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In this paper the substantiation of the partial scheme of the averaging method for impulsive
differential inclusions with fuzzy right-hand side in terms of R-solutions on the finite interval
is considered. Consider the impulsive differential inclusion with the fuzzy right-hand side

ẋ ∈ εF (t, x), t 6= ti, x(0) ∈ X0, ∆x |t=ti
∈ εIi(x), (1)

where t ∈ R+ is time, x ∈ Rn is a phase variable, ε > 0 is a small parameter, F : R+×Rn → En,
Ii : Rn → En are fuzzy mappings, moments ti are enumerated in the increasing order. Associate
with inclusion (1) the following partial averaged differential inclusion

ξ̇ ∈ εF̃ (t, ξ), t 6= sj , ξ(0) ∈ X0, ∆ξ|t=sj
∈ εKj(ξ), (2)

where the fuzzy mappings F̃ : R+ × Rn → En; Kj : R→ En satisfy the condition

lim
T→∞

1
T
D
( t+T∫

t

F (t, x)dt+
∑

t≤ti<t+T

Ii(x),

t+T∫
t

F̃ (t, x)dt+
∑

t≤sj<t+T

Kj(x)
)

= 0, (3)

moments sj are enumerated in the increasing order. The folloving main theorem is proved: Let
in the domain Q = {t ≥ 0, x ∈ G ⊂ Rn} the following conditions are fulfilled:

1) fuzzy mappings F (t, x), F̃ (t, x), Ii(x),Kj(x) are continuous, uniformly bounded with con-
stant M , concave in x, satisfy Lipschitz condition in x with a constant λ;
2) uniformly with respect to t, x limit (3) exists and 1

T i(t, t+T ) ≤ d <∞, 1
T j(t, t+T ) ≤ d <∞,

where i(t, t+T ) and j(t, t+T ) are the quantities of impulse moments ti and sj on the interval
[t, t+ T ];
3) R-solutions of inclusion (2) for all X0 ⊂ G′ ⊂ G for t ∈ [0, L∗ε−1] belong to the domain G
with a ρ-neighborhood.

Then for any η > 0 and L ∈ (0, L∗] there exists ε0(η, L) ∈ (0, σ] such that for all ε ∈ (0, ε0]
and t ∈ [0, Lε−1] the inequality D(R(t, ε), R̃(t, ε)) < η holds, where R(t, ε), R̃(t, ε) are the

R-solutions of inclusions (1) and (2), R(0, ε) = R̃(0, ε).

1. Introduction. Fuzzy systems are very important either from the theoretical point of
view or from the practical one. They are applied, for example, in the automotive, space and
transport industries, in the engineering science, while creating of hydraulic and populati-
on models, in the sphere of finance, analysis and making administrative decisions, when
forecasting different economic, political, elections situations, etc. Fuzzy systems are a natural
way of dynamic systems modeling in the conditions of uncertainty. Formalization of fuzzy
concepts allows to approximately describe the behavior of systems that are so complicated
that the standard mathematical analysis can not be applied. In some cases such descripti-
on is the only possible as in real situations the regularities, restrictions, choice criteria are
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mostly subjective and are distinctly not defined. Since 1965 when L. Zadeh [30] published
his innovative work, hundreds of examples where the uncertainty’s nature in the behavior of
the system is rather fuzzy, than has stochastic character were considered.

Asymptotic methods for the research of nonlinear differential equations take the central
place in nonlinear mechanics. The development of the general algorithm known as averaging
method and the theorem of the proximity of the solutions of the initial and the averaged
systems were proposed by N. M. Krylov and N. N. Bogolyubov [11]. The received results have
gained further developments for nonlinear equations with slowly changing coefficients, multi-
frequency systems, partial differential equations, equations with discontinuous right-hand
sides, impulsive differential equations, equations with delay, stochastic equations, equati-
ons in the infinite spaces, differential inclusions, differential equations and inclusions with
Hukuhara derivative, set-valued integral and integro-differential equations, quasidifferenti-
al equations, fuzzy equations and inclusions, etc. by Yu. A. Mitropolskiy, V. I. Arnold,
J. K. Hale, M. A. Krasnoselskiy, S. G. Krein, N. N. Moiseev, N. A. Perestyuk, V. A. Plotni-
kov, A. M. Samoilenko, J. A. Sanders and F. Verhulst, V. M. Volosov, etc. (see [4, 5, 6, 8,
10, 12, 13, 15, 20, 21, 22, 23, 24] and references herein).

