УДК 512.552.13

B. V. ZABAVSKY, O. M. ROMANIV

ALMOST ZIP BEZOUT DOMAIN

B. V. Zabavsky, O. M. Romaniv. Almost zip Bezout domain, Mat. Stud. 53 (2020), 115–118.

J. Zelmanowitz introduced the concept of a ring, which we call a zip ring. In this paper we characterize a commutative Bezout domain whose finite homomorphic images are zip rings modulo its nilradical.

1. General Appearance. All rings considered will be commutative with identity. A ring is a Bezout ring if every finitely generated ideal is principal. I. Kaplansky ([5]) defined the class of elementary divisor rings as rings R for which every matrix A over R admits a diagonal reduction, i.e. there exist invertible matrices P and Q such that PAD is a diagonal matrix $D = (d_i)$ with the property that every d_i is a divisor of d_{i+1} . B. Zabavsky defined fractionally regular rings as rings R such that for which every nonzero and nonunit element a from Rthe classical quotient ring $Q_{cl}(R/\operatorname{rad}(aR))$ is the regular, where $\operatorname{rad}(aR)$ is the nilradical of aR [9]. We say that the ring R has stable range 2 if whenever aR + bR + cR = R, then there are $\lambda, \mu \in R$ such that $(a + c\lambda)R + (b + c\mu)R = R$. We say R is semi-prime if $\operatorname{rad}(R) = \{0\}$, where $\operatorname{rad}(R)$ is the nilradical of the ring R. Obviously, rings in which nonzero principal ideal has only finitely many minimal primes are examples of fractionally regular rings ([1]).

An ideal I of a ring R is called a J-radical if it is an intersection of maximal ideals, or, equivalently, if R/I has zero Jacobson radical. We call R J-Noetherian if it satisfies the ascending chain condition on J-radical ideals.

The annihilator of a ideal I of a ring R is denoted by $I^{\perp} = \{x \in R \mid ix = 0 \forall i \in I\}.$

Following C. Faith ([4]) a ring R is zip if I is an ideal and if $I^{\perp} = \{0\}$ than $I_0^{\perp} = \{0\}$ for a finitely generated ideal $I_0 \subset I$. An ideal I of a ring R is dense if its annihilator is zero. Thus I is a dense ideal if and only if it is a faithful R-module. A ring R is a Kasch ring if $I^{\perp} \neq \{0\}$ for any ideal $I \neq R$.

Let R be a ring. Then the ring R has finite Goldie dimension if it contains a direct sum of finite number of nonzero ideals. A ring R is called a Goldie ring if it has finite Goldie dimension and satisfies the ascending chain condition for annihilators ([4, 6, 10]). By [4] we have the following result.

Theorem 1 ([4]). Semiprime commutative ring R is zip if and only if R is a Goldie ring.

Proposition 1 ([4]). A commutative Kasch ring is zip.

Proposition 2 ([4]). If $Q_{cl}(R)$ is a Kasch ring then R is zip.

2020 Mathematics Subject Classification: 11R44, 13E05, 13F10, 16N20, 46J20.

Keywords: Bezout ring; elementary divisor ring; almost zip ring; Kasch ring; Goldie ring; *J*-Noetherian ring maximal ideal; prime ideal.

doi:10.30970/ms.53.2.115-118

For further research we will need the following results.

Theorem 2 ([4]). A commutative ring R is zip if and only if its classical ring of quotients $Q_{cl}(R)$ is zip.

Theorem 3. Let R be a commutative Bezout domain and $0 \neq a \in R$, then R/aR is a Kasch ring if and only if R is a ring in which any maximal ideal is principal.

Proof. First we will prove that the annihilator of any principal ideal of R/aR is a principal ideal. Suppose $b \in R$ and $aR \subseteq bR$. Then $(b: a) = \{r \in R \mid br \in aR\} = sR$, where a = bs, so (b: a) = aR. We can also show that every principal ideal of R/aR is an annihilator of a principal ideal. Moreover, if $I_1 = J_1^{\perp}$, $I_2 = J_2^{\perp}$, where I_i , J_i , i = 1, 2, are principal ideals, then

$$(I_1 \cap I_2)^{\perp} = (J_1^{\perp} \cap J_2^{\perp})^{\perp} = ((J_1 + J_2)^{\perp})^{\perp} = J_1 + J_2 = J_1^{\perp} + J_2^{\perp}.$$

Let R/aR be a Kasch ring. Let \overline{M} be a maximal ideal in R/aR. Denote $R/aR = \overline{R}$. Then $\overline{M}^{\perp} = \overline{H}$, where \overline{H} is an ideal in $\overline{R} = R/aR$ and $\overline{H} = \{\overline{0}\}$. Since \overline{H} annihilates the maximal ideal \overline{M} then $\overline{H} \cdot \overline{M} = \{\overline{0}\}$. Since the maximal ideal \overline{M} belongs to \overline{H}^{\perp} , by maximality of \overline{M} , $\overline{M} = \overline{H}^{\perp} \neq R/aR$.

