G. S. SAndHu

MULTIPLICATIVE (GENERALIZED)-DERIVATIONS OF PRIME RINGS THAT ACT AS n-(ANTI)HOMOMORPHISMS

Abstract

G. S. Sandhu. Multiplicative (generalized)-derivations of prime rings that act as n-(anti)homomorphisms, Mat. Stud. 53 (2020), 125-133.

Let R be a prime ring. In this note, we describe the possible forms of multiplicative (generalized)-derivations of R that act as n-homomorphism or n-antihomomorphism on nonzero ideals of R. Consequently, from the given results one can easily deduce the results of Gusić ([7]).

1. Introduction. Throughout this paper, R will always denote an associative prime ring with center $Z(R)$ and C the extended centroid of R. It is well-known that in this case C is a field. For any $x, y \in R$, the symbol $[x, y]$ denotes the commutator $x y-y x$. Recall, a ring is said to be prime if $x R y=(0)$ (where $x, y \in R$) implies $x=0$ or $y=0$. An additive mapping $d: R \rightarrow R$ is said to be a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. In 1991, Brešar [4] introduced the notion of generalized derivation as follows: an additive mapping $F: R \rightarrow R$ is said to be a generalized derivation if $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$, where d is a derivation of R. The concept of generalized derivation covers both the notions of derivation and left multiplier (i.e., an additive mapping $T: R \rightarrow R$ satisfying $T(x y)=T(x) y$ for all $x, y \in R)$. Now if we relax the assumption of additivity in the notion of derivation, then it is called multiplicative derivation, i.e., a mapping $\delta: R \rightarrow R$ (not necessarily additive) satisfying $\delta(x y)=\delta(x) y+x \delta(y)$ for all $x, y \in R$. Recently, Dhara and Ali [6] extended the notion of multiplicative derivation to multiplicative (generalized)derivation. Accordingly, a mapping $F: R \rightarrow R$ (not necessarily additive) is said to be a multiplicative (generalized) derivation of R if $F(x y)=F(x) y+x \delta(y)$ for all $x, y \in R$, where δ is a multiplicative derivation of R. Clearly, every generalized derivation is a multiplicative (generalized)-derivation, however the converse is not generally true (see [6], Example 1.1). Recall that a mapping f of R is said to act as an homomorphism (resp. anti-homomorphism) on an appropriate subset K of R if $f(x y)=f(x) f(y)$ (resp. $f(x y)=f(y) f(x)$) for all $x, y \in$ K. Following Hezajian et al. [8], a mapping f of R is said to act as an n-homomorphism (resp. n-antihomomorphism) of R if for any $x_{i} \in R$, where $i=1,2, \cdots, n ; f\left(\prod_{i=1}^{n} x_{i}\right)=\prod_{i=1}^{n} f\left(x_{i}\right)$ (resp. $\left.f\left(\prod_{i=1}^{n} x_{i}\right)=f\left(x_{n}\right) f\left(x_{n-1}\right) \cdots f\left(x_{1}\right)\right)$. Initially, the notion of an n-homomorphism was introduced and studied for complex algebras by Hejazian et al. [8], where some significant properties of n-homomorphisms are discussed on Banach algebras. Moreover, it is not difficult to see that every homomorphism of R is n-homomorphism (for $n>2$), but the converse is not necessarily true (see [8]).
[^0]Till date, there exist many results in the literature showing that the global structure of R is often tightly connected to the behaviour of additive mappings defined on R. In 1989, a result due to Bell and Kappe [2] states that if a prime ring R admits a derivation d that acts as homomorphism or anti-homomorphism on a nonzero right ideal U of R, then $d=0$. Later Asma et al. [1] proved that this result also holds on nonzero square-closed Lie ideals of prime rings. Moreover, Rehman [11] established this result for generalized derivations of prime rings. In fact, he proved that if F is a nonzero generalized derivation of a 2-torsion free prime ring R that acts as homomorphism or anti-homomorphism on a nonzero ideal of R and $d \neq 0$, then R is commutative. Recently, Lukashenko [10] provided a new direction to these studies by investigating derivations acting as homomorphisms or anti-homomorphisms in differentially semiprime rings. Now it seems interesting to extend the results of generalized derivations to multiplicative (generalized)-derivations. In this context, Gusić [7] gave the complete form of Rehman's result as follows: Let R be an associative prime ring, F be a multiplicative (generalized)-derivation of R associated with a multiplicative derivation δ and I be a nonzero ideal of R.
(a) Assume that F acts as homomorphism on I. Then $\delta=0$, and $F=0$ or $F(x)=x$ for all $x \in R$.
(b) Assume that F acts as anti-homomorphism on I. Then $\delta=0$, and $F=0$ or $F(x)=x$ for all $x \in R$ (in this case R should be commutative).
In view of our above discussion, we find it reasonable to extend the results of derivations acting as homomorphisms (resp. anti-homomorphisms) to n-homomorphisms (resp. n-antihomomorphisms) with multiplicative derivations. More specifically, we study multiplicative (generalized)-derivations of prime rings that act as n-homomorphism or n-antihomomorphism.
2. The results. We begin with the following observations in this subject, which we shall use frequently.

