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A set X endowed with a coarse structure is called ballean or coarse space. For a ballean

(X, E), we say that two subsets A, B of X are close (linked) if there exists an entourage E ∈ E
such that A ⊆ E[B], B ⊆ E[A] (either A,B are bounded or contain unbounded close subsets).
We explore the following general question: which information about a ballean is contained and
can be extracted from the relations of closeness and linkness.

1. Introduction. Given a set X, a family E of subsets of X ×X is called a coarse structure
on X if

• each E ∈ E contains the diagonal △X , △X = {(x, x) ∈ X : x ∈ X};
• if E, E ′ ∈ E then E ◦ E ′ ∈ E and E−1 ∈ E , where E ◦ E ′ = {(x, y) : ∃z((x, z) ∈ E,
(z, y) ∈ E ′)}, E−1 = {(y, x) : (x, y) ∈ E};

• if E ∈ E and △X ⊆ E ′ ⊆ E then E ′ ∈ E ;

•
∪

E = X ×X.

A subfamily E ′ ⊆ E is called a base for E if, for every E ∈ E , there exists E ′ ∈ E ′ such
that E ⊆ E ′. For x ∈ X, A ⊆ X and E ∈ E , we denote E[x] = {y ∈ X : (x, y) ∈ E},
E[A] =

∪
a∈AE[a] and say that E[x] and E[A] are balls of radius E around x and A.

The pair (X, E) is called a coarse space [14] or a ballean [11], [13].
For a ballean (X, E), a subset B ⊆ X is called bounded if B ⊆ E[x] for some E ∈ E and

x ∈ X. A ballean (X, E) is called bounded (unbounded) if X is bounded (unbounded). The
family B(X,E) of all bounded subsets of (X, E) is called the bornology of (X, E). We denote
by B♯

(X,E) the set of all ultrafilters φ on X such that X \B ∈ φ for each B ∈ B(X,E).

Definition 1. Given a ballean (X, E), we say that subsets A, B of X are

• close (write AδB) if there exists E ∈ E such that A ⊆ E[B], B ⊆ E[A];

• linked (write AλB) if either A,B are bounded or there exist unbounded subsets A′ ⊆ A,
B′ ⊆ B such that A′δB′.

The relations δ and λ, called closeness and linkness, are special kinds of asymptotic
proximities [9]. We note that δ and λ play the central part in ultrafilter description of
the Higson’s corona ν(X, E) of (X, E), see [8] and Section 6. The negation of λ (namely,
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asymptotic disjointness) is used for definition of normal balleans, see [7] and Section 4. The
relation δ is an equivalence and each δ-class is a connected component in the hyperballean
of (X, E), see [5], [12].

In above and other cases, δ and λ were used as a tool for studing balleans, but δ and λ
are interesting for their own sake. In this paper, we concentrate around the following general
questions:
Which properties of a ballean (X, E) can be recognized by δ(X,E) or λ(X,E)?
How can one detect if a ballean (X, E) is uniquely determined by λ(X,E) or δ(X,E)?

To make these questions more precise, we need some definitions.

Definition 2. We say that two balleans (X, E), (X, E ′) are δ-equivalent (λ-equivalent) if
δ(X,E) = δ(X,E ′) (λ(X,E) = λ(X,E ′)).

Every δ-equivalent balleans are λ-equivalent, but not vice versa, see Section 2.
If (X, E), (X, E ′), are λ-equivalent then B(X,E) = B(X,E ′).

Definition 3. A ballean (X, E) is called δ-rigid (λ-rigid) if, for every coarse structure E ′ on
X such that δ(X,E) = δ(X,E ′) (λ(X,E) = λ(X,E ′)), we have E = E ′ .

Thus, every δ-rigid (λ-rigid) ballean (X, E) is uniquely determined by the relation δ(X,E) (λ(X,E)).
Every λ-rigid ballean is δ-rigid.

For balleans (X, E), uniquely determined by B(X ,E) see [4].

Definition 4. We say that a class K of balleans is

• δ-stable (λ-stable), for any two δ-equivalent (λ-equivalent) balleans (X, E), (X, E ′), if
(X, E) ∈ K then (X, E ′) ∈ K;

• δ-rigid (λ-rigid), for any two δ-equivalent (λ-equivalent) balleans (X, E), (X, E ′) ∈ K,
we have E = E ′.