In this paper the substantiation of the partial scheme of the averaging method for impulsi-
ve differential inclusions with fuzzy right-hand side in terms of R-solutions on the finite
interval is considered.

2. Preliminaries. Let conv(Rn) be the family of all nonempty compact convex subsets of
Rn with the Hausdorff metric

h(A,B) = max{max
a∈A

min
b∈B
‖a− b‖, max

b∈B
min
a∈A
‖a− b‖},

where ‖ · ‖ denotes the Euclidean norm in Rn. Let ρ(x,A) = infy∈A ‖x− y‖ be the distance
from x ∈ Rn to the set A ∈ conv(Rn).

Consider the fuzzy space En of the mappings u : Rn → [0, 1] that satisfy the following
conditions:

1) u is upper semicontinuous, i.e. for any ỹ ∈ Rn and ε > 0 there exists δ(ỹ, ε) > 0 such
that u(y) < u(ỹ) + ε whenever ‖y − ỹ‖ < δ;

2) u is normal, i.e. there exists a vector y0 ∈ Rn such that u(y0) = 1;
3) u is fuzzy convex, i.e. u(λy1 + (1− λ)y2) ≥ min{u(y1), u(y2)} for any y1, y2 ∈ Rn and

λ ∈ [0, 1];
4) the closure of the set {y ∈ Rn : u(y) > 0} is compact.
Let 0̂ be the fuzzy number defined by

0̂(y) =

{
1, y = 0,

0, y ∈ Rn\{0}.

Definition 1. The set {y ∈ Rn : u(y) ≥ α} for α ∈ (0, 1] and the closure of the set {y ∈
Rn : u(y) > 0} for α = 0 is called the α-level of the fuzzy set u ∈ En.

Theorem 1 ([14]). If u ∈ En then:
1) [u]α ∈ conv(Rn) for all α ∈ [0, 1];
2) [u]α2 ⊂ [u]α1 for all 0 ≤ α1 ≤ α2 ≤ 1;
3) if {αk}∞k=1 is a non-decreasing sequence converging to α then [u]α =

⋂
k≥1

[u]αk .
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Conversely, if the family {Aα : α ∈ [0, 1]} of subsets of conv(Rn) satisfy conditions 1)–3),
then there exists u ∈ En such that [u]α = Aα for all α ∈ (0, 1] and [u]0 =

⋃
α∈(0,1]

Aα ⊂ A0.

Define the metric D : En × En → R+ in the fuzzy space En by the relation

D(u, v) = sup{h([u]α, [v]α) : 0 ≤ α ≤ 1}.

In 1989 J.-P. Aubin [1] and V. A. Baidosov [2, 3] first considered the differential inclusion
with fuzzy right-hand side

ẋ ∈ F (t, x), x(t0) ∈ X0, (1)

where t ∈ I = [t0, T ] is time, x : I → Rn is a phase variable, ẋ = dx
dt

is the derivative of the
vector-function x(·), F : I × Rn → En is a fuzzy mapping, X0 ∈ En is a fuzzy set of initial
states.

Definition 2 ([9]). The absolutely continuous function x : I → Rn such that x(t0) ∈ [X0]
α

and ẋ(t) ∈ [F (t, x(t))]α almost everywhere on I is called an α-solution of inclusion (1).
Denote by Xα(t) the set of all α-solutions of inclusion (1) at the moment t. In case when

the family {Xα(t), α ∈ [0, 1]} defines the fuzzy set X(t), the fuzzy set X(t) is called the
solution set of inclusion (1) at the moment t.

