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Let R be a prime ring. In this note, we describe the possible forms of multiplicative
(generalized)-derivations of R that act as n-homomorphism or n-antihomomorphism on nonzero
ideals of R. Consequently, from the given results one can easily deduce the results of Gusić
([7]).

1. Introduction. Throughout this paper, R will always denote an associative prime ring
with center Z(R) and C the extended centroid of R. It is well-known that in this case C
is a field. For any x, y ∈ R, the symbol [x, y] denotes the commutator xy − yx. Recall, a
ring is said to be prime if xRy = (0) (where x, y ∈ R) implies x = 0 or y = 0. An additive
mapping d : R → R is said to be a derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R.
In 1991, Brešar [4] introduced the notion of generalized derivation as follows: an additive
mapping F : R → R is said to be a generalized derivation if F (xy) = F (x)y + xd(y) for
all x, y ∈ R, where d is a derivation of R. The concept of generalized derivation covers
both the notions of derivation and left multiplier (i.e., an additive mapping T : R → R
satisfying T (xy) = T (x)y for all x, y ∈ R). Now if we relax the assumption of additivity in
the notion of derivation, then it is called multiplicative derivation, i.e., a mapping δ : R→ R
(not necessarily additive) satisfying δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R. Recently, Dhara
and Ali [6] extended the notion of multiplicative derivation to multiplicative (generalized)-
derivation. Accordingly, a mapping F : R → R (not necessarily additive) is said to be a
multiplicative (generalized) derivation of R if F (xy) = F (x)y + xδ(y) for all x, y ∈ R, where
δ is a multiplicative derivation of R. Clearly, every generalized derivation is a multiplicative
(generalized)-derivation, however the converse is not generally true (see [6], Example 1.1).
Recall that a mapping f of R is said to act as an homomorphism (resp. anti-homomorphism)
on an appropriate subset K of R if f(xy) = f(x)f(y) (resp. f(xy) = f(y)f(x)) for all x, y ∈
K. Following Hezajian et al. [8], a mapping f of R is said to act as an n-homomorphism (resp.
n-antihomomorphism) of R if for any xi ∈ R, where i = 1, 2, · · · , n; f(

∏n
i=1 xi) =

∏n
i=1 f(xi)

(resp. f(
∏n

i=1 xi) = f(xn)f(xn−1) · · · f(x1)). Initially, the notion of an n-homomorphism was
introduced and studied for complex algebras by Hejazian et al. [8], where some significant
properties of n-homomorphisms are discussed on Banach algebras. Moreover, it is not difficult
to see that every homomorphism of R is n-homomorphism (for n > 2), but the converse is
not necessarily true (see [8]).
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Till date, there exist many results in the literature showing that the global structure of
R is often tightly connected to the behaviour of additive mappings defined on R. In 1989,
a result due to Bell and Kappe [2] states that if a prime ring R admits a derivation d that
acts as homomorphism or anti-homomorphism on a nonzero right ideal U of R, then d = 0.
Later Asma et al. [1] proved that this result also holds on nonzero square-closed Lie ideals
of prime rings. Moreover, Rehman [11] established this result for generalized derivations of
prime rings. In fact, he proved that if F is a nonzero generalized derivation of a 2-torsion free
prime ring R that acts as homomorphism or anti-homomorphism on a nonzero ideal of R and
d 6= 0, then R is commutative. Recently, Lukashenko [10] provided a new direction to these
studies by investigating derivations acting as homomorphisms or anti-homomorphisms in
differentially semiprime rings. Now it seems interesting to extend the results of generalized
derivations to multiplicative (generalized)-derivations. In this context, Gusić [7] gave the
complete form of Rehman’s result as follows: Let R be an associative prime ring, F be a
multiplicative (generalized)-derivation of R associated with a multiplicative derivation δ and
I be a nonzero ideal of R.

(a) Assume that F acts as homomorphism on I. Then δ = 0, and F = 0 or F (x) = x for
all x ∈ R.

(b) Assume that F acts as anti-homomorphism on I. Then δ = 0, and F = 0 or F (x) = x
for all x ∈ R (in this case R should be commutative).

In view of our above discussion, we find it reasonable to extend the results of deri-
vations acting as homomorphisms (resp. anti-homomorphisms) to n-homomorphisms (resp.
n-antihomomorphisms) with multiplicative derivations. More specifically, we study multipli-
cative (generalized)-derivations of prime rings that act as n-homomorphism or n-antihomo-
morphism.

2. The results. We begin with the following observations in this subject, which we shall
use frequently.

Lemma 1. Let R be a prime ring and I be a nonzero ideal of R. Then for any a, b ∈ R,
aIb = (0) implies a = 0 or b = 0.