Lemma 1. Let R be a prime ring and I be a nonzero ideal of R. Then for any $a, b \in R$, $a I b=(0)$ implies $a=0$ or $b=0$.

Lemma 2. Let R be a prime ring and I be a nonzero ideal of R. If for any fixed positive integer $n,\left[x^{n}, y^{n}\right] \in Z(R)$ for all $x, y \in I$, then R is commutative.

Proof. By hypothesis, we have $\left[\left[x^{n}, y^{n}\right], r\right]=0$ for all $x, y \in I$ and $r \in R$. It is well-known that I and R satisfy same polynomial identities. Thus, we have $\left[\left[x^{n}, y^{n}\right], r\right]=0$ for all $x, y, r \in R$. If possible suppose that R is not commutative. By a famous result of Lanski [9], $R \subseteq M_{n}(F)$, where $M_{n}(F)$ be a ring of $n \times n$ matrices, with $n \geq 2$ over a field F. Moreover, R and $M_{n}(F)$ satisfy the same polynomial identities. Choose $x=e_{11}, y=e_{12}+e_{22}$ and $r=e_{21}$, where $e_{i j}$ denotes matrix with 1 at $i j$-entry and 0 elsewhere. In this view, it follows that

$$
0=\left[\left[x^{n}, y^{n}\right], r\right]=e_{11}
$$

a contradiction. Hence, R is commutative.
Lemma 3. Let R be a ring and δ be a multiplicative derivation of R. Then the followings are true:
(i) $\delta(0)=0$.
(ii) If $a \in Z(R)$, then $\delta(a) \in Z(R)$.

Proof. (i) $\delta(0)=\delta(0.0)=\delta(0) .0+0 . \delta(0)=0$. (ii) Let $a \in Z(R)$ and δ be a multiplicative derivation of R. Then for each $x \in R$, we have

$$
\delta(a x)=\delta(a) x+a \delta(x), \quad \delta(a x)=\delta(x a)=\delta(x) a+x \delta(a) .
$$

Together with above two equations, we get

$$
[x, \delta(a)]=0 \text { for all } x \in R
$$

Hence $\delta(a) \in R$.
Theorem 1. Let R be a prime ring, I a nonzero ideal of R. Suppose that $F: R \rightarrow R$ is a multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R such that F acts as n-homomorphism on I. Then $\delta=0$, and $F=0$ or there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$ and $\lambda^{n-1}=1$.