By [9, Theorem 3.4], for every ballean (X, E), there exists the strongest by inclusion coarse
structure Eδ on X such that (X, E), (X, Eδ) are δ-equivalent. Analogously, there exists the
strongest by inclusion coarse structure Eλ on X such that (X, E), (X, Eλ) are λ-equivalent.

Definition 5. We say that a ballean (X, E) is δ-strong (λ-strong) if E = Eδ (E = Eλ).

In Section 2 we prove that every discrete ballean is λ-rigid, every coarsely discrete ballean
is δ-rigid but needs not to be λ–rigid.

In Section 3 we show that the class of metrizable balleans is λ-rigid but not λ-stable, the
class of submetrizable balleans is λ-stable. Every metrizable ballean (X, E) is λ-strong (so
δ-strong) but (X, E) is λ-rigid if and only if (X, E) is discrete. Is every metrizable ballean
δ-rigid? This question remains open.

In Section 4 we prove that the class of normal balleans is λ-stable, but not δ-rigid.
In Section 5 we prove that the class of finitary group balleans is λ-rigid.
In Section 6 we show that the parallelity relation on B♯

(X,E) uniquely defines δ(X,E) and
apply this statement to balleans (X, E) with finite B♯

(X,E). We conclude the paper with an
ultrafilter characterization of the normality.

2. Discrete balleans. We recall that a ballean (X, E) is discrete if, for every E ∈ E , there
exists a bounded subset B such that E[x] = {x} for each x ∈ X\B. A subset Y ⊆ X is
called discrete if the subballean (Y, E|Y ) is discrete.
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Theorem 1. For a ballean (X, E), the following statements are equivalent:

1. (X, E) is discrete;

2. if Y ⊆ X, Z ⊆ X and Y δZ then Y \ Z and Z \ Y are bounded;

3. if Y ⊆ X, Z ⊆ X and Y λZ then either Y, Z are bounded or Y ∩ Z is unbounded.

Proof. The implications (1) =⇒ (2) =⇒ (3) are evident.
We assume that (3) holds but (X, E) is not discrete. Then there exists E ∈ E such that

the set {x ∈ X : |E[x]| > 1} is unbounded. We choose an unbounded subset Y of X such
that |E[y]| > 1 for each y ∈ Y and E[y] ∩ E[y′] = ∅ for all distinct y, y′ ∈ Y . For each
y ∈ Y , we pick zy ∈ E[y] \ {y} and denote Z = {zy : y ∈ Y }. Clearly, Y λZ but Y ∩ Z = ∅
contradicting (3).

Corollary 1. Every discrete ballean is λ-rigid and hence δ-rigid.

To continue, we need the following construction from [6].
Let (X, E) be an unbounded ballean and φ be a filter on X such that X \B ∈ φ for each

B ∈ B(X,E). We denote by Eφ a coarse structure on X with the base {H(E,ϕ) : E ∈ E , Φ ∈ φ},
where

H(E,ϕ)[x] =

{
{x} if x ∈ Φ,
E[x] \ Φ if x ∈ X \ Φ.

Clearly, Eφ ⊆ E and B(X,E) = B(X,Eφ).

Theorem 2. Let (X, E) be a ballean, E0 ∈ E . Assume that there exists an unbounded subset
Y of X such that |E0[y]| > 1, y ∈ Y and every unbounded subset of Y can be partitioned
in two unbounded subsets. Then there exists an ultrafilter φ on X such that Eφ ( E and
(X, E), (X, Eφ) are λ-equivalent, so (X, E) is not λ-rigid.

Proof. We take an arbitrary ultrafilter φ ∈ B♯
(X,E) such that Y ∈ φ. The definition of the

coarse structure Eφ ensures that Eφ ( E .
We take arbitrary subsets A,B of X linked in (X, E) and show that A,B are linked in

(X, Eφ). If A,B are bounded in (X, E) then A,B are bounded in (X, Eφ), so we suppose that
A,B are unbounded in (X, E). We choose unbounded subsets A′ ⊆ A and B′ ⊆ B which
are close in (X, E). If A′ ∩ Y and B′ ∩ Y are bounded then A′, B′ are close in (X, Eφ) by
the construction of Eφ. We suppose that A′ ∩ Y is unbounded and partition A′ ∩ Y in two
unbounded subsets C,D. Since φ is an ultrafilter, either C /∈ φ or D /∈ φ. Hence, either C
or D is linked to B′ in (X, Eφ).

