

O. M. HOLOVATA, M. M. SHEREMETA

**ANALOGUES OF THE LOCKHART-STRaus INEQUALITY AND
TWO-MEMBER ASYMPTOTICS OF SERIES IN SYSTEMS OF
FUNCTIONS**

O. M. Holovata, M. M. Sheremeta. *Analogues of the Lockhart-Straus inequality and two-member asymptotics of series in systems of functions*, Mat. Stud. **64** (2025), 203–207.

For an entire transcendental function f and a sequence (λ_n) of positive numbers increasing to $+\infty$ let $A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$ be a series in the system $f(\lambda_n z)$ regularly convergent in $\{z: |z| < R[A]\}$ that is $\mathfrak{M}(r, A) = \sum_{n=1}^{\infty} |a_n| M_f(r\lambda_n) < +\infty$ for $r \in [0, R[A]]$, where $M_f(r) = \max\{|f(z)|: |z| = r\}$ ($r \in [0, +\infty)$), $\mu(r, A) = \max\{|a_n| M_f(r\lambda_n): n \geq 1\}$ is the maximal term. Denote $n_{\lambda}(t) = \sum_{\lambda_n \leq t} 1$, and $\Gamma_f(r) = \frac{d \ln M_f(r)}{d \ln r}$ is the right-hand derivative.

Estimates of $\mathfrak{M}(r, A)$ by $\mu(r, A)$ are obtained, which are analogues of the Lockhart-Straus inequality (1985). The article proves, in particular, the following statement (Theorem 1): If $0 < r < R[A] \leq +\infty$, $0 < 2\varepsilon < R[A] - r$ and $\ln n_{\lambda}(t) = o(\Gamma_f(rt))$ as $t \rightarrow +\infty$ for every fixed $r > 0$ then

$$\frac{\mathfrak{M}(r, A)}{\mu(r, A)} \leq n_{\lambda} \left(\Gamma_f^{-1} \left(2 \frac{\ln \mu(r + 2\varepsilon, A) - \ln \mu(r + \varepsilon, A)}{\ln(r + 2\varepsilon) - \ln(r + \varepsilon)} \right) \right) + 2.$$

The application of the obtained results is indicated to study the relationship between the growth of $\mathfrak{M}(r, A)$ and $\mu(r, A)$ in terms of two-member asymptotics.

1. Introduction. For an entire transcendental function

$$g(z) = \sum_{k=0}^{\infty} g_k z^k$$

we denote

$$M_g(r) = \max\{|g(z)|: |z| = r\}, \quad \mu_g(r) = \max\{|g_k|r^k: k \geq 0\}.$$

P. Lockhart and E.G. Straus [1] proved that

$$M_g(r) \leq \frac{4r + \varepsilon}{\varepsilon} \mu_g(r) \left(1 + \ln \frac{\mu_g(r + \varepsilon)}{\mu_g(r)} \right), \quad r < +\infty, \varepsilon > 0.$$

Let $f(z) = \sum_{k=0}^{\infty} f_k z^k$ be an entire transcendental function and

$$A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z) \tag{1}$$

be a series in the system $f(\lambda_n z)$, where $\Lambda = (\lambda_n)$ is a sequence of positive numbers increasing to $+\infty$. Let $R[A]$ be the radius of regular convergence of series (1), i.e.

$$\mathfrak{M}(r, A) = \sum_{n=1}^{\infty} |a_n| M_f(r\lambda_n) < +\infty \tag{2}$$

holds for $r < R[A]$ and not holds for $r > R[A]$.

2020 Mathematics Subject Classification: 30B50, 30D20.

Keywords: series in system of functions; regularly converging series; maximal term.

doi:10.30970/ms.64.2.203-207

Denote

$$\Gamma_f(r) = \frac{d \ln M_f(r)}{d \ln r}$$

(in points where the derivative does not exist, under $\frac{d \ln M_f(r)}{d \ln r}$ mean right-hand derivative). Since the function $\ln M_f(r)$ is logarithmically convex, we have $\Gamma_f(r) \nearrow +\infty$ as $r \rightarrow +\infty$.