Proof. By hypothesis, we have

$$
\begin{equation*}
F\left(\prod_{i=1}^{n} x_{i}\right)=\prod_{i=1}^{n} F\left(x_{i}\right) \tag{1}
\end{equation*}
$$

for all $x_{i} \in I$. On the other hand, we find

$$
\begin{equation*}
F\left(\prod_{i=1}^{n} x_{i}\right)=F\left(\prod_{i=1}^{n-1} x_{i}\right) x_{n}+\prod_{i=1}^{n-1} x_{i} \delta\left(x_{n}\right) \tag{2}
\end{equation*}
$$

for all $x_{i} \in I$. Combining (1) and (2), we obtain

$$
\begin{equation*}
\prod_{i=1}^{n} F\left(x_{i}\right)=F\left(\prod_{i=1}^{n-1} x_{i}\right) x_{n}+\prod_{i=1}^{n-1} x_{i} \delta\left(x_{n}\right) \tag{3}
\end{equation*}
$$

for all $x_{i} \in I$. Replace x_{n} by $x_{n} r$ in (3), where $r \in R$, we get

$$
\prod_{i=1}^{n-1} F\left(x_{i}\right) x_{n} \delta(r)=\prod_{i=1}^{n} x_{i} \delta(r)
$$

That is

$$
\left(\prod_{i=1}^{n-1} F\left(x_{i}\right)-\prod_{i=1}^{n-1} x_{i}\right) x_{n} \delta(r)=0
$$

In view of Lemma 1, we find that either $\prod_{i=1}^{n-1} F\left(x_{i}\right)=\prod_{i=1}^{n-1} x_{i}$ or $\delta=0$. Let us consider

$$
\begin{equation*}
\prod_{i=1}^{n-1} F\left(x_{i}\right)=\prod_{i=1}^{n-1} x_{i} \tag{4}
\end{equation*}
$$

for all $x_{i} \in I$. Replace x_{n-1} by $x_{n-1} r$ in (4), we find

$$
\begin{equation*}
\prod_{i=1}^{n-1} F\left(x_{i}\right) r+\prod_{i=1}^{n-2} F\left(x_{i}\right) x_{n-1} \delta(r)=\prod_{i=1}^{n-1} x_{i} r \tag{5}
\end{equation*}
$$

for all $x_{i} \in I$ and $r \in R$. Right multiply (4) by r and subtract from (5), we get

$$
\prod_{i=1}^{n-2} F\left(x_{i}\right) x_{n-1} \delta(r)=0
$$

for all $x_{i} \in I$ and $r \in R$. Again by invoking Lemma 1, we find that either $\prod_{i=1}^{n-2} F\left(x_{i}\right)=0$ or $\delta=0$. But $\delta \neq 0$, so we have $\prod_{i=1}^{n-2} F\left(x_{i}\right)=0$ for all $x_{i} \in I$. Substitute $x_{n-2} r$ in place of x_{n-2} in above expression, where $r \in R$, we find that $\prod_{i=1}^{n-3} F\left(x_{i}\right) I \delta(r)=(0)$. By Lemma 1, it follows that either $\prod_{i=1}^{n-3} F\left(x_{i}\right)=0$ for all $x_{i} \in I$ or $\delta=0$. But $\delta \neq 0$, thus we have $\prod_{i=1}^{n-3} F\left(x_{i}\right)=0$ for all $x_{i} \in I$. Continuing in this way, we arrive at $F(x)=0$ for all $x \in I$. Replace x by $x r$, where $r \in R$, we get $x \delta(r)=0$ for all $x \in I$ and $r \in R$. It implies that $\delta=0$, which is a contradiction.

Let us now consider the latter case $\delta=0$, we find that

$$
\begin{equation*}
F\left(\prod_{i=1}^{n} x_{i}\right)=F\left(x_{i}\right) \prod_{i=2}^{n} x_{i} \tag{6}
\end{equation*}
$$

for all $x_{i} \in I$. Combining (1) and (6), we obtain

$$
F\left(x_{1}\right)\left(\prod_{i=2}^{n} F\left(x_{i}\right)-\prod_{i=2}^{n} x_{i}\right)=0
$$

for all $x_{i} \in I$. Replace x_{1} by $x_{1} r$, where $r \in R$, we may infer that

$$
F\left(x_{1}\right) R\left(\prod_{i=2}^{n} F\left(x_{i}\right)-\prod_{i=2}^{n} x_{i}\right)=(0)
$$

