2) and Lemmas 1 and 3 it follows that there exists a

subsequence \* = (), ) of the sequence A such that for it and for the sequences (s¢) and

(0x), where

— 1 1
Xk = q)()\nk+l)7 Ok = =

Cp(Anin)) vV O(y(e)
for all integers k& > 0, we have ng = 0, ®(p(A\,,)) > 1, and also

Vt>0: In*k=o0(®(p(\,, /1), n— oo; (13)

(k+ 1N\, 0—@(0) < (k+ 1Ay 20, 0 €[5, A), k> 0; (14)
kP (y(5a)) 1

Tk 1= 2, + 31 (0) », + S, < Ay, > 0; (15)

Dy < Ays k>0, (16)

Note that (Jx) is a nonincreasing sequence of points with (0, 1) tending to 0. Therefore, using
(15) and Lemma 3, we obtain

O 1) ~® (), k— oo (17)
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In addition, according to (16) and (15),
1 1 1
()\nk+1 - /\nk)(Tk - %k) > )\nk+1 (Tk‘ - %k) — 5 — &5 Q(SO()\”IH»I))?
2 20, 2
and hence, using (13), we see that
E+1
()\nk+1 _Ank)(Tk_%k) = 07 k —* 00. (18)
Put ag =1,
k

#j (An 1)
Ay = | | e Anjit k>0,

7=0
and a, = 0 if n € (ng,ngy1) for some & > 0. By Lemma 7 for Dirichlet series (1) with
such coefficients a,, we have S(F) = A and, moreover, v(o, F') = ng for every o < 4 and
(0,F) = nyy for all o € [5, 5,41) and £ >0
Note that series (1) can be represented as

o0

F(s) = Z U, €A

m=0

Since B(F) = A and condition (13) holds, F' € D4(\*) and To(F') = te(F) by Lemma 8.
Then also F' € Dy(A).

Let 0 € [s, sx11) and k > 0. Then

— ) o
%k:q)()‘nk-u) zmax{y— <y) RS DCP} >0 — <0) (19)
)\nk+1 )\nkJrl
From (19) and (14) we obtain, respectively, the following inequalities
O(o
) S B0), Ao~ 20) < hurlo — 30) < T

A (00— 22

Using these inequalities, we have
g

o P
Inu(o, F) = / Av(t,pydt = / Av(t,p)dt + / Avt,pydt <
pea e

o(0) ) (o) = Z—i@(a).

S /\nk( A — %0) + Ank+1( - X )

k+
Thus we see that t¢(F) < 1. Then also 7o(F) < 1, and therefore by Theorem 1 for the
constructed series inequality (5) holds.

Next, for an arbitrary ¢ < A and each integer p > 0 we set

An’m j— >"ﬂm
= E A O, €77 Ry(0) = E Ay G, €777

m>p

m<p
Sp(o) = Z an,, e m . T,(0) = Z Ay, €7
m<p m>p
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Since Qp(0)T,(0) < Sp(0) A, Tp(0) < Sp(0)R,(0), we obtain

F(0) _ Qylo) + Ryl0) _ @ylo)

Ko F) = Fo) = 5,0) 1 Tlo) = S,(0)

. (20)

Let £ > 0 be an arbitrary integer. According to (15) we have 7, € (3, 3641), and
therefore (., F) = ankHeTk’\”kH. It m <k, then

a, R anmeﬂkAnme(Tk_”k))‘nm < M<%k7F)6(Tk_%k))\nk _ ank+le%k>\nk+le(7k_%k)/\nk _

m

T A
ank+1e s ,U(Tkra F)

A1 =Ang ) (Th =) o ePnpp =Ang ) (Te—5%) 7

and so, using (18), we get

(k + Dplme, F)

Ank+1 _Ank)(Tk_%k

Se(mk) = Y _ ay, €™ <

m<k

e( ;= o(pu(tk, F)), k — oo. (21)

Using (20) with 0 = 7, and p = k + 1, (21), and (17), we have

/\nk+1:u(7—k7F) o _ 3 —1 _
2 S Tty ~ AT oA = (14 0(1)B (0 =

= (1+0(1)® ~(m)

>.QhHCW)

K. F) 2 Skr1(Tr)

as k — oo. Consequently,

I.—K<07F) > Tim K (7., F)

im — > — > 1.
otA & ~1(g) T k—oo & ~I(7y)
This and (5) imply (4).
Finally, we prove that 74(F') = 1. Suppose, on the contrary, that 7o (F) < 1. We fix some
q € (0,1) such that T3(F) < ¢ and put ¥(0) = ¢®(0), 0 € Dg. Then Ty (F) < 1 and is easy
to see W ~!(0) = q® (o) for all o € (0y, A). Applying Theorem 1 to ¥ instead of @, we
obtain Ko F Ko F
TE UL g S GIED P
otA O ~1(o) otA U —1(0)
This contradicts (4). O

Remark 2. In view of the above results, it is natural to ask whether we can replace the
condition 73(F) < 1 in Theorem 1 by the condition T5(F') < 1. Nothing as strong as this
is known. It is clear that such replacement is possible, for example, under conditions that
ensure the equality 7o(F') = To(F'), in particular, provided that (9) holds. Note that the
equality 7o(F') = Te(F') may not be satisfied in the general case (see, for example, |9, 10]).

REFERENCES

1. M.N. Sheremeta, S.I. Fedynyak, On the derivative of a Dirichlet series, Sib. Mat. Zh., 39 (1998), Nel,
206—223. (in Russian) English translation in: Siberian Math. J., 39 (1998), Nel, 181-197.



12

10.

S. I. FEDYNYAK, P. V. FILEVYCH

S.I. Fedynyak, On mazimum modulus points and zero set for an entire function, Mat. Stud., 30 (2008),
Ne2, 169-172.

M.A. Evgrafov, Asymptotic estimates and entire functions, Moscow: Nauka, 1979. (in Russian)

T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ.,
7 (2015), Ne2, 172-187.

S.I. Fedynyak, P.V. Filevych, Distance between a mazimum modulus point and zero set of an analytic
function, Mat. Stud., 52 (2019), Nel, 10-23.

A.F. Leont’ev, Series of exponents, Moscow: Nauka, 1976. (in Russian)

P.V. Filevych, On relations between the abscissa of convergence and the abscissa of absolute convergence
of random Dirichlet series, Mat. Stud., 20 (2003), Nel, 33-39.

P.V. Filevich, On Valiron’s theorem on the relations between the maximum modulus and the maximal
term of an entire Dirichlet series, Izv. Vyssh. Uchebn. Zaved. Mat., (2004), Ne4, 66-72. (in Russian)
English translation in: Russian Math., 48 (2004), Ne4, 63—69.

P.V. Filevich, On influence of the arguments of coefficients of a power series erpansion of an entire
function on the growth of the maximum of its modulus, Sib. Mat. Zh., 44 (2003), N3, 674-685. (in
Russian) English translation in: Siberian Math. J., 44 (2003), Ne3, 529-538.

T.Ya. Hlova, P.V. Filevych, The growth of analytic functions in the terms of generalized types, J. Lviv
Politech. Nat. Univ., Physical and mathematical sciences, (2014), Ne804, 75-83. (in Ukrainian)

Department of Applied Mathematics and Statistics,

Ukrainian Catholic University, Lviv, Ukraine
napets.fed@gmail.com

Department of Computational Mathematics and Programming,
Lviv Polytechnic National University, Lviv, Ukraine
p.v.filevych@gmail.com

Received 31.08.2019
Revised 10.01.2020