Lemma 2. Let R be a prime ring and I be a nonzero ideal of R. If for any fixed positive
integer n, [xn, yn] ∈ Z(R) for all x, y ∈ I, then R is commutative.

Proof. By hypothesis, we have [[xn, yn], r] = 0 for all x, y ∈ I and r ∈ R. It is well-known that
I and R satisfy same polynomial identities. Thus, we have [[xn, yn], r] = 0 for all x, y, r ∈ R.
If possible suppose that R is not commutative. By a famous result of Lanski [9], R ⊆Mn(F ),
where Mn(F ) be a ring of n×n matrices, with n ≥ 2 over a field F. Moreover, R and Mn(F )
satisfy the same polynomial identities. Choose x = e11, y = e12 + e22 and r = e21, where eij

denotes matrix with 1 at ij−entry and 0 elsewhere. In this view, it follows that

0 = [[xn, yn], r] = e11,

a contradiction. Hence, R is commutative.

Lemma 3. Let R be a ring and δ be a multiplicative derivation of R. Then the followings
are true:

(i) δ(0) = 0.
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(ii) If a ∈ Z(R), then δ(a) ∈ Z(R).

Proof. (i) δ(0) = δ(0.0) = δ(0).0 + 0.δ(0) = 0. (ii) Let a ∈ Z(R) and δ be a multiplicative
derivation of R. Then for each x ∈ R, we have

δ(ax) = δ(a)x+ aδ(x), δ(ax) = δ(xa) = δ(x)a+ xδ(a).

Together with above two equations, we get

[x, δ(a)] = 0 for all x ∈ R.

Hence δ(a) ∈ R.

Theorem 1. Let R be a prime ring, I a nonzero ideal of R. Suppose that F : R → R is
a multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R
such that F acts as n-homomorphism on I. Then δ = 0, and F = 0 or there exists λ ∈ C
such that F (x) = λx for all x ∈ R and λn−1 = 1.

Proof. By hypothesis, we have

F

(
n∏

i=1

xi

)
=

n∏
i=1

F (xi) (1)

for all xi ∈ I. On the other hand, we find

F

(
n∏

i=1

xi

)
= F

(
n−1∏
i=1

xi

)
xn +

n−1∏
i=1

xiδ(xn) (2)

for all xi ∈ I. Combining (1) and (2), we obtain

n∏
i=1

F (xi) = F

(
n−1∏
i=1

xi

)
xn +

n−1∏
i=1

xiδ(xn) (3)

for all xi ∈ I. Replace xn by xnr in (3), where r ∈ R, we get

n−1∏
i=1

F (xi)xnδ(r) =
n∏

i=1

xiδ(r).

That is (
n−1∏
i=1

F (xi)−
n−1∏
i=1

xi

)
xnδ(r) = 0.

In view of Lemma 1, we find that either
∏n−1

i=1 F (xi) =
∏n−1

i=1 xi or δ = 0. Let us consider

n−1∏
i=1

F (xi) =
n−1∏
i=1

xi (4)

for all xi ∈ I. Replace xn−1 by xn−1r in (4), we find

n−1∏
i=1

F (xi)r +
n−2∏
i=1

F (xi)xn−1δ(r) =
n−1∏
i=1

xir (5)
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for all xi ∈ I and r ∈ R. Right multiply (4) by r and subtract from (5), we get

n−2∏
i=1

F (xi)xn−1δ(r) = 0

for all xi ∈ I and r ∈ R. Again by invoking Lemma 1, we find that either
∏n−2

i=1 F (xi) = 0
or δ = 0. But δ 6= 0, so we have

∏n−2
i=1 F (xi) = 0 for all xi ∈ I. Substitute xn−2r in place of

xn−2 in above expression, where r ∈ R, we find that
∏n−3

i=1 F (xi)Iδ(r) = (0). By Lemma 1,
it follows that either

∏n−3
i=1 F (xi) = 0 for all xi ∈ I or δ = 0. But δ 6= 0, thus we have∏n−3

i=1 F (xi) = 0 for all xi ∈ I. Continuing in this way, we arrive at F (x) = 0 for all x ∈ I.
Replace x by xr, where r ∈ R, we get xδ(r) = 0 for all x ∈ I and r ∈ R. It implies that
δ = 0, which is a contradiction.