for all $x_{i} \in I$. Since R is prime, we find that either $F(x)=0$ for all $x \in I$ or $\prod_{i=2}^{n} F\left(x_{i}\right)=$ $\prod_{i=2}^{n} x_{i}$ for all $x_{i} \in I$. It is straightforward to see that the former case implies $F=0$. On the other side, we have

$$
\begin{equation*}
\prod_{i=2}^{n} F\left(x_{i}\right)=\prod_{i=2}^{n} x_{i} \tag{7}
\end{equation*}
$$

for all $x_{i} \in I$. Take $r x_{2}$ instead of x_{2} in (7), where $r \in R$, we get

$$
\begin{equation*}
F(r) x_{2} \prod_{i=3}^{n} F\left(x_{i}\right)=r x_{2} \prod_{i=3}^{n} x_{i} \tag{8}
\end{equation*}
$$

Left multiply (7) by r and then subtract from (8), we obtain

$$
\left(F(r) x_{2}-r F\left(x_{2}\right)\right) \prod_{i=3}^{n} F\left(x_{i}\right)=0
$$

for all $x_{i} \in I$ and $r \in R$. Substitute $x_{2} s$ in place of x_{2} in above equation, where $s \in R$, we obtain

$$
\left(F(r) x_{2}-r F\left(x_{2}\right)\right) R \prod_{i=3}^{n} F\left(x_{i}\right)=(0)
$$

for all $x_{i} \in I$ and $r \in R$. It implies that either $F(r) x-r F(x)=0$ for all $x \in I$ and $r \in R$ or $\prod_{i=3}^{n} F\left(x_{i}\right)=0$ for all $x_{i} \in I$. One may observe that in both of these cases we get the situation $F(r) x-r F(x)=0$ for all $x \in I$ and $r \in R$. Replace x by $s x$, we get $(F(r) s-r F(s)) x=0$ for all $x \in I$ and $r, s \in R$. By Lemma 1, we get $F(r) s=r F(s)$ for all $r, s \in R$. Replace r by $r p$, we get $F(r) p 1_{R}(s)=1_{R}(r) p F(s)$ for all $r, s, p \in R$, where 1_{R} is the identity mapping of R. With the aid of a result of Brešar [[3], Lemma], it follows that there exists some $\lambda \in C$ such that $F=\lambda 1_{R}$ and hence $F(x)=\lambda x$ for all $x \in R$. In view of our hypothesis, we have $\lambda \prod_{i=1}^{n} x_{i}=\prod_{i=1}^{n} \lambda x_{i}$. It forces that $\lambda^{n-1}=1$. It completes the proof.

Corollary 1 ([7], Theorem $1(a))$. Let R be an associative prime ring, I a nonzero ideal of R. Suppose that $F: R \rightarrow R$ is a multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R such that F acts a homomorphism on I. Then $\delta=0$, and $F=0$ or $F(x)=x$ for all $x \in R$.

In spirit of a result of Gusić ([7], Theorem 1(b)), it is natural to investigate multiplicative (generalized)-derivations that act as n-antihomomorphisms. However, we could not get this result in its complete form, but we obtain the following:

Theorem 2. Let R be a prime ring, I a nonzero ideal of R. Suppose that $F: R \rightarrow R$ is a multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R such that F acts as n-antihomomorphism on I. If $F=\delta$, then $\delta(x)^{n-1} \in Z(R)$ for all $x \in I$. Moreover, if δ is additive, then either $\delta=0$ or R is commutative or R is an order in a 4 -dimensional simple algebra.

Proof. By hypothesis, we have

$$
\begin{equation*}
F\left(\prod_{i=1}^{n}\right)=F\left(x_{n}\right) F\left(x_{n-1}\right) \cdots F\left(x_{2}\right) F\left(x_{1}\right) \tag{9}
\end{equation*}
$$

for all $x_{i} \in I$. On the other hand, we may infer that

$$
\begin{equation*}
F\left(\prod_{i=1}^{n}\right)=F\left(x_{1}\right) \prod_{i=2}^{n} x_{i}+\sum_{i=2}^{n}\left(\prod_{j=1}^{i-1} x_{j} \delta\left(x_{i}\right) \prod_{k=i+1}^{n} x_{k}\right) \tag{10}
\end{equation*}
$$

