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THAT ACT AS n-(ANTI)HOMOMORPHISMS
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morphisms, Mat. Stud. 53 (2020), 125-133.

Let R be a prime ring. In this note, we describe the possible forms of multiplicative
(generalized)-derivations of R that act as n-homomorphism or n-antihomomorphism on nonzero
ideals of R. Consequently, from the given results one can easily deduce the results of Gusié

([7D)-

1. Introduction. Throughout this paper, R will always denote an associative prime ring
with center Z(R) and C' the extended centroid of R. It is well-known that in this case C
is a field. For any x,y € R, the symbol [z,y] denotes the commutator zy — yx. Recall, a
ring is said to be prime if xRy = (0) (where 2,y € R) implies x = 0 or y = 0. An additive
mapping d: R — R is said to be a derivation if d(xy) = d(x)y + zd(y) for all x,y € R.
In 1991, Bresar [4] introduced the notion of generalized derivation as follows: an additive
mapping F': R — R is said to be a generalized derivation if F(zy) = F(z)y + zd(y) for
all z,y € R, where d is a derivation of R. The concept of generalized derivation covers
both the notions of derivation and left multiplier (i.e., an additive mapping 7: R — R
satisfying T'(xy) = T'(z)y for all z,y € R). Now if we relax the assumption of additivity in
the notion of derivation, then it is called multiplicative derivation, i.e., a mapping 6: R — R
(not necessarily additive) satisfying 6(zy) = §(x)y + 26(y) for all z,y € R. Recently, Dhara
and Ali [6] extended the notion of multiplicative derivation to multiplicative (generalized)-
derivation. Accordingly, a mapping F': R — R (not necessarily additive) is said to be a
multiplicative (generalized) derivation of R if F(xy) = F(x)y + 20(y) for all x,y € R, where
0 is a multiplicative derivation of R. Clearly, every generalized derivation is a multiplicative
(generalized)-derivation, however the converse is not generally true (see [6], Example 1.1).
Recall that a mapping f of R is said to act as an homomorphism (resp. anti-homomorphism)
on an appropriate subset K of R if f(xy) = f(z)f(y) (resp. f(zy) = f(y)f(x)) for all x,y €
K. Following Hezajian et al. [8], a mapping f of R is said to act as an n-homomorphism (resp.
n-antihomomorphism) of R if for any z; € R, where t = 1,2,--- ,n; f(I]_, z:) = [1—, f(x:)
(resp. f(ITr, zi) = f(xn) f(@n_1)--- f(x1)). Initially, the notion of an n-homomorphism was
introduced and studied for complex algebras by Hejazian et al. 8], where some significant
properties of n-homomorphisms are discussed on Banach algebras. Moreover, it is not difficult
to see that every homomorphism of R is n-homomorphism (for n > 2), but the converse is
not necessarily true (see [8]).
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Till date, there exist many results in the literature showing that the global structure of
R is often tightly connected to the behaviour of additive mappings defined on R. In 19809,
a result due to Bell and Kappe [2] states that if a prime ring R admits a derivation d that
acts as homomorphism or anti-homomorphism on a nonzero right ideal U of R, then d = 0.
Later Asma et al. [1] proved that this result also holds on nonzero square-closed Lie ideals
of prime rings. Moreover, Rehman [11] established this result for generalized derivations of
prime rings. In fact, he proved that if F'is a nonzero generalized derivation of a 2-torsion free
prime ring R that acts as homomorphism or anti-homomorphism on a nonzero ideal of R and
d # 0, then R is commutative. Recently, Lukashenko [10] provided a new direction to these
studies by investigating derivations acting as homomorphisms or anti-homomorphisms in
differentially semiprime rings. Now it seems interesting to extend the results of generalized
derivations to multiplicative (generalized)-derivations. In this context, Gusi¢ 7] gave the
complete form of Rehman’s result as follows: Let R be an associative prime ring, I’ be a
multiplicative (generalized)-derivation of R associated with a multiplicative derivation § and
I be a nonzero ideal of R.