The existence of the solutions setX(t) and its properties were considered by S. Abbasban-
dy, T. Allahviranloo, P. Balasubramaniam, Y. Chalco-Cano, E. Hullermeier, V. Laksmikan-
tham, O. Lopez- Pouso, K.K. Majumdar, R. N. Mohapatra, J. J. Nieto, J. Y. Park, A. V. Plot-
nikov, D. O’Regan, H. Roman-Flores, A. A. Tolstonogov etc.

Obviously the family {Xα(t), α ∈ [0, 1]} may not satisfy the conditions of Theorem 1,
i.e. it does not define the fuzzy set X(t). So in [16, 17] the notion of an R-solution of the
differential inclusion with the fuzzy right-hand side was introduced.

Definition 3 ([16, 17]). The upper semicontinuous fuzzy mapping R : I → En, R(t0) = X0

such that

lim
σ↓0

1

σ
sup
α∈[0,1]

h
(

[R(t+ σ)]α,
⋃

x∈[R(t)]α

{
x+

∫ t+σ

t

[F (s, x)]αds
})

= 0

is called an R-solution of differential inclusion with the fuzzy right-hand side (1).

Definition 4. The mapping F : R× Rn → En is called concave in x if

β[F (t, x)]α + (1− β)[F (t, y)]α ⊂ [F (t, βx+ (1− β)y)]α

for all α, β ∈ [0, 1].

Theorem 2 ([16, 17]). Let the fuzzy mapping F : I ×Rn → En satisfy the following condi-
tions:

1) F is measurable it t for any fixed x ∈ Rn;
2) F satisfies the Lipschitz condition in x with a constant λ for almost all t ∈ I;
3) is concave in x for almost all t ∈ I and all x ∈ Rn;
4) there exists a constant γ > 0 such that D(F (t, x), 0̂) ≤ γ for almost all t ∈ I and all

x ∈ Rn.
Then there exists a unique R-solution R(·) of the inclusion (1) defined on the interval

[t0, t0 + d] ⊂ I.
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Remark 1. Conditions 1), 2) and 4) guarantee the existence and uniqueness of the mapping
R(·) and condition 3) guarantees that the mapping R(·) takes values in En.

Many processes in biology, control theory, electronics are described by impulsive di-
fferential inclusions with fuzzy right-hand side [7]:

ẋ ∈ F (t, x), t 6= ti, x(0) = x0, ∆x|t=ti ∈ Ii(x), (2)

where ti ∈ I, i ∈ 1,m are the moments of impulses enumerated in the increasing order,
∆x|t=ti = x(ti + 0) − x(ti − 0) = x(ti + 0) − x(ti) is the jump of the phase vector in the
impulse moment ti, Ii : Rn → En are fuzzy sets.

Let us introduce the notion of an R-solution of differential inclusion with fuzzy right-hand
side (2):

Definition 5 ([29]). The fuzzy mapping R : I → En, R(t0) = X0 satisfying the following
conditions: 1) on the intervals between impulses R(·) is upper semicontinuous and

lim
σ↓0

1

σ
sup
α∈[0,1]

h
(

[R(t+ σ)]α,
⋃

x∈[R(t)]α

{
x+

∫ t+σ

t

[F (s, x)]αds
})

= 0;

2) R(·) is left-continuous at the moments of impulses ti and R(ti + 0) =
⋃
x∈R(ti)

{x+ Ii(x)}
is called an R-solution of impulsive differential inclusion with the fuzzy right-hand side (2).

Obviously the existence and uniqueness of the R-solution of inclusion (2) holds if the fuzzy
mapping F (t, x) satisfies the assumptions of Theorem 2 on the intervals between impulses
and the fuzzy mappings Ii(x) are bounded, concave and satisfy the Lipschitz condition.

In [18, 19] the substantiation of the averaging method on the finite interval for differential
inclusions with the fuzzy right-hand side with a small parameter is proposed. In the proof of
the obtained theorems the proximity of the α-solutions is shown and therefore the proximity
of solutions sets of the initial and averaged inclusions is proved. The similar results for
impulsive differential inclusions with fuzzy right–hand side are obtained in [25, 26, 27, 28].