for all $x_{i} \in I$. Combining (9) and (10), we find that

$$
\begin{equation*}
F\left(x_{n}\right) \cdots F\left(x_{1}\right)=F\left(x_{1}\right) \prod_{i=2}^{n} x_{i}+\sum_{i=2}^{n}\left(\prod_{j=1}^{i-1} x_{j} \delta\left(x_{i}\right) \prod_{k=i+1}^{n} x_{k}\right) \tag{11}
\end{equation*}
$$

for all $x_{i} \in I$. Replace x_{1} by $x_{1} x_{n}$ in (11), we obtain

$$
\begin{align*}
& F\left(x_{n}\right) \cdots F\left(x_{2}\right) F\left(x_{1}\right) x_{n}+F\left(x_{n}\right) \cdots F\left(x_{2}\right) x_{1} \delta\left(x_{n}\right)=F\left(x_{1}\right) x_{n} \prod_{i=2}^{n} x_{i}+ \\
& +x_{1} \delta\left(x_{n}\right) \prod_{i=2}^{n} x_{i}+x_{1} x_{n} \delta\left(x_{2}\right) \prod_{i=3}^{n} x_{i}+x_{1} x_{n} \sum_{i=3}^{n}\left(\prod_{j=2}^{i-1} x_{j} \delta\left(x_{i}\right) \prod_{k=i+1}^{n} x_{k}\right) \tag{12}
\end{align*}
$$

for all $x_{i} \in I$. Using (9) in (12), we get

$$
\begin{gathered}
F\left(\prod_{i=1}^{n} x_{i}\right) x_{n}+F\left(x_{n}\right) \cdots F\left(x_{2}\right) x_{1} \delta\left(x_{n}\right)=F\left(x_{1}\right) x_{n} \prod_{i=2}^{n} x_{i}+x_{1} \delta\left(x_{n}\right) \prod_{i=2}^{n} x_{i}= \\
+x_{1} x_{n} \delta\left(x_{2}\right) \prod_{i=3}^{n} x_{i}+x_{1} x_{n} \sum_{i=3}^{n}\left(\prod_{j=2}^{i-1} x_{j} \delta\left(x_{i}\right) \prod_{k=i+1}^{n} x_{k}\right)
\end{gathered}
$$

for all $x_{i} \in I$. It implies that

$$
\begin{gathered}
\left(F\left(x_{1}\right) \prod_{i=2}^{n} x_{i}+\sum_{i=2}^{n}\left(\prod_{j=1}^{i-1} x_{j} \delta\left(x_{i}\right) \prod_{k=i+1}^{n} x_{k}\right)\right) x_{n}+F\left(x_{n}\right) \cdots F\left(x_{2}\right) x_{1} \delta\left(x_{n}\right)= \\
=F\left(x_{1}\right) x_{n} \prod_{i=2}^{n} x_{i}+x_{1} \delta\left(x_{n}\right) \prod_{i=2}^{n} x_{i}+x_{1} x_{n} \delta\left(x_{2}\right) \prod_{i=3}^{n} x_{i}+x_{1} x_{n} \sum_{i=3}^{n}\left(\prod_{j=2}^{i-1} x_{j} \delta\left(x_{i}\right) \prod_{k=i+1}^{n} x_{k}\right)
\end{gathered}
$$

for all $x_{i} \in I$. In particular, for $x_{1}=x$ and $x_{2}=x_{3}=\cdots=x_{n}=y$, we find

$$
\begin{gathered}
F(x) y^{n}+x\left(\sum_{i=0}^{n-2} y^{i} \delta(y) y^{n-1-i}\right)+F(y)^{n-1} x \delta(y)=F(x) y^{n}+x \delta(y) y^{n-1}+ \\
+x y \delta(y) y^{n-2}+x\left(\sum_{i=2}^{n-1} y^{i} \delta(y) y^{n-1-i}\right)
\end{gathered}
$$

for all $x, y \in I$. It yields that

$$
\begin{equation*}
F(y)^{n-1} x \delta(y)=x y^{n-1} \delta(y) \tag{13}
\end{equation*}
$$

for all $x, y \in I$. Replace x by $r x$, where $r \in R$ in (13), we get

$$
\begin{equation*}
F(y)^{n-1} r x \delta(y)=r x y^{n-1} \delta(y) . \tag{14}
\end{equation*}
$$

Left multiply (13) by r and combine with (14), we obtain $\left[F(y)^{n-1}, r\right] x \delta(y)=0$ for all $x, y \in I$ and $r \in R$.