Let (X, E) be a ballean. We recall that a subset Y of X is large if there exists E ∈ E such
that X = E[Y ].

Clearly, Y is large if and only if Y δX. We note that every unbounded subset of X is
linked with X.

A ballean (X, E) is called coarsely discrete if X contains a large discrete subset.

Theorem 3. Every coarsely discrete ballean (X, E) is δ-rigid.

Proof. Assuming that a coarse structure E ′ on X is δ-equivalent to E , we shall prove that
E ′ = E .
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Let Y be a large discrete subset of (X, E). Then there exists E ∈ E such that E[Y ] = X.
Since Y δX, there exists E ′ ∈ E ′ such that E ′[Y ] = X. The δ-equivalence of the coarse
structures E , E ′ implies the δ-equivalence of the induced coarse structures E|Y and E ′

Y . Now
Corollary 1 implies that E|Y = E ′|Y . Taking into account that Y is large in both balleans
(X, E) and (X, E ′), we conclude that E = E ′.

Example 1. We define a coarse structure E on the set N of natural numbers such that the
ballean (N, E) is δ-rigid but not λ-rigid. We denote

A = {(2n+ 1, 2n+ 2), (2n+ 2, 2n+ 1), (n, n) : n ∈ ω}

and put E = {(F × F ) ∪ A : F ⊂ N, |F | < ω}. Since the set 2N is large and discrete in
(N, E), by Theorem 3, (N, E) is δ-rigid. By Theorem 2 with Y = 2N, (N, E) is not λ-rigid.

3. Ordinal and submetrizable balleans. We recall that a ballean (X, E) is ordinal if E
has a base linearly ordered by inclusion. In this case E has a base well-ordered by inclusion.

A ballean X, E is called metrizable if there exists a metric d on X such that E has the
base {{(x, y) : d(x, y) < r} : r ∈ R+}. A ballean (X, E) is metrizable if and only if E has a
countable base [12, Theorem 2.1.1]. Hence, every metrizable ballean is ordinal.

We denote by M and L the cases of metrizable and ordinal balleans.

Theorem 4. The following statements hold:

1. every ordinal ballean is λ-strong;

2. M and L are λ-rigid;

3. an ordinal ballean (X, E) is λ-rigid if and only if (X, E) is discrete;

4. M and L are not λ-stable.

Proof. (1) let (X, E) be an unbounded ordinal ballean, {Lλ : λ < κ} be a base of E well-
ordered by inclusion. We take a ballean (X, E ′) λ-equivalent to (X, E) and show that E ′ ⊆ E .
Assume the contrary and choose E ′ ∈ E ′ \ E . Then we can choose a κ-sequence (xα)α<κ in
X such that

• Lα[xα] ∩ Lβ[xβ] = ∅, α < β < κ;

• E ′[xα] ∩ E ′[xβ] = ∅, α < β < κ;

• E ′[xα] \ Lα[xα] ̸= ∅, α < κ.

For each α < κ, we pick yα ∈ E ′[xα]\Lα[xα] and put X ′ = {xα : α < κ}, Y = {yα : α < κ}.
Then X ′, Y are close in (X, E ′) . For each E ∈ E , there exists β < κ such that E[xα] ⊆ Lα[xα],
α < β. Hence, E[X ′]∩Y is bounded and X ′, Y are not linked in E contradicting λ-equivalence
of (X, E) and (X, E ′) .

(2) follows from (1).
(3) We note that every unbounded subset of an ordinal ballean can be partitioned in two

unbounded subsets and apply Theorem 2.
(4) follows from Theorem 2.

By Theorem 3, the statement (3) of Theorem 4 does not hold for δ in place of λ.

Question 1. Is every metrizable ballean δ-rigid? Equivalently, is M δ-stable?
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We recall that an unbounded ballean (X, E) is submetrizable if there exists a coarse
structure E ′ on X such that E ⊆ E ′ and (X, E ′) is unbounded and metrizable.

For a ballean (X, E), a function f : X −→ R is called macro-uniform if, for every E ∈ E ,
there exists rE ∈ R+ such that diam f(E[x]) ≤ rE for each x ∈ X. We denote mu(X, E) the
family of all macro-uniform functions on X.

By [13, Theorem 2.2.3], an unbounded ballean (X, E) is submetrizable if and only if there
exists an unbounded function f ∈ mu(X, E).