Let us now consider the latter case δ = 0, we find that

F

(
n∏

i=1

xi

)
= F (xi)

n∏
i=2

xi (6)

for all xi ∈ I. Combining (1) and (6), we obtain

F (x1)

(
n∏

i=2

F (xi)−
n∏

i=2

xi

)
= 0

for all xi ∈ I. Replace x1 by x1r, where r ∈ R, we may infer that

F (x1)R

(
n∏

i=2

F (xi)−
n∏

i=2

xi

)
= (0)

for all xi ∈ I. Since R is prime, we find that either F (x) = 0 for all x ∈ I or
∏n

i=2 F (xi) =∏n
i=2 xi for all xi ∈ I. It is straightforward to see that the former case implies F = 0. On the

other side, we have
n∏

i=2

F (xi) =
n∏

i=2

xi (7)

for all xi ∈ I. Take rx2 instead of x2 in (7), where r ∈ R, we get

F (r)x2

n∏
i=3

F (xi) = rx2

n∏
i=3

xi. (8)

Left multiply (7) by r and then subtract from (8), we obtain

(F (r)x2 − rF (x2))
n∏

i=3

F (xi) = 0

for all xi ∈ I and r ∈ R. Substitute x2s in place of x2 in above equation, where s ∈ R, we
obtain

(F (r)x2 − rF (x2))R
n∏

i=3

F (xi) = (0)
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for all xi ∈ I and r ∈ R. It implies that either F (r)x − rF (x) = 0 for all x ∈ I and
r ∈ R or

∏n
i=3 F (xi) = 0 for all xi ∈ I. One may observe that in both of these cases we

get the situation F (r)x − rF (x) = 0 for all x ∈ I and r ∈ R. Replace x by sx, we get
(F (r)s− rF (s))x = 0 for all x ∈ I and r, s ∈ R. By Lemma 1, we get F (r)s = rF (s) for all
r, s ∈ R. Replace r by rp, we get F (r)p1R(s) = 1R(r)pF (s) for all r, s, p ∈ R, where 1R is
the identity mapping of R. With the aid of a result of Brešar [[3], Lemma], it follows that
there exists some λ ∈ C such that F = λ1R and hence F (x) = λx for all x ∈ R. In view
of our hypothesis, we have λ

∏n
i=1 xi =

∏n
i=1 λxi. It forces that λn−1 = 1. It completes the

proof.

Corollary 1 ([7], Theorem 1(a)). Let R be an associative prime ring, I a nonzero ideal
of R. Suppose that F : R → R is a multiplicative (generalized)-derivation associated with
a multiplicative derivation δ of R such that F acts a homomorphism on I. Then δ = 0, and
F = 0 or F (x) = x for all x ∈ R.

In spirit of a result of Gusić ([7], Theorem 1(b)), it is natural to investigate multiplicative
(generalized)-derivations that act as n-antihomomorphisms. However, we could not get this
result in its complete form, but we obtain the following:

Theorem 2. Let R be a prime ring, I a nonzero ideal of R. Suppose that F : R → R is
a multiplicative (generalized)-derivation associated with a multiplicative derivation δ of R
such that F acts as n-antihomomorphism on I. If F = δ, then δ(x)n−1 ∈ Z(R) for all x ∈ I.
Moreover, if δ is additive, then either δ = 0 or R is commutative or R is an order in a
4−dimensional simple algebra.

Proof. By hypothesis, we have

F

(
n∏

i=1

)
= F (xn)F (xn−1) · · ·F (x2)F (x1) (9)

for all xi ∈ I. On the other hand, we may infer that

F

(
n∏

i=1

)
= F (x1)

n∏
i=2

xi +
n∑

i=2

(
i−1∏
j=1

xjδ(xi)
n∏

k=i+1

xk

)
(10)

for all xi ∈ I. Combining (9) and (10), we find that

F (xn) · · ·F (x1) = F (x1)
n∏

i=2

xi +
n∑

i=2

(
i−1∏
j=1

xjδ(xi)
n∏

k=i+1

xk

)
(11)

for all xi ∈ I. Replace x1 by x1xn in (11), we obtain

F (xn) · · ·F (x2)F (x1)xn + F (xn) · · ·F (x2)x1δ(xn) = F (x1)xn

n∏
i=2

xi+

+x1δ(xn)
n∏

i=2

xi + x1xnδ(x2)
n∏

i=3

xi + x1xn

n∑
i=3

(
i−1∏
j=2

xjδ(xi)
n∏

k=i+1

xk

)
(12)
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for all xi ∈ I. Using (9) in (12), we get