In [16, 17] the possibility of application of the averaging method in terms of an R-solution
for differential inclusions with fuzzy right-hand side is considered. In [29] the results of [16, 17]
were expanded to impulsive case for full averaging scheme. In this paper we consider the
partial averaging scheme for impulsive differential inclusions with fuzzy right-hand side.

3. Averaging of impulsive differential inclusions with fuzzy right-hand side. Consi-
der the impulsive differential inclusion with the fuzzy right-hand side

ẋ ∈ εF (t, x), t 6= ti, x(0) ∈ X0, ∆x |t=ti∈ εIi(x), (3)

where t ∈ R+ is time, x ∈ Rn is a phase variable, ε > 0 is a small parameter, F : R+×Rn→ En,
Ii : Rn → En are fuzzy mappings, moments ti are enumerated in the increasing order.

Associate with inclusion (3) the following partial averaged differential inclusion

ξ̇ ∈ εF̃ (t, ξ), t 6= sj, ξ(0) ∈ X0, ∆ξ|t=sj ∈ εKj(ξ), (4)

where the fuzzy mappings F̃ : R+ × Rn → En; Kj : R→ En satisfy the condition

lim
T→∞

1

T
D

( t+T∫
t

F (t, x)dt+
∑

t≤ti<t+T

Ii(x),

t+T∫
t

F̃ (t, x)dt+
∑

t≤sj<t+T

Kj(x)

)
= 0, (5)

moments sj are enumerated in the increasing order.
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Theorem 3. Let in the domain Q = {t ≥ 0, x ∈ G ⊂ Rn} the following conditions are
fulfilled:
1) fuzzy mappings F (t, x), F̃ (t, x), Ii(x), Kj(x) are continuous, uniformly bounded with con-
stant M , concave in x, satisfy the Lipschitz condition in x with a constant λ;
2) uniformly with respect to t, x limit (5) exists and

1

T
i(t, t+ T ) ≤ d <∞, 1

T
j(t, t+ T ) ≤ d <∞,

where i(t, t+T ) and j(t, t+T ) are the quantities of impulse moments ti and sj on the interval
[t, t+ T ];
3) R-solutions of inclusion (4) for all X0 ⊂ G′ ⊂ G for t ∈ [0, L∗ε−1] belong to the domain
G with a ρ-neighborhood.

Then for any η > 0 and L ∈ (0, L∗] there exists ε0(η, L) ∈ (0, σ] such that for all ε ∈ (0, ε0]
and t ∈ [0, Lε−1] the inequality

D(R(t, ε), R̃(t, ε)) < η (6)

holds, where R(t, ε), R̃(t, ε) are R-solutions of inclusions (3) and (4), R(0, ε) = R̃(0, ε).

Proof. For any m > 1 divide the interval [0, Lε−1] on m equal parts by the points
τk = kL

εm
, k = 0,m. Construct the fuzzy mappings Rm(t, ε) and R̃m(t, ε) such that

[Rm(t, ε)]α =
⋃

x∈[Rm(τk,ε)]α

{
x+ ε

t∫
τk

[F (s, x)]αds+ ε
∑

τk≤ti<t

[Ii(x)]α

}
, [Rm(0, ε)]α = [X0]

α,

[R̃m(t, ε)]α =
⋃

y∈[ eRm(τk,ε)]α

{
y + ε

t∫
τk

[F̃ (s, y)]αds+ ε
∑

τk≤sj<t

[Kj(y)]α

}
, [R̃m(0, ε)]α = [X0]

α, (7)

for all t ∈ (τk, τk+1], k = 0,m− 1, α ∈ [0, 1].
For t ∈ (τk, τk+1] the inequality holds

D
(
Rm(τk, ε), R

m(t, ε)
)

=

= sup
α∈[0,1]

h

(
[Rm(τk, ε)]

α,
⋃

x∈[Rm(τk,ε)]α

{
x+ ε

t∫
τk

[F (s, x)]αds+ ε
∑

τk≤ti<t

[Ii(x)]α
})
≤

≤ εM(t− τk) + εMd(t− τk) ≤
ML(1 + d)

m
. (8)

Similarly

D
(
R̃m(τk, ε), R̃

m(t, ε)
)
≤ ML(1 + d)

m
, D

(
R(τk, ε), R(t, ε)

)
≤ ML(1 + d)

m
,

D
(
R̃(τk, ε), R̃(t, ε)

)
≤ ML(1 + d)

m
.