Theorem 5. If balleans (X, E), (X, E ′) are λ-equivalent, then mu(X, E) = mu(X, E ′).

Proof. We assume that there exists f ∈ mu(X, E ′) \ mu(X, E) and choose E ∈ E and a
sequence (yn)n∈ω in X such that diam f(E[yn]) > 2n. For each n ∈ ω, we pick zn ∈ E[yn] such
that |f(yn)|−f(zn)| > n. Passing to subsequences, we may suppose that |f(yn)|−f(zm)| > n
for all m ≥ n. We denote Y = {yn : n ∈ ω}, Z = {zn : n ∈ ω} and note that Y δ(X,E)Z. Since
f ∈ mu(X, E ′), for every E ′ ∈ E ′, there exists k ∈ N such that diam f(E ′[yn]) < k for all
n ∈ ω. Then E ′[Y ] ∩ Z is finite, so Y, Z are not linked in (X, E ′).

Corollary 2. The class of submetrizable balleans is λ-stable.

A ballean (X, E) is called mu-bounded if (X, E) is not submetrizable. For mu-bounded
balleans, see [2]. By Corollary 2, the class of mu-bounded balleans is λ-stable.

4. Normal balleans. For a ballean (X, E), two subsets A,B of X are called asymptotically
disjoint if for every E ∈ E the intersection E[A]∩E[B] is bounded. We note that unbounded
subsets A,B are asymptotically disjoint if and only if A,B are not linked.

A subset U of X is called an asymptotic neighbourhood of a subset A if for every E ∈ E
the set E[A] \ U is bounded.

A ballean (X, E) is called normal [7] if any two asymptotically disjoint subsets have
disjoint asymptotic neighbourhoods.

A function f : X −→ R is called slowly oscillating if for any E ∈ E and ε > 0 there exists
a bounded subset B of X such that diam f(E[x]) < ε for each x ∈ X. By [6, Theorem 2.2],
a ballean (X, E) is normal if and only if, for any two disjoint and asymptotically disjoint
subsets A,B of X, there exists a slowly oscillating function f : X −→ [0, 1] such that f |A = 0,
f |B = 1.

We denote by so(X, E) and sob(X, E) the families of all and all bounded slowly oscillating
functions on X.

Theorem 6. If balleans (X, E), (X, E ′) are λ-equivalent then sob(X, E) = sob(X, E ′).

Proof. We suppose the contrary and let f ∈ sob(X, E ′) \ sob(X, E). We denote B = B(X,E) =
B(X,E ′) and take ε > 0 and E ∈ E such that, for every B ∈ B, there exists xB ∈ X \ B
such that diamf(E[xB]) > ε. We pick yB ∈ E[xB] such that |f(xB) − f(yB)| > ε. Then we
enumerate B = {Bα : α < κ}, denote Z = {xB : B ∈ B} and define a mapping h : Z −→ X
as follows.

We put h(xB0) = yB0 and let h is already defined for each xBα , α < β. If h is not defined
at xBβ

then we put f(xBβ
) = yBβ

.
We take an ultrafilter p ∈ B♯ such that Z ∈ p, denote q = hβ(p) and observe that

|fβ(p)− fβ(q)| ≥ ε. We choose P ∈ p, Q ∈ p such that P ⊆ Z, Q ⊆ Z, |f(x)− fβ(p)| < 1
2
ε,

x ∈ P and |f(x) − fβ(q)| < 1
2
ε, x ∈ Q. By the construction of h, we have Pδ(X,E)Q, so

Pλ(X,E)Q. By the assumption, Pλ(X,E ′)Q. Hence, there exist E ′ ∈ E ′ and an unbounded
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P ′ ⊆ P such that E ′[x] ∩ Q ̸= ∅ for each x ∈ P ′. Since f is slowly oscillating in (X, E ′),
there exists B ∈ B such that diam f(E ′[x]) < 1

2
ε for each x ∈ X \B. Then f(E ′[x])∩Q = ∅

for each x ∈ P ′ \B and we get a contradiction with the choice of P ′.

Corollary 3. The class of normal balleans is λ-stable.

If (X, E), (X, E ′) are metrizable and sob(X, E) = sob(X, E ′), then λ(X,E) = λ(X,E ′) and, by
Theorem 4(2), E = E ′.

We show that the class of normal balleans is not δ-rigid.