F

(
n∏

i=1

xi

)
xn + F (xn) · · ·F (x2)x1δ(xn) = F (x1)xn

n∏
i=2

xi + x1δ(xn)
n∏

i=2

xi =

+x1xnδ(x2)
n∏

i=3

xi + x1xn

n∑
i=3

(
i−1∏
j=2

xjδ(xi)
n∏

k=i+1

xk

)

for all xi ∈ I. It implies that(
F (x1)

n∏
i=2

xi +
n∑

i=2

(
i−1∏
j=1

xjδ(xi)
n∏

k=i+1

xk

))
xn + F (xn) · · ·F (x2)x1δ(xn) =

= F (x1)xn

n∏
i=2

xi + x1δ(xn)
n∏

i=2

xi + x1xnδ(x2)
n∏

i=3

xi + x1xn

n∑
i=3

(
i−1∏
j=2

xjδ(xi)
n∏

k=i+1

xk

)

for all xi ∈ I. In particular, for x1 = x and x2 = x3 = · · · = xn = y, we find

F (x)yn + x

(
n−2∑
i=0

yiδ(y)yn−1−i

)
+ F (y)n−1xδ(y) = F (x)yn + xδ(y)yn−1+

+xyδ(y)yn−2 + x

(
n−1∑
i=2

yiδ(y)yn−1−i

)

for all x, y ∈ I. It yields that

F (y)n−1xδ(y) = xyn−1δ(y) (13)

for all x, y ∈ I. Replace x by rx, where r ∈ R in (13), we get

F (y)n−1rxδ(y) = rxyn−1δ(y). (14)

Left multiply (13) by r and combine with (14), we obtain [F (y)n−1, r]xδ(y) = 0 for all x, y ∈ I
and r ∈ R.

In particular, we take F = δ. Thus we have [δ(y)n−1, r]xδ(y) = 0 for all x, y ∈ I and
r ∈ R. Since R is a prime ring, it follows that for each y ∈ I, either [δ(y)n−1, r] = 0 for
all r ∈ R or δ(y) = 0. In each case we have [δ(y)n−1, r] = 0 for all y ∈ I and r ∈ R, i.e.,
δ(y)n−1 ∈ Z(R) for all y ∈ I. If δ is additive, we are done by ([5], Theorem B).

Corollary 2 ([7], Theorem 1(b)). Let R be an associative prime ring, I a nonzero ideal
of R. Suppose that F : R → R is a multiplicative (generalized)-derivation associated with
a multiplicative derivation δ of R such that F acts a homomorphism on I. Then δ = 0, and
F = 0 or F (x) = x for all x ∈ R.

Proof. For n = 2, in view of equation (13) and (14), we have [F (y), t]xδ(y) = 0 for all
x, y, t ∈ I. This same expression appeared in the beginning of the proof of Theorem 1(b) in
[7], hence the conclusion follows in the same way.
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Definition 1. Let F : R → R be a function. Then F is called right multiplicative (genera-
lized) derivation of R if it satisfies

F (xy) = F (x)y + xδ(y)

for all x, y ∈ R and δ is any mapping of R. And F is called left multiplicative (generalized)
derivation of R if it satisfies

F (xy) = δ(x)y + xF (y)

for all x, y ∈ R and δ is any mapping of R. Then it is not difficult to see that the associ-
ated mapping δ of right and left multiplicative (generalized)-derivation F is a multiplicative
derivation. Now, F is said to be two-sided multiplicative (generalized) derivation of R if it
satisfies

F (xy) = F (x)y + xδ(y) = δ(x)y + xF (y)

for all x, y ∈ R, where δ is a multiplicative derivation of R.

Theorem 3. Let R be a prime ring, I a nonzero ideal of R. Suppose that F : R → R is a
two-sided multiplicative (generalized)-derivation associated with a multiplicative derivation
δ of R such that F acts as n-antihomomorphism on I. Then δ = 0, and F = 0 or there
exists λ ∈ C such that F (x) = λx for all x ∈ R and λn−1 = 1 (in this case R should be
commutative).

Proof. From equation (13), we have F (y)n−1xδ(y) = xyn−1δ(y) for all x, y ∈ I. Take F (z)x
in place of x in this equation, we get

F (y)n−1F (z)xδ(y) = F (z)xyn−1δ(y), F (zyn−1)xδ(y) = F (z)xyn−1δ(y),

F (z)yn−1xδ(y) + zδ(yn−1)xδ(y) = F (z)xyn−1δ(y)

for all x, y, z ∈ I. It implies that

F (z)[yn−1, x]δ(y) + zδ(yn−1)xδ(y) = 0 (15)

for all x, y, z ∈ I. Replace z by rz in (15), where r ∈ R, we get

δ(r)z[yn−1, x]δ(y) + rF (z)[yn−1, x]δ(y) + rzδ(yn−1)xδ(y) = 0.