(a) Assume that F' acts as homomorphism on I. Then § = 0, and F = 0 or F(x) = x for
all x € R.

(b) Assume that F acts as anti-homomorphism on I. Then § =0, and F' =0 or F(z) = x
for all x € R (in this case R should be commutative).

In view of our above discussion, we find it reasonable to extend the results of deri-
vations acting as homomorphisms (resp. anti-homomorphisms) to n-homomorphisms (resp.
n-antihomomorphisms) with multiplicative derivations. More specifically, we study multipli-
cative (generalized)-derivations of prime rings that act as n-homomorphism or n-antihomo-
morphism.

2. The results. We begin with the following observations in this subject, which we shall
use frequently.

Lemma 1. Let R be a prime ring and I be a nonzero ideal of R. Then for any a,b € R,
alb = (0) implies a =0 or b = 0.

Lemma 2. Let R be a prime ring and I be a nonzero ideal of R. If for any fixed positive
integer n, (2", y"] € Z(R) for all x,y € I, then R is commutative.

Proof. By hypothesis, we have [[z",y"],r] = 0 for all z,y € I and r € R. It is well-known that
I and R satisfy same polynomial identities. Thus, we have [[z™,y"],r] = 0 for all z,y,r € R.
If possible suppose that R is not commutative. By a famous result of Lanski [9], R C M, (F),
where M,,(F) be a ring of n x n matrices, with n > 2 over a field F. Moreover, R and M, (F)
satisfy the same polynomial identities. Choose x = €11,y = €12 + €22 and r = e, where e;;
denotes matrix with 1 at ¢j—entry and 0 elsewhere. In this view, it follows that

0= [[xnv yn]’,r,] = €11,
a contradiction. Hence, R is commutative. 0

Lemma 3. Let R be a ring and 6 be a multiplicative derivation of R. Then the followings
are true:

(i) 5(0) = 0.
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(ii)) If a € Z(R), then §(a) € Z(R).

Proof. (i) 6(0) = §(0.0) = §(0).0 +0.6(0) = 0. (i7) Let a € Z(R) and ¢ be a multiplicative
derivation of R. Then for each x € R, we have

d(az) = d(a)r + ad(x), d(ax) =d0(za) = d(x)a+ xd(a).
Together with above two equations, we get
[z,0(a)] =0 for all x € R.
Hence 6(a) € R. O

Theorem 1. Let R be a prime ring, I a nonzero ideal of R. Suppose that F': R — R is
a multiplicative (generalized)-derivation associated with a multiplicative derivation § of R
such that F acts as n-homomorphism on I. Then 6 = 0, and F' = 0 or there exists A € C'
such that F(z) = \x for all v € R and \"™! = 1.

Proof. By hypothesis, we have

(HL) = ﬁF (2;) (1)

for all x; € I. On the other hand, we find

F<sz) = F<1:[xl>xn + 1:[352(5(3:,1) (2)

for all x; € I. Combining (1) and (2), we obtain

n

i=1
for all z; € I. Replace z,, by z,r in (3), where r € R, we get

n—1

[[ P chz

i=1

That is . .
<H F(x;) — H a:z> zp,d(r) =0
In view of Lemma 1, we find that either [/ F(z;) =[]/, #; or § = 0. Let us consider

for all x; € I. Replace z,_1 by z,_17 in (4), we find

n—1 n—2
HFerqLHFxen 10(r Hmr (5)
i=1 =1
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for all z; € I and r € R. Right multiply (4) by r and subtract from (5), we get
n—2
[ F)anad(r) =0
i=1