In particular, we take $F=\delta$. Thus we have $\left[\delta(y)^{n-1}, r\right] x \delta(y)=0$ for all $x, y \in I$ and $r \in R$. Since R is a prime ring, it follows that for each $y \in I$, either $\left[\delta(y)^{n-1}, r\right]=0$ for all $r \in R$ or $\delta(y)=0$. In each case we have $\left[\delta(y)^{n-1}, r\right]=0$ for all $y \in I$ and $r \in R$, i.e., $\delta(y)^{n-1} \in Z(R)$ for all $y \in I$. If δ is additive, we are done by ([5], Theorem B).

Corollary 2 ([7], Theorem 1(b)). Let R be an associative prime ring, I a nonzero ideal of R. Suppose that $F: R \rightarrow R$ is a multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R such that F acts a homomorphism on I. Then $\delta=0$, and $F=0$ or $F(x)=x$ for all $x \in R$.

Proof. For $n=2$, in view of equation (13) and (14), we have $[F(y), t] x \delta(y)=0$ for all $x, y, t \in I$. This same expression appeared in the beginning of the proof of Theorem 1(b) in [7], hence the conclusion follows in the same way.

Definition 1. Let $F: R \rightarrow R$ be a function. Then F is called right multiplicative (generalized) derivation of R if it satisfies

$$
F(x y)=F(x) y+x \delta(y)
$$

for all $x, y \in R$ and δ is any mapping of R. And F is called left multiplicative (generalized) derivation of R if it satisfies

$$
F(x y)=\delta(x) y+x F(y)
$$

for all $x, y \in R$ and δ is any mapping of R. Then it is not difficult to see that the associated mapping δ of right and left multiplicative (generalized)-derivation F is a multiplicative derivation. Now, F is said to be two-sided multiplicative (generalized) derivation of R if it satisfies

$$
F(x y)=F(x) y+x \delta(y)=\delta(x) y+x F(y)
$$

for all $x, y \in R$, where δ is a multiplicative derivation of R.
Theorem 3. Let R be a prime ring, I a nonzero ideal of R. Suppose that $F: R \rightarrow R$ is a two-sided multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R such that F acts as n-antihomomorphism on I. Then $\delta=0$, and $F=0$ or there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$ and $\lambda^{n-1}=1$ (in this case R should be commutative).
Proof. From equation (13), we have $F(y)^{n-1} x \delta(y)=x y^{n-1} \delta(y)$ for all $x, y \in I$. Take $F(z) x$ in place of x in this equation, we get

$$
\begin{gathered}
F(y)^{n-1} F(z) x \delta(y)=F(z) x y^{n-1} \delta(y), \quad F\left(z y^{n-1}\right) x \delta(y)=F(z) x y^{n-1} \delta(y), \\
F(z) y^{n-1} x \delta(y)+z \delta\left(y^{n-1}\right) x \delta(y)=F(z) x y^{n-1} \delta(y)
\end{gathered}
$$

for all $x, y, z \in I$. It implies that

$$
\begin{equation*}
F(z)\left[y^{n-1}, x\right] \delta(y)+z \delta\left(y^{n-1}\right) x \delta(y)=0 \tag{15}
\end{equation*}
$$

for all $x, y, z \in I$. Replace z by $r z$ in (15), where $r \in R$, we get

$$
\delta(r) z\left[y^{n-1}, x\right] \delta(y)+r F(z)\left[y^{n-1}, x\right] \delta(y)+r z \delta\left(y^{n-1}\right) x \delta(y)=0 .
$$