Since $\overline{\overline{M}}$ is a maximal ideal, for every element $\overline{d} \neq \overline{0}$ belonging to \overline{H} we have the equality $\overline{dM} = \{\overline{0}\}$. Thus, the maximal ideal \overline{M} belongs to \overline{d}^{\perp} , where \overline{d} is a nonunit.

Hence $\overline{M} = \overline{d}^{\perp} = \overline{bR}$. Therefore, $\overline{M} = \overline{bR}$ and M = bR + aR = cR, because R is a commutative Bezout domain for some $c \in R$. Hence M is a maximal ideal which is a principal ideal.

Suppose that a maximal ideal M contains an element a, is a principal one considering its homomorphic image, and we have $\overline{M} = \overline{m}\overline{R} = (\overline{n}\overline{R})^{\perp}$. Since $\overline{m} \notin U(\overline{R})$, we have $(\overline{n}\overline{R})^{\perp} \neq \overline{R}$ and hence $\overline{n}\overline{R} \neq \{\overline{0}\}$.

As a result $\overline{M}^{\perp} = ((\overline{n}\overline{R})^{\perp})^{\perp} = \overline{n}\overline{R} \neq (\overline{0})$. Therefore, \overline{M}^{\perp} is a nonzero principal ideal. This proves the fact that \overline{R} is a Kasch ring.

2. Almost zip Bezout domain. We start this section with the following statements.

Proposition 3. Let R be a Bezout ring. Then R is zip if and only if every dense ideal contains a regular element.

Proof. Suppose I is a dense ideal of a zip ring, and if I is a principal dense ideal contained in I, hence I is generated by a regular element.

Theorem 4. Let R be a semiprime commutative Bezout ring which is a Goldie ring. Then any minimal prime ideal of R is principal, generated by an idempotent, and there are only finitely many minimal prime ideals.

Proof. The restrictions on R imply that the classical quotient ring $Q_{cl}(R)$ is an Artinian regular ring with finitely many minimal prime ideals. Let P be a minimal prime ideal of R. Consider the ideal $P_Q = \{\frac{p}{s} \mid p \in P\}$. It is obvious that P_Q is a prime ideal of $Q_{cl}(R)$. Since $Q_{cl}(R)$ is an Artinian regular ring, there exists an idempotent $e \in Q_{cl}(R)$ such that $P_Q = eQ_{cl}(R)$. Since R is an arithemical ring, we have $e \in R$ ([9]). For any $p \in P$ we obtain that p = er, where r is a von Neumann regular element, i.e. rxr = r for some $x \in R$. Hence $ep = e^2r = er = p$, we have $P \subset eR$, $e \in P$, so $eR \subset P$ and P = eR. Since any minimal prime ideal of R is principal by [1], we have that R has finitely many minimal prime ideals. **Definition 1.** Let R be a commutative Bezout domain. A nonzero and nonunit element $a \in R$ is said to be an *almost zip element* if R/rad(aR) is a zip ring. A commutative Bezout domain is said to be an *almost zip ring* if any nonzero nonunit element of R is an almost zip element.

Theorem 5. Let R be a commutative Bezout domain and let a be an almost zip element of R. Then there are only finitely many prime ideals minimal over aR.

Proof. Since R/rad(aR) is a semiprime zip ring, by Theorem 1 we have that R/rad(aR) is a Goldie Bezout ring. By Theorem 4 we have that any minimal prime ideal of R/rad(aR) is principal and generated by an idempotent. Then there are only finitely many minimal prime ideals. Therefore, aR has finitely many minimal prime ideals.

Consequently we have the following results.

Theorem 6. An almost zip commutative Bezout domain is a J-Noetherian domain (i.e. Noetherian maximal spectrum).