for all x; € I and r € R. Again by invoking Lemma 1, we find that either H;:f F(z;) =0
or 0 = 0. But § # 0, so we have H?;lz F(z;) = 0 for all z; € I. Substitute x,_or in place of
T, o in above expression, where r € R, we find that [[}- F/(z;)I5(r) = (0). By Lemma 1,
it follows that either [[/=] F(z;) = 0 for all z; € I or 6 = 0. But § # 0, thus we have
1=’ F(z;) = 0 for all z; € I. Continuing in this way, we arrive at F(z) = 0 for all z € I.
Replace x by zr, where r € R, we get xd(r) = 0 for all x € I and r € R. It implies that
0 = 0, which is a contradiction.
Let us now consider the latter case 6 = 0, we find that

n

for all ; € I. Combining (1) and (6), we obtain

for all z; € I. Replace x1 by 17, where r € R, we may infer that

F(z1)R ( H F(z) -] x) = (0)

=2

for all z; € I. Since R is prime, we find that either F'(z) = 0 for all z € I or [[;_, F(z;) =
H?:g x; for all x; € I. It is straightforward to see that the former case implies F' = 0. On the

other side, we have
n n

HF(azl) = l_I:CZ (7)

=2 =2

for all z; € I. Take rz, instead of x5 in (7), where r € R, we get

n

F(r)xQHF(x,) = erHa:i. (8)

=3
Left multiply (7) by r and then subtract from (8), we obtain

n

(F(r)za — rF(x2)) [ Fla:) =0

=3

for all x; € I and r € R. Substitute x,s in place of x5 in above equation, where s € R, we

obtain
n

(F(r)zs — rF(x2))R] [ F(x:) = (0)

=3
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for all x; € I and r € R. It implies that either F(r)z — rF(z) = 0 for all x € I and
r € Ror [[l;F(x;) = 0 for all z; € I. One may observe that in both of these cases we
get the situation F'(r)z — rF(x) = 0 for all # € I and r € R. Replace = by sz, we get
(F(r)s —rF(s))x =0 for all z € I and r,s € R. By Lemma 1, we get F(r)s = rF\(s) for all
r,s € R. Replace r by rp, we get F(r)plgr(s) = 1g(r)pF(s) for all r,s,p € R, where 1 is
the identity mapping of R. With the aid of a result of Bresar [[3|, Lemma], it follows that
there exists some A € C such that F' = Mg and hence F(z) = Az for all x € R. In view
of our hypothesis, we have A", @; = [\, Az;. It forces that \»~! = 1. It completes the
proof. O

Corollary 1 (|7], Theorem 1(a)). Let R be an associative prime ring, I a nonzero ideal
of R. Suppose that F: R — R is a multiplicative (generalized)-derivation associated with
a multiplicative derivation 0 of R such that F' acts a homomorphism on I. Then 6 = 0, and
F=0orF(x)=x forallz € R.

In spirit of a result of Gusi¢ (|7], Theorem 1(b)), it is natural to investigate multiplicative
(generalized)-derivations that act as n-antihomomorphisms. However, we could not get this
result in its complete form, but we obtain the following:

Theorem 2. Let R be a prime ring, I a nonzero ideal of R. Suppose that F': R — R is
a multiplicative (generalized)-derivation associated with a multiplicative derivation § of R
such that F acts as n-antihomomorphism on I. If F = ¢, then §(x)" ' € Z(R) for all x € I.
Moreover, if § is additive, then either 6 = 0 or R is commutative or R is an order in a
4—dimensional simple algebra.

Proof. By hypothesis, we have

=1

F(H) = F(2,)F (2 y) - - Fa2)F(x1) (9)

for all z; € I. On the other hand, we may infer that
n n n i—1 n
F(H) = F(ay) [Jzi+ > (H:cj(s(xi) 11 xk> (10)
i=1 =2 i=2 \ j=1 k=i+1
for all z; € I. Combining (9) and (10), we find that
n n i—1 n
F(zy)- F(ay) = Floy) [Jzi+ (ija(xi) 11 xk> (11)
=2 =2 \ j=1 k=i+1

for all z; € I. Replace 27 by z12, in (11), we obtain

Flan) - F(22)F(21)tn + F(z2) -+ - F(w2)716(20) = F(21)2n H Tt

+x10(xy,) H x; + x12,0(x2) H Ti + 112, Z (1:[ x;0(z;) H :ck) (12)

