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The extremal problems in the space of meromorphic functions of order ρ > 0 in upper
half-plane are studed. The method for studying is based on the theory of Fourier coefficients
of meromorphic functions. The concept of just meromorphic function of order ρ > 0 in upper
half-plane is introduced. Using Lemma on the Pólya peaks and the Parseval equality, sharp
estimate from below of the upper limits of relations Nevanlinna characteristics of meromorphic
functions in the upper half plane are obtained.

1. Introduction. This paper is a direct continuation of [1]. We shall use, without repeating
them, the definitions, results and notation of [1]. However, sections, formulas, theorems and
other propositions are labeled independently of [1]. We now state the central results of the
present paper.

Let f ∈ JM , λ = λf be the corresponding complete measure of f , λf := λ = λ+−λ− be
the Jordan decomposition of λf . We set up following notations and terminology

m(r, f) :=
1

r

π∫
0

log+ |f(reiϕ)| sinϕdϕ, N̂(r, f) :=

r∫
r0

λ−(t)

t2
dt,

N(r, f) :=

r∫
r/2

λ−(t)

t3
dt, T (r, f) := m(r, f) +N(r, f) +m

(
r

2
,
1

f

)
if ρ ≤ 1,

N(r, f) :=

r∫
r0

λ−(t)

t3
dt, T (r, f) := m(r, f) +N(r, f) +m

(
r0,

1

f

)
, if ρ ≥ 1,

where r0 is an arbitrary fixed positive number. We have

T (r, f) = T

(
r,

1

f

)
,
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(see [1, (3)]). Hence
π∫

0

| log |f(reiϕ)|| sinϕdϕ ≤ 2rT (r, f). (1)

Let us introduce the notions of the order and the indicator of a function. These notions
describe growth of a function at infinity.

Definition 1. A function f ∈ JM is said to be a function of finite order if there exists a
positive constant β > 1 such that the inequality T (r, f) ≤ rβ−1 is valid for all sufficiently
large values of r (i.e r > r0(β)).

The greatest lower bound ρ of such numbers β is called the order of the function f ∈ JM .

The space of such functions is denoted by JM(ρ). By JA(ρ) ⊂ JM(ρ) we denote the
subspace of just analytic functions in C+. By m2(r, f) we denote L2-norm of the function f
about the semicircle of {reiθ : 0 ≤ θ ≤ π}:

m2(r, f) =

 1

π

π∫
0

∣∣log |f(reiθ)|∣∣2 dθ


1/2

,

The Fourier coefficients of a function f ∈ JM are defined as

ck(r, f) =
2

π

π∫
0

log |f(reiθ)| sin kθdθ, k ∈ N.

Using (1), we obtain

|ck(r, f)| ≤
2k

π

π∫
0

| log |f(reiϕ)|| sinϕdϕ ≤ 4rk

π
T (r, f) (2)

and

m(r, f) +m(r, 1/f) =

π∫
0

| log |f(reiϕ)|| sinϕdϕ ≤ 2rT (r, f). (3)

Set
dλk(ζ) =

sin kϕ

sinϕ
τ k−1dλ(ζ) (ζ = τeiϕ), λm(r) = λm

(
C(0, r)

)
,

where sinmϕ
sinϕ

is defined for ϕ = 0, π by continuity.
Note the inequality

|λk(r)| =
∣∣∣∣∫∫

C(0,r)

dλk(ζ)

∣∣∣∣ = ∣∣∣∣∫∫
C(0,r)

sin kϕ

sinϕ
τ k−1dλ(ζ)

∣∣∣∣ ≤
≤ k

∫∫
C(0,r)

τ k−1d|λ|(ζ) ≤ krk−1|λ|(r). (4)