Proof. By Theorem 6 we have that any nonzero and nonunit element has finitely many minimal ideals. By [2] R is a J-Noetherian domain.

Since a commutative J-Noetherian Bezout domain ([8]) is an elementary divisor ring by Theorem 6, we have the following results.

Theorem 7. A commutative almost zip Bezout domain is an elementary divisor domain.

Since a J-Noetherian Bezout domain is fractionally regular ring, we have the following result.

Theorem 8. An almost zip Bezout domain is a fractionally regular domain.

In the future we will consider the Bezout ring in which any maximal ideal is projective.

Theorem 9. Let R be a commutative reduced Bezout ring in which any maximal ideal is projective. Then R is zip if and only if any maximal ideal is principal.

Proof. Let R be a zip ring and M be any maximal ideal of R.

1) If $M^{\perp} \neq (0)$ then $M^{\perp} \cap M = \{0\}$. Really, if $m \in M \cap M^{\perp}$, and $m \neq 0$ then $m^2 = 0$. Since R is a reduced ring, we have m = 0 and this is a contradiction. Since M is a maximal ideal and $M \cap M^{\perp} = \{0\}$, we obtain $M + M^{\perp} = R$, i.e. 1 = m + n for some $m \in M$ and $n \in M^{\perp}$. From here, we have $m = m(m + n) = m^2 + mn = m^2$, i.e. $m^2 = m$. Then for any $k \in M$ one has k = k(m + n) = km, i.e. $M \subseteq mR$. Since $m \in M$ we have M = mR, where $m^2 = m$.

2) Let $M^{\perp} = \{0\}$. Since R is a zip Bezout ring, there exists a principal ideal sR, such that $sR^{\perp} = \{0\}$. Since R is a commutative Bezout ring, we obtain that s is a regular element (i.e. non zero divisor of R). By [3] M is a principal ideal.

Let R be a ring in which any maximal ideal is principle. According to the restrictions imposed on the ring, R is a zip ring. \Box

Definition 2. Let R be a commutative ring. We say that an ideal $I \subset R$ is *pure* if the quotient ring R/I is flat over R.

By [3] we have the following result.

Proposition 4. An ideal I of a commutative ring R is pure if and only if for every $a \in I$ there exists an element $b \in I$ such that ab = a.

By Proposition 4 we have that if I is a pure ideal and $I \subseteq J(R)$, then I = (0), i.e. J(R) is pure if and only if J(R) = 0.

Let R be a commutative Bezout domain and $a \in R \setminus \{0\}$. By [4], Example 3, R/aR is a ring in which every injective module is flat. It is clear that R/aR is a ring in which every R/aR-module can be embedded in a flat R/aR-module. By [7], Proposition 2.6, we have if J(R/aR) is a flat ideal of R/aR, then R/aR/J(R/aR) is flat, i.e. by Proposition 4 J(R/aR) is a pure ideal.

Since R/aR is a ring in which every injective module is flat, we have the following result.

Theorem 10. Let R be a commutative Bezout domain and $a \in R \setminus \{0\}$. Then J(R/aR) is pure flat or injective R/aR-module if and only if for any decomposition a = bc where $b, c \notin U(R)$ we have bR + cR = R.

REFERENCES

- 1. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc., 122 (1994), №1, 13–14.
- 2. D. Estes, J. Ohm, *Stable range in commutative rings*, J. Alg., **7** (1967), №3, 343–362.
- 3. G. De Marco, Projectivity of pure ideals, Rendic. Sem. Matem. Univ. Pad., 69 (1983), 289-304.
- C. Faith, Rings with zero intersection property on annihilators: zip rings, Publ. Matem., 33 (1989), №2, 329–338.
- 5. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc., 66 (1949), 464–491.
- 6. I. Kaplansky, Commutative rings, Univ. of Chicago Press, Chicago, IL, 1974.
- 7. E. Matlis, Commutative semi-coherent and semi-regular rings, J. Alg., 95 (1985), 343–372.
- T. Shores, R. Wiegand, Decompositions of modules and matrices, Bull. Amer. Math. Soc., 79 (1973), №6, 1277–1280.
- 9. B. Zabavsky, Fractionally regular Bezout rings, Mat. Stud., 32 (2009), №1, 76–80.
- J. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc., 57 (1976), №2, 213–216.

Department of Algebra and Logic Ivan Franko National University Lviv, Ukraine zabavskii@gmail.com oleh.romaniv@lnu.edu.ua

Received 25.12.2019