=2 =3 =3 7j=2 k=i+1
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for all z; € I. Using (9) in (12), we get

n

F ( sz> Ty + F(xy) - F(r2)x10(2)) = F(21)20 H x; + x10(xy,) H x; =

=2 =2

+x12,0(22) 1_[96Z + 212, Z <1:[xjé(xl) H xk>

i=3 =3 k=i+1
for all x; € I. It implies that

n

(F(ml) H i + Z (1:[ v;0(z;) ] xk) ) T+ F(2y) - F(22)210(2,) =

k=i+1
n n
F(z4 ana:z—l—:clé T, Hmﬁ—a:lxn To Hxl—l—xla:n E Hx] ;) H T
=2 =2 =3 7j=2 k=i+1
for all x; € I. In particular, for z; = x and 29 = 23 =--- = x,, = y, we find

x)y" +w<2y’5 e ) F(y)"'ad(y) = F()y" +2d(y)y" '+

+zyd(y)y" 2+ ( Z Yo (y)y™ 1_i>
for all z,y € I. It yields that

F(y)"'azé(y) = zy™ "6 (y) (13)

for all =,y € I. Replace = by rx, where r € R in (13), we get
F(y)"'rad(y) = ray"o(y). (14)

Left multiply (13) by r and combine with (14), we obtain [F(y)" !, r]zd(y) = 0 forall z,y € T
and r € R.

In particular, we take F' = §. Thus we have [6(y)" !, r]zd(y) = 0 for all x,y € I and
r € R. Since R is a prime ring, it follows that for each y € I, either [6(y)" !, r] = 0 for
all € R or §(y) = 0. In each case we have [6(y)" ',r] = 0forally € [ and r € R, i.e.,
d(y)" ' € Z(R) for all y € I. If § is additive, we are done by ([5], Theorem B). O

Corollary 2 (|7], Theorem 1(b)). Let R be an associative prime ring, I a nonzero ideal
of R. Suppose that F: R — R is a multiplicative (generalized)-derivation associated with
a multiplicative derivation 0 of R such that F' acts a homomorphism on I. Then § = 0, and
F=0orF(zx)=x forallz € R.

Proof. For n = 2, in view of equation (13) and (14), we have [F(y),t]z0(y) = 0 for all
x,y,t € I. This same expression appeared in the beginning of the proof of Theorem 1(b) in
[7], hence the conclusion follows in the same way. O
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Definition 1. Let F': R — R be a function. Then F' is called right multiplicative (genera-
lized) derivation of R if it satisfies

F(zy) = F(z)y + 26(y)

for all z,y € R and ¢ is any mapping of R. And F is called left multiplicative (generalized)
derivation of R if it satisfies

F(ay) = 6(x)y + v F(y)

for all z,y € R and ¢ is any mapping of R. Then it is not difficult to see that the associ-
ated mapping 6 of right and left multiplicative (generalized)-derivation F' is a multiplicative
derivation. Now, F' is said to be two-sided multiplicative (generalized) derivation of R if it
satisfies

F(zy) = F(z)y + 20(y) = 6(x)y + 2F(y)
for all z,y € R, where ¢ is a multiplicative derivation of R.

Theorem 3. Let R be a prime ring, I a nonzero ideal of R. Suppose that F': R — R is a
two-sided multiplicative (generalized)-derivation associated with a multiplicative derivation
0 of R such that F acts as n-antihomomorphism on I. Then 6 = 0, and F = 0 or there
exists A € C such that F(x) = Mz for all z € R and \** = 1 (in this case R should be
commutative).