Using (15), we find δ(r)z[yn−1, x]δ(y) = 0 for all x, y, z ∈ I and r ∈ R. In view of Lemma 1,
it implies that either δ = 0 or [yn−1, x]δ(y) = 0 for all x, y ∈ I. Assume that [yn−1, x]δ(y) = 0
for all x, y ∈ I. It implies that for each y ∈ I, either yn−1 ∈ Z(R) or δ(y) = 0. Together
these both cases (using Lemma 3) imply that δ(yn−1) ∈ Z(R) for all y ∈ I.

We now consider

F (xyn−1) = F (x)yn−1 + xδ(yn−1), F (xyn−1) = F (y)n−1F (x)

for all x, y ∈ I. Thus we have

F (y)n−1F (x) = F (x)yn−1 + xδ(yn−1) = F (x)yn−1 + δ(yn−1)x. (16)

Take xz in place of x in (16), we find

F (y)n−1F (x)z + F (y)n−1xδ(z) = F (x)zyn−1 + xδ(z)yn−1 + δ(yn−1)xz (17)
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for all x, y, z ∈ I. Using (16), it implies that

F (y)n−1xδ(z) = F (x)[z, yn−1] + xδ(z)yn−1 (18)

for all x, y, z ∈ I. Replace x by rx in (18), where r ∈ R, we get

F (y)n−1rxδ(z) = rF (x)[z, yn−1] + δ(r)x[z, yn−1] + rxδ(z)yn−1.

Using (18), we have
[F (y)n−1, r]xδ(z) = δ(r)x[z, yn−1] (19)

for all x, y, z ∈ I and r ∈ R. Replace z by zwn−1 in (19), we get

[F (y)n−1, r]xδ(z)wn−1 + [F (y)n−1, r]xzδ(wn−1) = δ(r)x[z, yn−1]wn−1 + δ(r)xz[yn−1, wn−1]

for all x, y, z, w ∈ I and r ∈ R. Equation (19) reduces it to

δ(wn−1)[F (y)n−1, r]xz = δ(r)xz[yn−1, wn−1] (20)

for all x, y, z, w ∈ I and r ∈ R. Take zs in place of z in (20), where s ∈ R, we find

δ(wn−1)[F (y)n−1, r]xzs = δ(r)xzs[yn−1, wn−1]

for all x, y, z, w ∈ I and r, s ∈ R. Using (20) in the above expression, we obtain δ(r)xz[[wn−1,
yn−1], s] = 0 for all x, y, z, w ∈ I and r, s ∈ R. It forces that either δ = 0 or [wn−1, yn−1] ∈
Z(R) for all y, w ∈ I. But δ 6= 0, thus we have [wn−1, yn−1] ∈ Z(R) for all y, w ∈ I. In view
of Lemma 2, R is commutative. Therefore, F is just an n-homomorphism of R and hence by
Theorem 1, we get δ = 0, a contradiction.

On the other hand, we assume that δ = 0. Relation (10) implies that

F (x1x2 · · · xn) = F (x1)x2 · · ·xn

for all xi ∈ I. Using this relation, we obtain

F (x1)x2x3 · · ·xn−1xnxn+1 = F (x1x2 · · ·xn−1xn)xn+1 =

= F (xn)F (xn−1) · · ·F (x2)F (x1)xn+1 = F (xn)F (xn−1) · · ·F (x2)F (x1xn+1) =

= F (x1xn+1x2 · · ·xn) = F (x1)xn+1x2 · · ·xn

for all xi ∈ I. It gives
F (x1)[x2 · · · xn, xn+1] = 0

for all xi ∈ I. Thus we have either F (x) = 0 for all x ∈ I or [x2 · · ·xn, xn+1] = 0 for all
xi ∈ I. The first case implies F = 0. In the latter case we find that R is commutative and
hence F acts as n-homomorphism on I.
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7. I. Gusić, A note on generalized derivations of prime rings, Glasnik Mate., 40 (2005), №1, 47–49.
8. S. Hejazian, M. Mirzavaziri, M. Moslehian, n-homomorphisms, Bull. Iran. Math. Soc., 31 (2005), №1,

13–23.
9. C. Lanksi, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), №3, 731–734. doi:

10.1090/S0002-9939-1993-1132851-9
10. M.P. Lukashenko, Derivations as homomorphisms and anti−homomorphisms in differentialy semiprime

rings, Mat. Stud., 43 (2015), №1, 12–15. doi: 10.15330/ms.43.1.12-15
11. N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Mate.,

39 (2004), №1, 27–30.

Department of Mathematics
Patel Memorial National College
Rajpura-140401, India
gurninder_rs@pbi.ac.in

Received 22.09.2019
Revised 27.04.2020