Let us prove that

lim
m→∞

D
(
Rm(t, ε), R(t, ε)

)
= 0, lim

m→∞
D
(
R̃m(t, ε), R̃(t, ε)

)
= 0.
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Let t ∈ (τk, τk+1]. Denote by tk1, t
k
2, . . . , t

k
p the moments of impulses ti on the interval

[τk, τk+1]. Then

[R(t, ε)]α =
⋃

x∈[R(τk,ε)]α

⋃
v(s)∈[F (s,y(s))]α

{
y(t) = x+ ε

t∫
τk

v(s)ds

}
, τk ≤ t < tk1,

[R(t, ε)]α =
⋃

x∈[R(tkq ,ε)]
α

⋃
v(·),r

{
y(t) = z + ε

t∫
tkq

v(s)ds :
v(s) ∈ [F (s, y(s))]α,

z = x+ εr, r ∈ [Itkq (x)]α

}
, (9)

tkq < t ≤ tkq+1, q = 1, p, tkp+1 = τk+1, α ∈ [0, 1].

Let δk = D
(
R(τk, ε), R

m(τk, ε)
)
. Then for t ∈ [τk, t

k
1], α ∈ [0, 1] we have

h
(
[R(t, ε)]α, [Rm(t, ε)]α

)
=

= h

( ⋃
x∈[R(τk,ε)]α

⋃
v(s)∈[F (s,y(s))]α

{
y(t) = x+ ε

t∫
τk

v(s)ds

}
,

⋃
z∈[Rm(τk,ε)]α

{
z + ε

t∫
τk

[F (s, z)]αds

})
≤

≤ sup
x,z,v(·)

ρ

(
x+ ε

t∫
τk

v(s)ds, z + ε

t∫
τk

[F (s, z)]αds

)
≤

≤ sup
x,z,v(·)

(
‖x− z‖+ ε

t∫
τk

ρ(v(s), [F (s, z)]α)ds

)
≤

≤ δk + ε

t∫
τk

sup
z,y

h
(

[F (s, y(s))]α, [F (s, z)]α
)
ds ≤ δk + ελ

t∫
τk

[
sup
x,y
‖y(s)− x‖+ δk

]
ds ≤

≤ δk + ελ

[
εM

L

εm
+ δk

]
L

εm
= δk

(
1 +

λL

m

)
+
λML2

m2
.

For t ∈ (tkq , t
k+1
q ] and α ∈ [0, 1] we get

h
(
[R(t, ε)]α, [Rm(t, ε)]α

)
=

= h

( ⋃
x∈[R(τk,ε)]α

⋃
v(s)∈[F (s,y(s))]α

{
y(t) = x+ ε

t∫
τk

v(s)ds+ ε
∑

τk≤ti<t

∆i, ∆i = ∆y|ti∈ [Ii(y(ti))]
α

}
,

⋃
w∈[Rm(τk,ε)]α

{
w + ε

t∫
τk

[F (s, w)]αds+ ε
∑

τk≤ti<t

[Ii(w)]α
})
≤

≤ sup
x,w,v(·)

ρ

(
x+ ε

t∫
τk

v(s)ds+ ε
∑

τk≤ti<t

∆i, w + ε

t∫
τk

[F (s, w)]αds+ ε
∑

τk≤ti<t

[Ii(w)]α
)
≤

≤ sup
x,w,v(·)

(
‖x− w‖+ ε

t∫
τk

ρ(v(s), [F (s, w)]α)ds+ ε
∑

τk≤ti<t

ρ(∆i, [Ii(w)]α)

)
≤
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≤ δk + ελ

t∫
τk

(
sup
x,y
‖y(s)− x‖+ δk

)
ds+

λdL

m

(
sup
x,y
‖y(ti)− x‖+ δk

)
≤

≤ δk

(
1 +

λL

m
+
λdL

m

)
+ ελ

L

εm

(
εM

L

εm
+ εdM

L

εm

)
+
λdL

m

(
εM

L

εm
+ εdM

L

εm

)
=

= δk

(
1 +

λL(1 + d)

m

)
+
λML2(1 + d)2

m2
.