Proof. From equation (13), we have F(y)" 'xd(y) = xy"1(y) for all z,y € I. Take F(z)x
in place of x in this equation, we get

F(y)" 'F(2)zd(y) = F(2)xy" 'o(y), F(y" Nad(y) = F(2)xy" 'o(y),
F(2)y" twd(y) + 26(y" Had(y) = F(2)xzy" 1o(y)

for all x,y, z € I. It implies that
F(2)ly" " a]dy) + z0(y")zd(y) =0 (15)
for all x,y,z € I. Replace z by rz in (15), where r € R, we get
6(r)z[y" ", ald(y) + rF(2)[y" ", 2]o(y) + rzé(y" " )xd(y) = 0.

Using (15), we find §(r)z[y" !, 2]d(y) = 0 for all z,y,2 € I and r € R. In view of Lemma 1,
it implies that either § = 0 or [y" !, z]d(y) = 0 for all z,y € I. Assume that [y" ! z]d(y) = 0
for all z,y € I. It implies that for each y € I, either y"~' € Z(R) or §(y) = 0. Together
these both cases (using Lemma 3) imply that 6(y"') € Z(R) for all y € I.

We now consider

F(ay"™) = Fla)y" ™" +2o(y"™"), Flay"™) = F(y)""'F(z)
for all z,y € I. Thus we have

F(y)" 'Fz) = Fx)y" " +26(y"") = Fx)y" " +6(y" ). (16)
Take xz in place of z in (16), we find

F(y)" 'F(x)z + F(y)" '26(2) = F(z)zy" ' 4+ 20(2)y" ' + 5(y" Mz (17)
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for all z,y,z € I. Using (16), it implies that
F(y)"'wé(2) = F(x)[z,y" "] + 26 (2)y" ™" (18)
for all z,y,z € I. Replace x by rz in (18), where r € R, we get
F(y)" 'rad(z) = rF(z)[z,y" ] + 0(r)x[z,y" Y] + rad(2)y™ .

Using (18), we have
[F(y)", rad(2) = o(r)alz, y" '] (19)

for all z,y,2 € I and r € R. Replace z by zw" ! in (19), we get
[F(y)" L, rzd(2)w™ " 4 [F(y)" ' rlezd(w™ ) = 6(r)zlz, v Hw" ™ + 0(r)zz[y", w™ ]
for all z,y,z,w € I and r € R. Equation (19) reduces it to
S(w" H[F(y)" " rlez = 6(r)azly™ ™, w] (20)
for all z,y,z,w € I and r € R. Take zs in place of z in (20), where s € R, we find
S(w" H[F(y)" ', rlezs = 6(r)zzsy™ w1

for all z,y, z,w € I and r, s € R. Using (20) in the above expression, we obtain §(r)zz[[w"?,
y" 1, s] =0 for all z,y,z,w € I and r,s € R. It forces that either § = 0 or [w" !, y"7!] €
Z(R) for all y,w € I. But § # 0, thus we have [w"™!,y" ] € Z(R) for all y,w € I. In view
of Lemma 2, R is commutative. Therefore, F'is just an n-homomorphism of R and hence by
Theorem 1, we get 6 = 0, a contradiction.

On the other hand, we assume that 6 = 0. Relation (10) implies that

F(ryzg- - ) = F(z)ze - 2y
for all z; € I. Using this relation, we obtain

F($1)$2$3 o Tp—1TpTp4l = F($1$2 o '$n—1xn)xn+1 =
= F(2p)F(2n-1) - F(22) F(21) 041 = F(2n) F(2p-1) - F(zo) F(212041) =

= F(212p4172 - Tp) = F(21)Tn4122 - - Ty

for all z; € I. It gives
F(.%’l)[l’g e xnwxn-‘rl] =0

for all z; € I. Thus we have either F(z) = 0 for all z € I or [zo--- 2y, 2,11 = 0 for all
x; € I. The first case implies F' = 0. In the latter case we find that R is commutative and
hence F' acts as n-homomorphism on /. O]
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