Example 2. We denote by Sω the group of all permutations of ω, by E the coarse structure
on ω with the base

{{(x, y) : y ∈ {x} ∪ Fx} : F ∈ [Sω]
<ω}

and take the strongest coarse structure E ′ on ω such that B(ω,E ′) = [ω]<ω, see Example 3
in [3]. Then E ( E ′ and every infinite subset of ω is large in (ω, E) and (ω, E ′). Hence,
δ(ω,E) = δ(ω,E ′) and (ω, E), (ω, E ′) are normal because any two infinite subsets of X are not
asymptotically disjoint in (ω, E) and (ω, E ′).

Question 2. Is so(X, E) = so(X, E ′) for any λ-equivalent balleans (X, E), (X, E ′)?

Following [3], we say that a ballean (X, E) has bounded growth if, there exists a mapping
f : X −→ B(X,E) such that for every E ∈ E , the set {x ∈ X : E[x] ̸⊆ f(x)} is bounded.

Question 3. Is the class of balleans of bounded growth λ-stable?

5. Finitary balleans. For a group G, we denote by FG the coarse structure on G with the
base {

{(x, y) ∈ G×G : y ∈ {x} ∪ Fx} : F ∈ [G]<ω
}

and say that (G,FG) is the finitary group ballean of G. The following theorem show that
the class of finitary group balleans is λ-rigid.

Theorem 7. Let G,H be group on a set X such that λ(X,FG) = λ(X,FH). Then FG = FH .

Proof. If X is countable then the statement follows from Theorem 4(2) because FG,FH have
countable bases, so we suppose that X is uncountable.

We denote by ·, ∗ the group operations in G, H and, on the contrary, assume that
FG \FH ̸= ∅. Then there exists F ∈ [X]<ω such that, for any H ∈ [X]<ω, there exists x ∈ X
such that F · x \H ∗ x ̸= ∅.

We use the following observation:

(⋆) for every countable subset Y of X, there exists a countable subset Z such that Y ⊂ Z
and, for every A ∈ [Y ]<ω, there exists z ∈ Z such that F · z \ A ∗ z ̸= ∅.

We fix an arbitrary countable subset Y0 of X containing F and apply (⋆) to get a countable
subgroup Z0 of G, Y0 ⊂ Z0. Then we denote by Y1 the subgroup of H generated by Z0.
Analogously, for Y1 we use (⋆) to get the subgroup Z1 of G, Y1 ⊂ Z1 , and denote by Y2 the
subgroup of H generated by Z1. After ω steps, we put S =

∪
n∈ω Yn and note that S is a

subgroup of G and S is a subgroup of H.
By the construction of S, for every A ∈ [S]<ω, there exists x ∈ S such that F ·x\A∗x ̸= ∅.

Hence, the restriction of FG and FH to S are distinct. Since S is countable, we get a
contradiction to Theorem 4(2).
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A ballean (X, E) is called finitary if for every E ∈ E there exists n ∈ ω such that
|E[x]| < n for each x ∈ X. By [9], for every finitary ballean (X, E), there exists a group S of
permutations of X such that E has the base{

{(x, y) : y ∈ {x} ∪ Fx} : F ∈ [S]<ω
}
.

Example 2 shows that the class of finitary balleans is not δ-stable.

Question 4. Is the class of finitary balleans δ-rigid?

The product of two λ-rigid balleans needs not to be λ-rigid: take two metrizable unbounded
discrete balleans and apply Corollary 1 and Theorem 2.

Question 5. Is the product of two δ-rigid balleans δ-rigid?

A ballean (X, E) is called cellular if E has a base consisting of equivalence relations.
Equivalently [4, Theorem 3.1.3], (X, E) is cellular if asdim(X, E) = 0.

Question 6. Is the class of cellular balleans λ-stable?

Remark 1. As was recently shown by Banakh [1], the answers to Questions 4 and 6 are
negative under CH (more precisely, under b = c, and ∆◦

ω = c, respectively).