By Carleman’s formula in Grishin’s notations [1, (1)],

ck(r, f) =
1

2k
ck(2r, f)−

2rk

π

2r∫
r

λk(t)

t2k+1
dt, k ∈ N.
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The following expressions for the Fourier coefficients for r > r0 holds

ck(r, f) = αkr
k +

2rk

π

r∫
r0

λk(t)

t2k+1
dt, k ∈ N, (5)

where αk = r−k0 ck(r0, v), and

ck(r, f) = αkr
k +

rk

πkr2k0

∫∫
C+(0,r0)

sin kϕ

Im ζ
τ kdλ(ζ)+

+
rk

πk

∫∫
r0≤|ζ|≤r

sin kϕ

τ k Im ζ
dλ(ζ)− 1

rkπk

∫∫
C+(0,r)

sin kϕ

Im ζ
τ kdλ(ζ), ζ = τeiϕ,

(6)

(see [1, formulas (10) and (11)]), where the kernel sin kϕ
τk Im ζ

is extended by continuity to the
points on the real axis, αk = r−k0 ck(r0, v).

We will use the following lemma.

Lemma 1. Let f ∈ JM(ρ), ρ > 0. Then

ck(r, f) = −
2rk

π

∞∫
r

λk(t)

t2k+1
dt, k ∈ N, k > [ρ]. (7)

Proof. We divide the equality (5) by rk, k > ρ, and pass to the limit as r → ∞. By
inequality (2), the inclusion f ∈ JM(ρ), we obtain

0 = αk +
2

π

∞∫
r0

λk(t)

t2k+1
dt,⇒ αk = −

2

π

∞∫
r0

λk(t)

t2k+1
dt, k ∈ N, k > ρ.

Substituting this value of αk in (5), we obtain (7).

Our main result is the following theorem.

Theorem 1. Let f ∈ JM(ρ), ρ > 0. Then

lim sup
r→∞

N̂(r, f) + N̂(r, 1/f)

m2(r, f)
≥ | sin πρ|
ρ(ρ+ 1)

√
1

/(
1− sin 2πρ

2πρ

)
, (8)

and this inequality is sharp, i. e. for some meromorphic function f , f ∈ JM(ρ), ρ > 0,
equality (8) holds.

Remark 1. In contrast to Theorem 1 and Corollary from [1] which are true for ρ > 1, this
Theorem holds for all ρ > 0.

2. Proof of Theorem 1. Let us prove Theorem 1. Let f ∈ JM(ρ), ρ > 0. Let ρ be a
non-integer. In the case of integer ρ, the theorem is obvious.
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We define a measure λ̃ by the equality λ̃ = |λf |. Without loss of generality, we can
suppose that the measure λ̃ does not load some neighborhood of zero. Denote by q = [ρ],
β = {βk},

βk =


|αk(f)|+

∣∣∣∣∣∣∣
1

πkr2k0

∫∫
C+(0,r0)

sin kϕ

Im ζ
τ kdλf (ζ)

∣∣∣∣∣∣∣ , 1 < k < q + 1,

−S+(+∞; k, λ̃), k ≥ q + 1,

,

where
S+(+∞; k, λ̃) := lim

r→∞
S+(r; k, λ̃).

The following estimate holds

|ck(r; λ̃, β)| ≤
(k + 1)rk

π

∞∫
r

λ̃(t)

tk+2
dt− k − 1

rkπ

r∫
0

tk−2λ̃(t)dt ≤ A(k + 1)rρ+ε

π(k − ρ− ε)
, k ≥ q + 1, (9)

(see [1, (20)]), for some A > 0, ε > 0, ρ+ ε < q + 1.
A similar inequality holds for 1 ≤ k < q + 1. Thus the pair (λ̃, β) is ρ-admissible. By

Lemma 6 from [1], there exists the function F ∈ JA(ρ) such that ck(r, F ) = ck(r; λ̃, β) for
all r > 0 and for all k ∈ N.

Set

N̂1(r) = N̂1(r, F ) :=

r∫
1

λ̃(t)

t2
dt.

The order of the function N̂(r) is less than or equal to ρ. In fact, it is equal ρ, because
otherwise it follows from Theorem 3 [10] that this order of T (r, f) is an integer, but we
excluded this case.