Using (15), we find $\delta(r) z\left[y^{n-1}, x\right] \delta(y)=0$ for all $x, y, z \in I$ and $r \in R$. In view of Lemma 1, it implies that either $\delta=0$ or $\left[y^{n-1}, x\right] \delta(y)=0$ for all $x, y \in I$. Assume that $\left[y^{n-1}, x\right] \delta(y)=0$ for all $x, y \in I$. It implies that for each $y \in I$, either $y^{n-1} \in Z(R)$ or $\delta(y)=0$. Together these both cases (using Lemma 3) imply that $\delta\left(y^{n-1}\right) \in Z(R)$ for all $y \in I$.

We now consider

$$
F\left(x y^{n-1}\right)=F(x) y^{n-1}+x \delta\left(y^{n-1}\right), \quad F\left(x y^{n-1}\right)=F(y)^{n-1} F(x)
$$

for all $x, y \in I$. Thus we have

$$
\begin{equation*}
F(y)^{n-1} F(x)=F(x) y^{n-1}+x \delta\left(y^{n-1}\right)=F(x) y^{n-1}+\delta\left(y^{n-1}\right) x . \tag{16}
\end{equation*}
$$

Take $x z$ in place of x in (16), we find

$$
\begin{equation*}
F(y)^{n-1} F(x) z+F(y)^{n-1} x \delta(z)=F(x) z y^{n-1}+x \delta(z) y^{n-1}+\delta\left(y^{n-1}\right) x z \tag{17}
\end{equation*}
$$

for all $x, y, z \in I$. Using (16), it implies that

$$
\begin{equation*}
F(y)^{n-1} x \delta(z)=F(x)\left[z, y^{n-1}\right]+x \delta(z) y^{n-1} \tag{18}
\end{equation*}
$$

for all $x, y, z \in I$. Replace x by $r x$ in (18), where $r \in R$, we get

$$
F(y)^{n-1} r x \delta(z)=r F(x)\left[z, y^{n-1}\right]+\delta(r) x\left[z, y^{n-1}\right]+r x \delta(z) y^{n-1} .
$$

Using (18), we have

$$
\begin{equation*}
\left[F(y)^{n-1}, r\right] x \delta(z)=\delta(r) x\left[z, y^{n-1}\right] \tag{19}
\end{equation*}
$$

for all $x, y, z \in I$ and $r \in R$. Replace z by $z w^{n-1}$ in (19), we get

$$
\left[F(y)^{n-1}, r\right] x \delta(z) w^{n-1}+\left[F(y)^{n-1}, r\right] x z \delta\left(w^{n-1}\right)=\delta(r) x\left[z, y^{n-1}\right] w^{n-1}+\delta(r) x z\left[y^{n-1}, w^{n-1}\right]
$$

for all $x, y, z, w \in I$ and $r \in R$. Equation (19) reduces it to

$$
\begin{equation*}
\delta\left(w^{n-1}\right)\left[F(y)^{n-1}, r\right] x z=\delta(r) x z\left[y^{n-1}, w^{n-1}\right] \tag{20}
\end{equation*}
$$

for all $x, y, z, w \in I$ and $r \in R$. Take $z s$ in place of z in (20), where $s \in R$, we find

$$
\delta\left(w^{n-1}\right)\left[F(y)^{n-1}, r\right] x z s=\delta(r) x z s\left[y^{n-1}, w^{n-1}\right]
$$

for all $x, y, z, w \in I$ and $r, s \in R$. Using (20) in the above expression, we obtain $\delta(r) x z\left[\left[w^{n-1}\right.\right.$, $\left.\left.y^{n-1}\right], s\right]=0$ for all $x, y, z, w \in I$ and $r, s \in R$. It forces that either $\delta=0$ or $\left[w^{n-1}, y^{n-1}\right] \in$ $Z(R)$ for all $y, w \in I$. But $\delta \neq 0$, thus we have $\left[w^{n-1}, y^{n-1}\right] \in Z(R)$ for all $y, w \in I$. In view of Lemma 2, R is commutative. Therefore, F is just an n-homomorphism of R and hence by Theorem 1 , we get $\delta=0$, a contradiction.