5. Ultrafilters. Let (X, E) be a ballean. We endow X with the discrete topology and consider
the Stone–Čech compactification βX of X. We take the points of βX to be the ultrafilters
on X. Then B♯

(X,E) is a closed subset of βX.
Given any r, q ∈ B♯

(X,E), we say that r, q are parallel (and write r||(X,E)q) if there exists
E ∈ E such that E[P ] ∈ q for each P ∈ p. By [7, Lemma 4.1], ||(X,E) is an equivalence on
B♯
(X,E). We denote by ∼(X,E) the minimal (by inclusion) closed (in B♯

(X,E)×B♯
(X,E)) equivalence

such that ||(X,E) ⊆ ∼(X,E). The quotient ν(X, E) is called the Higson corona of (X, E).
By [8, Proposition 1], r ∼(X,E) q if and only if hβ(p) = pβ(q) for every slowly oscillating

function h : X −→ [0, 1].

Theorem 8. Let E , E ′ be coarse structures on a set X such that B♯
(X,E) = B♯

(X,E ′) and
||(X,E) = ||(X,E ′). Then (X, E), (X, E ′) are δ-equivalent. If B♯

(X,E) is finite, then E = E ′.

Proof. We suppose that there exist P ⊆ X, Q ⊆ X such that Pδ(X,E)Q and P \ E ′(Q) ̸= ∅
for each E ′ ∈ E ′.

Since Pδ(X,E)Q, there exists E ∈ E such that P ⊆ E[Q] and E = E−1. For each x ∈ P ,
we pick f(x) ∈ Q such that (x, f(x)) ∈ E. If p ∈ B♯

(X,E) and P ∈ p then p||(X,E)f
β(p) and

Q ∈ fβ(p). Thus, each ultrafilter p ∈ B♯
(X,E) such that P ∈ p is parallel in B♯

(X,E) to some
ultrafilter q such that Q ∈ q.

We take an arbitrary ultrafilter r such that P \ E ′[Q] ∈ r for each E ′ ∈ E . Then P ∈ r
and r is not parallel in B♯

(X,E ′) to each ultrafilter q such that Q ∈ q. Hence, ||(X,E) ̸= ||(X,E ′).
To prove the second statement, it suffices to show that (X, E) is coarsely discrete and

apply Theorem 3.
We choose a representative from each class of parallel ultrafilter in B♯

(X,E). Let p1, . . . , pm
be the set of obtained representatives. Let E ∈ E . We choose P1 ∈ p1, . . . , Pn ∈ pn such
that E[Pi] ∩ Pj = ∅. Then P1∪, . . . , Pn is discrete and large in (X, E), so (X, E) is coarsely
discrete.
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Remark 2. Let B♯
(X,E) = B♯

(X,E ′). Does δ(X,E) = δ(X,E ′) implies ||(X,E) = ||(X,E ′)?
The answer to this question is negative. We take the balleans (ω, E), (ω, E ′) from Example 11
and note that p, q ∈ ω∗ are parallel in B♯

(ω,E) if and only if p = fβ(q) for some bijection
f : ω −→ ω. On the other hand, we partition ω =

∪
n∈ω Wn so that |Wn| = n+ 1 and take a

mapping h : ω −→ ω such that h(Wn) = {an}, an ∈ Wn. We choose p ∈ ω∗ such that p and
hβ(p) are not isomorphic. By the choice of h, p and hβ(p) are parallel in B♯

(X,E ′) but not in
B♯
(X,E).

Theorem 9. If (X, E), (X, E ′) are finitary balleans and ||(X,E) = ||(X,E ′) then E = E ′.

Proof. Let G,G′ be groups of permutations of X defining E , E ′. We assume that E \ E ′ ̸= ∅.
Then there is H ∈ [G]<ω such that, for every A ∈ [G′]<ω, the set YA = {x ∈ X : Hx\Ax ̸= ∅}
is infinite. We take p ∈ B♯

(X,E) such that YA ∈ p for each A ∈ [G′]<ω. Let H = {h1, . . . , hn}.
We take g1, . . . , gn ∈ G′ such that h1p = g1p, . . . , hnp = gnp and put B = {g1, . . . , gn}. Then
{x ∈ X : h1x = g1x, . . . , hnx = gnx} ∈ p and YB /∈ p, contradict the choice of p.

Theorem 10. For a normal ballean (X, E) and p, q ∈ B♯
(X,E), the following statements are

equivalent:

(1) p ∼ q;

(2) PλQ for each P ∈ p, Q ∈ q;

(3) (p, q) ∈ cl||.

Proof. (1) ⇒ (2). If P,Q are unbounded and asymptotically disjoint then, by the normality
of (X, E), there exists a slowly oscillating function f : X −→ [0, 1] such that f |P = 1, f |Q = 0,
so fβ(p) ̸= fβ(q) and p, q are not equivalent.