Integrating by parts in (9), we obtain

|ck(r, F )| ≤
(k + 1)rk

π

r∫
0

dN̂1(t)

tk
− k − 1

rkπ

r∫
0

tkdN̂1(t) =

=
k

π

(k − 1)

r∫
0

(
t

r

)k
N̂1(t)

t
dt+ (k + 1)

∞∫
r

(r
t

)k N̂1(t)

t
dt

− 2k

π
rN̂1(r)

(10)

for k ≥ q + 1.
By (6), we have

|ck(r, F )| ≤ rk

|αk|+ 2

πr2k0

r0∫
0

tk−1dλ̃(t)

+
1

π

r∫
r0

[(r
t

)k
−
(
t

r

)k]
dλ̃(t)

t
,

for 1 ≤ k ≤ q.
Therefore, by double integration by parts, we obtain the inequality

|ck(r, F )| ≤ rkγk +
2k

π
rN̂1(r) +

k(k − 1)

π

r∫
r0

[(r
t

)k
−
(
t

r

)k]
N̂1(t)

t
dt, 1 ≤ k ≤ q, (11)
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where

γk = |αk|+
2

πr2k0

r0∫
0

tk−1dλ̃(t) +
λ̃(r0)

πrk+1
0

.

Besides, |ck(r, f)| ≤ |ck(r, F )|, 1 ≤ k ≤ q, and |ck(r, f)| ≤ −ck(r, F ), k ≥ q + 1. Hence

m2(r, f) ≤ m2(r, F ) (12)

Let ε > 0 be a fixed number. Applying the lemma of Pólya peaks [11] for functions N̂1(r),
rρ−ε, rρ+ε, we find the sequence (rn), lim

n→∞
rn =∞, ([8, p. 62]) such that

N̂1(t) ≤
(
t

rn

)ρ−ε
N̂1(rn), 0 < t ≤ rn, N̂1(t) ≤

(
t

rn

)ρ+ε
N̂1(rn), t > rn. (13)

Using inequalities (10), (11), (13), we obtain

|ck(rn, F )| ≤ rknγk +
2k

π
N̂1(rn)

(
k2 + ρ− ε

(ρ− ε)2 − k2
+ 1

)
, 1 ≤ k ≤ [ρ],

|ck(rn, F )| ≤
2k

π
N̂1(rn)

(
k2 + ρ− εk
(k − ε)2 − ρ2

− 1

)
, k > [ρ].

(14)

Inequality (13) implies, in particular, that r[ρ]n = o(N̂1(rn)) as n → ∞, since for t′ such
that r0 < t′ and N̂1(t

′) ≥ (t′)ρ−ε for all rn ≥ t′ the inequality

rq+εn < rρ−εn ≤ rρ−εn

N̂1(t
′)

(t′)ρ−ε
≤ N̂1(rn)

holds if 2ε < ρ− q.
From this remark, arbitrariness ε and (14), it follows that

lim sup
n→∞

|ck(rn, F )|
N̂1(rn)

≤ 2k

π

ρ2 + ρ

|ρ2 − k2|
, k = 1, 2, . . . .

By the Parseval’s equality

(m2(r, F ))
2 =

1

2

∞∑
k=−∞

|ck(r, F )|2,

we obtain the inequality

lim inf
n→∞

m2(r, F )

N̂1(r)
≤

{
∞∑

k=−∞

2k2

π2

(ρ2 + ρ)2

|ρ2 − k2|2

}1/2

.

The sum on the right-hand side of this inequality can be easily found using residues [12].
It is equal

∞∑
k=−∞

2k2

π2

(ρ2 + ρ)2

|ρ2 − k2|2
=

(
ρ(ρ+ 1)

| sinπρ|

)2(
1− sin 2πρ

2πρ

)
. (15)
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Since N̂1(r) = N̂(r, f) + N̂(r, 1/f), by (15) we get the statement of Theorem 1.
We show that the estimate (8) is sharp.

Example. The function

f(z) = exp

 1

πi

∫
t≥1

(tz + 1)q+1tρ

(t− z)(t2 + 1)q+1
dt

 , ρ > 0, q = [ρ],

is the analytic function in C+ with the complete measure λf (t) = tρ+1 = λ+(t) = λ̃(t) if
t ∈ R, t ≥ 1, and dλf (z) ≡ 0 if z ∈ C+ ∪ (−∞, 1),

N1(r) = N(r, 1/f) =

r∫
1

tρ−2dt =
rρ−1

ρ− 1
− 1

ρ− 1
, N(r, f) ≡ 0, λk(t) =

k(ρ+ 1)

k + ρ
tk+ρ.

