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J. Zelmanowitz introduced the concept of a ring, which we call a zip ring. In this paper

we characterize a commutative Bezout domain whose finite homomorphic images are zip rings
modulo its nilradical.

1. General Appearance. All rings considered will be commutative with identity. A ring is
a Bezout ring if every finitely generated ideal is principal. I. Kaplansky ([5]) defined the class
of elementary divisor rings as rings R for which every matrix A over R admits a diagonal
reduction, i.e. there exist invertible matrices P and Q such that PAD is a diagonal matrix
D = (di) with the property that every di is a divisor of di+1. B. Zabavsky defined fractionally
regular rings as rings R such that for which every nonzero and nonunit element a from R
the classical quotient ring Qcl(R/rad(aR)) is the regular, where rad(aR) is the nilradical of
aR [9]. We say that the ring R has stable range 2 if whenever aR+ bR+ cR = R, then there
are λ, µ ∈ R such that (a+ cλ)R+ (b+ cµ)R = R. We say R is semi-prime if rad(R) = {0},
where rad(R) is the nilradical of the ring R. Obviously, rings in which nonzero principal ideal
has only finitely many minimal primes are examples of fractionally regular rings ([1]).

An ideal I of a ring R is called a J-radical if it is an intersection of maximal ideals,
or, equivalently, if R/I has zero Jacobson radical. We call R J-Noetherian if it satisfies the
ascending chain condition on J-radical ideals.

The annihilator of a ideal I of a ring R is denoted by I⊥ = {x ∈ R | ix = 0 ∀i ∈ I}.
Following C. Faith ([4]) a ring R is zip if I is an ideal and if I⊥ = {0} than I⊥0 = {0}

for a finitely generated ideal I0 ⊂ I. An ideal I of a ring R is dense if its annihilator is zero.
Thus I is a dense ideal if and only if it is a faithful R-module. A ring R is a Kasch ring if
I⊥ 6= {0} for any ideal I 6= R.

Let R be a ring. Then the ring R has finite Goldie dimension if it contains a direct sum
of finite number of nonzero ideals. A ring R is called a Goldie ring if it has finite Goldie
dimension and satisfies the ascending chain condition for annihilators ([4, 6, 10]). By [4] we
have the following result.

Theorem 1 ([4]). Semiprime commutative ring R is zip if and only if R is a Goldie ring.

Proposition 1 ([4]). A commutative Kasch ring is zip.

Proposition 2 ([4]). If Qcl(R) is a Kasch ring then R is zip.
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For further research we will need the following results.

Theorem 2 ([4]). A commutative ring R is zip if and only if its classical ring of quotients
Qcl(R) is zip.

Theorem 3. Let R be a commutative Bezout domain and 0 6= a ∈ R, then R/aR is a Kasch
ring if and only if R is a ring in which any maximal ideal is principal.

Proof. First we will prove that the annihilator of any principal ideal of R/aR is a principal
ideal. Suppose b ∈ R and aR ⊆ bR. Then (b : a) = {r ∈ R | br ∈ aR} = sR, where a = bs,
so (b : a) = aR. We can also show that every principal ideal of R/aR is an annihilator of a
principal ideal. Moreover, if I1 = J⊥

1 , I2 = J⊥
2 , where Ii, Ji, i = 1, 2, are principal ideals,

then
(I1 ∩ I2)⊥ = (J⊥

1 ∩ J⊥
2 )

⊥ = ((J1 + J2)
⊥)⊥ = J1 + J2 = J⊥

1 + J⊥
2 .

Let R/aR be a Kasch ring. LetM be a maximal ideal in R/aR. Denote R/aR = R. Then
M

⊥
= H, where H is an ideal in R = R/aR and H = {0}. Since H annihilates the maximal

ideal M then H ·M = {0}. Since the maximal ideal M belongs to H⊥, by maximality of M ,
M = H

⊥ 6= R/aR.
Since M is a maximal ideal, for every element d 6= 0 belonging to H we have the equality

dM = {0}. Thus, the maximal ideal M belongs to d⊥, where d is a nonunit.
Hence M = d

⊥
= bR. Therefore, M = bR and M = bR + aR = cR, because R is

a commutative Bezout domain for some c ∈ R. Hence M is a maximal ideal which is a
principal ideal.

Suppose that a maximal ideal M contains an element a, is a principal one considering its
homomorphic image, and we have M = mR = (nR)⊥. Since m /∈ U(R), we have (nR)⊥ 6= R
and hence nR 6= {0}.

As a result M⊥
= ((nR)⊥)⊥ = nR 6= (0). Therefore, M⊥ is a nonzero principal ideal.

This proves the fact that R is a Kasch ring.

2. Almost zip Bezout domain. We start this section with the following statements.

Proposition 3. Let R be a Bezout ring. Then R is zip if and only if every dense ideal
contains a regular element.

Proof. Suppose I is a dense ideal of a zip ring, and if I is a principal dense ideal contained
in I, hence I is generated by a regular element.