Then δk+1 ≤ δk(1 + λL(1+d)
m

) + λML2(1+d)2

m2 , δ0 = 0. So

δk ≤
λML2(1 + d)2

m2
·
(
1 + λL(1+d)

m

)k − 1
λL(1+d)

m

≤ ML(1 + d)

m

(
eλL(1+d) − 1

)
.

But

D(R(t, ε), Rm(t, ε)) ≤ D(R(t, ε), R(τk, ε)) +D(R(τk, ε), R
m(τk, ε)) +D(Rm(τk, ε), R

m(t, ε)).

Therefore

D(R(t, ε), Rm(t, ε)) ≤ ML(1 + d)

m

(
eλL(1+d) + 1

)
. (10)

Similarly we can get the estimate

D
(
R̃(t, ε), R̃m(t, ε)

)
≤ ML(1 + d)

m

(
eλL(1+d) + 1

)
. (11)

Denote by σk = D(Rm(τk, ε), R̃
m(τk, ε)). For t ∈ (τk, τk+1], k = 0,m− 1 and any α ∈ [0, 1]

we have

h([Rm(t, ε)]α, [R̃m(t, ε)]α) = h

( ⋃
x∈[Rm(τk,ε)]α

{
x+ ε

t∫
τk

[F (s, x)]αds+

+ε
∑

τk≤ti<t

[Ii(x)]α
}
,

⋃
y∈[ eRm(τk,ε)]α

{
y + ε

t∫
τk

[F̃ (s, y)]αds+ ε
∑

τk≤sj<t

[Kj(y)]α
})
≤

≤ sup
x,y

(
‖x− y‖+ εh

( t∫
τk

[F (s, x)]αds+
∑

τk≤ti<t

[Ii(x)]α,

t∫
τk

[F̃ (s, y)]αds+
∑

τk≤sj<t

[Kj(y)]α
))
≤

≤ sup
x,y

(
‖x− y‖+ εh

( t∫
τk

[F (s, x)]αds+
∑

τk≤ti<t

[Ii(x)]α,

t∫
τk

[F (s, y)]αds+
∑

τk≤ti<t

[Ii(y)]α
)

+

+εh

( t∫
τk

[̃F (s, y)]αds+
∑

τk≤ti<t

[Ii(y)]α,

t∫
τk

[F̃ (s, y)]αds+
∑

τk≤sj<t

[Kj(y)]α
))
≤

≤ sup
x,y

(
‖x− y‖+ ελ

t∫
τk

‖x− y‖ds+ ελd
L

εm
‖x− y‖

)
+ ε

L

εm
η1 ≤
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≤ σk
(
1 +

λL(1 + d)

m

)
+
Lη1

m
≤ Lη1

m
·
(
1 + λL(1+d)

m

)k − 1
λL(1+d)

m

≤
η1

(
eλL(1+d) − 1

)
λ(1 + d)

. (12)

From (10)–(12) we get

D
(
R(t, ε), R̃(t, ε)

)
≤
η1

(
eλL(1+d) − 1

)
λ(1 + d)

+
2ML(1 + d)

m

(
eλL(1+d) + 1

)
. (13)

Choosing m > 4ML(1 + d)(eλL(1+d) + 1)/η and η1 <
λ(1+d)η

2(eλL(1+d)−1)
, from (13) we get the

statement of the theorem.

4. Conclusion. We conclude with a few remarks.

Remark 2. In case when F̃ (t, x) ≡ F̃ (x), Kj(x) ≡ 0̂, Theorem 3 substantiates the scheme
of the full averaging for impulsive differential inclusions with the fuzzy right-hand side [29].

Remark 3. If inclusions (3), (4) are periodic in t then estimate (6) can be improved

D
(
R(t, ε), R̃(t, ε)

)
≤ Cε.
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