On the other hand, we assume that $\delta=0$. Relation (10) implies that

$$
F\left(x_{1} x_{2} \cdots x_{n}\right)=F\left(x_{1}\right) x_{2} \cdots x_{n}
$$

for all $x_{i} \in I$. Using this relation, we obtain

$$
\begin{gathered}
F\left(x_{1}\right) x_{2} x_{3} \cdots x_{n-1} x_{n} x_{n+1}=F\left(x_{1} x_{2} \cdots x_{n-1} x_{n}\right) x_{n+1}= \\
=F\left(x_{n}\right) F\left(x_{n-1}\right) \cdots F\left(x_{2}\right) F\left(x_{1}\right) x_{n+1}=F\left(x_{n}\right) F\left(x_{n-1}\right) \cdots F\left(x_{2}\right) F\left(x_{1} x_{n+1}\right)= \\
=F\left(x_{1} x_{n+1} x_{2} \cdots x_{n}\right)=F\left(x_{1}\right) x_{n+1} x_{2} \cdots x_{n}
\end{gathered}
$$

for all $x_{i} \in I$. It gives

$$
F\left(x_{1}\right)\left[x_{2} \cdots x_{n}, x_{n+1}\right]=0
$$

for all $x_{i} \in I$. Thus we have either $F(x)=0$ for all $x \in I$ or $\left[x_{2} \cdots x_{n}, x_{n+1}\right]=0$ for all $x_{i} \in I$. The first case implies $F=0$. In the latter case we find that R is commutative and hence F acts as n-homomorphism on I.

Acknowledgement. I would like to thank Prof. Neşet Aydin for reading the earlier draft of the manuscript and suggesting Lemma 3. I also express my gratitude to the unknown referee(s) for constructive comments and suggestions that improved the presentation of the article.

REFERENCES

1. A. Asma, N. Rehman, S. Ali, On Lie ideals with derivations as homomorphisms and antihomomorphisms, Acta Math. Hung., 101 (2003), №1-2, 79-82. doi: 10.1023/B:AMHU. 0000003893. 61349.98
2. H.E. Bell, L.C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hung., 53 (1989), №3-4, 339-346. doi: 10.1007/BF01953371
3. M. Brešar, Semiderivations of prime rings, Proc. Amer. Math. Soc., 108 (1990), №4, 859-860. doi: 10.1090/S0002-9939-1990-1007488-X
4. M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasg. Math. J., 33 (1991), 89-93. doi: 10.1017/S0017089500008077
5. J.-C. Chang, Right generalized (α, β)-derivations having power central values, Taiwanese J. Math., 13 (2009), №4, 1111-1120. doi: $10.11650 / \mathrm{twjm} / 1500405495$
6. B. Dhara, S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequ. Math., 86 (2013), №1-2, 65-79. doi: 10.1007/s00010-013-0205-y
7. I. Gusić, A note on generalized derivations of prime rings, Glasnik Mate., 40 (2005), №1, 47-49.
8. S. Hejazian, M. Mirzavaziri, M. Moslehian, n-homomorphisms, Bull. Iran. Math. Soc., 31 (2005), №1, 13-23.
9. C. Lanksi, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), №3, 731-734. doi: 10.1090/S0002-9939-1993-1132851-9
10. M.P. Lukashenko, Derivations as homomorphisms and anti-homomorphisms in differentialy semiprime rings, Mat. Stud., 43 (2015), №1, 12-15. doi: $10.15330 / \mathrm{ms} .43 .1 .12-15$
11. N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Mate., 39 (2004), №1, 27-30.

Department of Mathematics
Patel Memorial National College
Rajpura-140401, India
gurninder_rs@pbi.ac.in

[^0]: 2020 Mathematics Subject Classification:16W25, 16N60, 16U80.
 Keywords: prime rings; multiplicative (generalized)-derivations; n-homomorphisms; n-antihomomorphisms. doi:10.30970/ms.53.2.125-133