Theorem 4. Let R be a semiprime commutative Bezout ring which is a Goldie ring. Then
any minimal prime ideal of R is principal, generated by an idempotent, and there are only
finitely many minimal prime ideals.

Proof. The restrictions on R imply that the classical quotient ring Qcl(R) is an Artinian
regular ring with finitely many minimal prime ideals. Let P be a minimal prime ideal of R.
Consider the ideal PQ = {p

s
| p ∈ P}. It is obvious that PQ is a prime ideal of Qcl(R).

Since Qcl(R) is an Artinian regular ring, there exists an idempotent e ∈ Qcl(R) such that
PQ = eQcl(R). Since R is an arithemical ring, we have e ∈ R ([9]). For any p ∈ P we obtain
that p = er, where r is a von Neumann regular element, i.e. rxr = r for some x ∈ R.
Hence ep = e2r = er = p, we have P ⊂ eR, e ∈ P , so eR ⊂ P and P = eR. Since any
minimal prime ideal of R is principal by [1], we have that R has finitely many minimal prime
ideals.
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Definition 1. Let R be a commutative Bezout domain. A nonzero and nonunit element
a ∈ R is said to be an almost zip element if R/rad(aR) is a zip ring. A commutative Bezout
domain is said to be an almost zip ring if any nonzero nonunit element of R is an almost zip
element.

Theorem 5. Let R be a commutative Bezout domain and let a be an almost zip element
of R. Then there are only finitely many prime ideals minimal over aR.

Proof. Since R/rad(aR) is a semiprime zip ring, by Theorem 1 we have that R/rad(aR) is
a Goldie Bezout ring. By Theorem 4 we have that any minimal prime ideal of R/rad(aR) is
principal and generated by an idempotent. Then there are only finitely many minimal prime
ideals. Therefore, aR has finitely many minimal prime ideals.

Consequently we have the following results.

Theorem 6. An almost zip commutative Bezout domain is a J-Noetherian domain (i.e.
Noetherian maximal spectrum).

Proof. By Theorem 6 we have that any nonzero and nonunit element has finitely many
minimal ideals. By [2] R is a J-Noetherian domain.

Since a commutative J-Noetherian Bezout domain ([8]) is an elementary divisor ring by
Theorem 6, we have the following results.

Theorem 7. A commutative almost zip Bezout domain is an elementary divisor domain.

Since a J-Noetherian Bezout domain is fractionally regular ring, we have the following
result.

Theorem 8. An almost zip Bezout domain is a fractionally regular domain.

In the future we will consider the Bezout ring in which any maximal ideal is projective.

Theorem 9. Let R be a commutative reduced Bezout ring in which any maximal ideal is
projective. Then R is zip if and only if any maximal ideal is principal.

Proof. Let R be a zip ring and M be any maximal ideal of R.
1) If M⊥ 6= (0) then M⊥ ∩M = {0}. Really, if m ∈ M ∩M⊥, and m 6= 0 then m2 = 0.

Since R is a reduced ring, we have m = 0 and this is a contradiction. Since M is a maximal
ideal and M ∩M⊥ = {0}, we obtain M +M⊥ = R, i.e. 1 = m + n for some m ∈ M and
n ∈ M⊥. From here, we have m = m(m + n) = m2 +mn = m2, i.e. m2 = m. Then for any
k ∈ M one has k = k(m + n) = km, i.e. M ⊆ mR. Since m ∈ M we have M = mR, where
m2 = m.

2) Let M⊥ = {0}. Since R is a zip Bezout ring, there exists a principal ideal sR, such
that sR⊥ = {0}. Since R is a commutative Bezout ring, we obtain that s is a regular element
(i.e. non zero divisor of R). By [3] M is a principal ideal.

Let R be a ring in which any maximal ideal is principle. According to the restrictions
imposed on the ring, R is a zip ring.

Definition 2. Let R be a commutative ring. We say that an ideal I ⊂ R is pure if the
quotient ring R/I is flat over R.
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By [3] we have the following result.

Proposition 4. An ideal I of a commutative ring R is pure if and only if for every a ∈ I
there exists an element b ∈ I such that ab = a.

By Proposition 4 we have that if I is a pure ideal and I ⊆ J(R), then I = (0), i.e. J(R)
is pure if and only if J(R) = 0.

Let R be a commutative Bezout domain and a ∈ R\{0}. By [4], Example 3, R/aR is a
ring in which every injective module is flat. It is clear that R/aR is a ring in which every
R/aR-module can be embedded in a flat R/aR-module. By [7], Proposition 2.6, we have if
J(R/aR) is a flat ideal of R/aR, then R/aR/J(R/aR) is flat, i.e. by Proposition 4 J(R/aR)
is a pure ideal.

Since R/aR is a ring in which every injective module is flat, we have the following result.

Theorem 10. Let R be a commutative Bezout domain and a ∈ R\{0}. Then J(R/aR)
is pure flat or injective R/aR-module if and only if for any decomposition a = bc where
b, c /∈ U(R) we have bR + cR = R.
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