(2) ⇒ (3). We choose E ∈ E , unbounded subsets P ′ ⊆ P , Q′ ⊆ Q such that there is a
bijection h : P ′ −→ Q′ satisfying (x, h(x)) ∈ E, x ∈ P ′. If r ∈ B♯

(X,E) and P ′ ∈ r then r||hβ(r)

and P ∈ r, Q ∈ hβ(r).
The implication (3) ⇒ (1) follows from definitions of ∼ and ||.

Theorem 11. A ballean (X, E) is normal if and only if ∼= cl||.

Proof. By Theorem 10, if (X, E) is normal then ∼= cl||. We assume that ∼= cl|| and show
that any two unbounded asymptotically disjoint subsets P,Q of X have disjoint asymptotic
neighborhoods.

Let p, q ∈ B♯
(X,E), P ∈ p, Q ∈ q. Since P,Q are asymptotically disjoint, we have (p, q) /∈

cl||, so there exists a slowly oscillating function f : X −→ [0, 1] such that fβ(p) = 1, fβ(q) =
0. We denote P ′ = {x ∈ P : f(x) > 3/4}, Q′ = {x ∈ Q : f(x) < 1/2}. Then P ′ ∈ p, Q′ ∈ q
and P ′, Q′ have disjoint asymptotic neighborhoods.

We fix p ∈ B♯
(X,E) such that P ∈ p and apply above paragraph to find q1, . . . , qn ∈ B♯

(X,E),
Q1 ∈ q1, . . . , Qn ∈ qn and P ′ ∈ p such that P ′ and Q1 ∪ · · · ∪ Qn have asymptotically
disjoint neighborhoods and Q\ (Q1∪· · ·∪Qn) is bounded. It follows that P ′, Q have disjoint
asymptotic neighborhoods.

At last, we find p1, . . . , pm ∈ B♯
(X,E) and P1 ∈ p1, . . . , Pm ∈ pm such that p1 ∪ · · · ∪ pm and

Q have disjoint asymptotic neighborhoods and P \ (P1∪ · · · ∪Pm) is bounded. Hence, P and
Q have disjoint asymptotic neighborhoods.



108 I. PROTASOV, K. PROTASOVA

REFERENCES

1. T. Banakh, Small uncountable cardinals in large-scale topology, preprint arxiv.org/abs/2002.08800.
2. T. Banakh, I. Protasov, Functional boundedness of balleans: coarse versions of compactness, Axioms,

2019, 8, 33; doi: 10.3390/axioms 8010033.
3. T. Banakh, I. Protasov, The normality and bounded growth of balleans, arXiv: 1810.07979.
4. T. Banakh, I. Protasov, Minmax bornologies, Ukr. Math. Bull., 16 (2019), 496–502.
5. D. Dikranjan, I. Protasov, K. Protasova, N. Zava, Balleans, hyperballeans and ideals, Appl. Gen.

Topology, 20 (2019), 431–447.
6. O. Petrenko, I. Protasov, Balleans and filters, Math. Stud., 38 (2012), 3–11.
7. I. Protasov, Normal ball structures, Math. Stud., 20 (2003), 3–16.
8. I. Protasov, Coronas of balleans, Topology Applications, 149 (2005), 149–160.
9. I. Protasov, Asymptotic proximities, Appl. Gen. Topology, 9 (2008), 189–195.
10. I.V. Protasov, Balleans of bounded geometry and G-space, Algebra Discrete Math., 2008, №2, 101–108.
11. I. Protasov, T. Banakh, Ball structures and colorings of groups and graphs, Math. Stud. Monogr. Ser.,

V.11, VNTL, Lviv, 2003.
12. I. Protasov, K. Protasova, On hyperballeans of bounded geometry, Europ. J. Math., 4 (2018), 1515–1520.
13. I. Protasov, M. Zarichnyi, General Asymptopogy, Math. Stud. Monogr., V.12, VNTL, Lviv, 2007.
14. J. Roe, Lectures on Coarse Geometry, AMS University Lecture Ser., V.31, Providence, RI, 2003.

Faculty of Computer Science and Cybernetics
Kyiv University, Kyiv, Ukraine
i.v.protasov@gmail.com
ksuha@freenet.com.ua

Received 25.11.2019
Revised 22.02.2020