Now estimate the function

u(z) = Re

 1

πi

∫
t≥1

(tz + 1)q+1tρ

(t− z)(t2 + 1)q+1
dt

 .

We have
u(z) =

1

πi

∫
t≥1

=
1

πi

∫
1≤t≤ 1

2
|z|

+
1

πi

∫
1
2
|z|<t≤2|z|

+
1

πi

∫
t>2|z|

= I1 + I2 + I3.

Further

|I1| ≤
1

π

∫
1≤t≤ 1

2
|z|

(t|z|+ 1)q+1tρ(
1
2
|z|
)
(t2 + 1)q+1

dt ≤ 1

π

∫
t≥1

dt

t1+ε
× max

1≤t≤ 1
2
|z|

tρ+1+ε(t|z|+ 1)q+1(
1
2
|z|
)
(t2 + 1)q+1

≤ C(1)
q,ε |z|ρ+ε,

|I3| ≤
1

π

∞∫
2|z|

(t|z|+ 1)q+1tρ(
1
2
t
)
(t2 + 1)q+1

dt ≤ 1

π

∫
t≥1

dt

t1+ε
× max

t≥2|z|

tρ+1+ε(t|z|+ 1)q+1(
1
2
t
)
(t2 + 1)q+1

≤ C(2)
q,ε |z|ρ+ε,

I2 =
1

πi

∫
1
2
|z|<t≤2|z|

(tz + 1)q+1 − (t2 + 1)q+1

(t2 + 1)q+1(t− z)
tρdt+

1

πi

∫
1
2
|z|<t≤2|z|

tρdt

t− z
= I

(1)
2 + I

(2)
2 .

As can be easily seen, ∣∣∣∣(tz + 1)q+1 − (t2 + 1)q+1

(t− z)

∣∣∣∣ ≤ Cq|z|2q+1

for 1
2
|z| < t ≤ 2|z| (since the expression in the left-hand side is a polynomial in both z and t).

Therefore

|I(1)2 | ≤
Cq
π

∫
1
2
|z|<t≤2|z|

|z|2q+1tρ

(t2 + 1)q+1
dt ≤ C(3)

q,ε |z|ρ+ε
∞∫
1

dt

t1+ε
.

Finally, by the Poisson formula for the half-plane, we obtain

Re I
(2)
2 =

1

π

∫
1
2
|z|<t≤2|z|

tρ Im
1

t− z
dt ≤ 2ρ|z|ρ.
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Thus,
log |f(z)| < Cq,ε|z|ρ+ε.

Therefore
m(r, f) < Cq,επr

ρ+ε−1.

Since N(r, f) ≡ 0 we have

T (r, f) = m(r, f) < Cq,επr
ρ+ε−1.

Hence f ∈ [ρ,∞]+.
By (7), we obtain

ck(r, f) = −
2rkk(ρ+ 1)

π(k + ρ)

∞∫
r

tρ−k−1dt =
2rρk(ρ+ 1)

π(k2 − ρ2)
, k > [ρ].

Then
ck(r, f)

N̂(r, 1/f)
=

2rρk(ρ2 − 1)

π(k2 − ρ2)
+ o(1), r →∞, k > [ρ]. (16)

By (6), we obtain further

ck(r, f) = rkγ̃ +
ρ+ 1

π

r∫
r0

[(r
t

)k
−
(
t

r

)k]
tρ−1dt =

= rkγ̃ +
2rρk(ρ2 − 1)

π(k2 − ρ2)
+ o(1), r →∞, 1 ≤ k ≤ [ρ],

where

γ̃ = αk +
2

πr2k0

r0∫
0

tk−1dλ̃(t).

From this and (16), we obtain

lim
r→∞

ck(r, f)

N̂(r, 1/f)
=

2k(ρ2 − 1)

π(k2 − ρ2)
, k ∈ N.

Thus, for f(z) the estimate (8) is exact.
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