It is known [2] that if $\Gamma_f(cr) \asymp \Gamma_f(r)$ as $r \rightarrow +\infty$ for each $c \in (0, +\infty)$ and $\ln n = o(\Gamma_f(\lambda_n))$ as $n \rightarrow \infty$ then

$$R[A] = \liminf_{n \rightarrow \infty} \frac{1}{\lambda_n} M_f^{-1}\left(\frac{1}{|a_n|}\right).$$

For $r \in [0, R[A]]$ let $\mu(r, A) = \max\{|a_n| M_f(r\lambda_n) : n \geq 1\}$ be the maximal term of series (2) and $\nu(r, A) = \max\{n \geq 1 : |a_n| M_f(r\lambda_n) = \mu(r, A)\}$ be its central index.

Obviously $\mathfrak{M}(r, A) \geq \mu(r, A)$. In this note we will obtain upper bounds for $\mathfrak{M}(r, A)$ by $\mu(r, A)$ of the Lockhart-Straus inequality type.

2. Main theorem. Let $n_\lambda(t) = \sum_{\lambda_n \leq t} 1$ be the counting function of the sequence (λ_n) . The following theorem is the main one.

Theorem 1. If $0 < r < R[A] \leq +\infty$, $0 < 2\varepsilon < R[A] - r$ and $\ln n_\lambda(t) = o(\Gamma_f(rt))$ as $t \rightarrow +\infty$ for every fixed $r > 0$ then

$$\frac{\mathfrak{M}(r, A)}{\mu(r, A)} \leq n_\lambda\left(\Gamma_f^{-1}\left(2 \frac{\ln \mu(r+2\varepsilon, A) - \ln \mu(r+\varepsilon, A)}{\ln(r+2\varepsilon) - \ln(r+\varepsilon)}\right)\right) + 2. \quad (3)$$

Proof. Since $\mu(r, A) = |a_{\nu(r, A)}| M_f(r\lambda_{\nu(r, A)})$, for $r + \varepsilon < R[A]$ we have

$$\begin{aligned} |a_n| M_f(r\lambda_n) &= |a_n| M_f((r+\varepsilon)\lambda_n) \frac{M_f(r\lambda_n)}{M_f((r+\varepsilon)\lambda_n)} \leq \\ &\leq \mu(r+\varepsilon, A) \frac{M_f(r\lambda_n)}{M_f((r+\varepsilon)\lambda_n)} = |a_{\nu(r+\varepsilon, A)}| M_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)}) \frac{M_f(r\lambda_n)}{M_f((r+\varepsilon)\lambda_n)} = \\ &= |a_{\nu(r+\varepsilon, A)}| M_f(r\lambda_{\nu(r+\varepsilon, A)}) \frac{M_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)})}{M_f(r\lambda_{\nu(r+\varepsilon, A)})} \frac{M_f(r\lambda_n)}{M_f((r+\varepsilon)\lambda_n)} \leq \\ &\leq \mu(r, A) \frac{M_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)})}{M_f(r\lambda_{\nu(r+\varepsilon, A)})} \frac{M_f(r\lambda_n)}{M_f((r+\varepsilon)\lambda_n)}. \end{aligned} \quad (4)$$

But

$$\begin{aligned} \frac{M_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)})}{M_f(r\lambda_{\nu(r+\varepsilon, A)})} &= \exp\{\ln M_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)}) - \ln M_f(r\lambda_{\nu(r+\varepsilon, A)})\} = \\ &= \exp\left\{\int_{r\lambda_{\nu(r+\varepsilon, A)}}^{(r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)}} \Gamma_f(x) d \ln x\right\} \leq \exp\left\{\Gamma_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)}) \ln \frac{r+\varepsilon}{r}\right\} \end{aligned}$$

and similar

$$\frac{M_f(r\lambda_n)}{M_f((r+\varepsilon)\lambda_n)} = \exp\left\{-\int_{r\lambda_n}^{(r+\varepsilon)\lambda_n} \Gamma_f(x) d \ln x\right\} \leq \exp\left\{-\Gamma_f(r\lambda_n) \ln \frac{r+\varepsilon}{r}\right\}.$$

Therefore, (5) implies

$$|a_n| M_f(r\lambda_n) \leq \mu(r, A) \exp\left\{-(\Gamma_f(r\lambda_n) - \Gamma_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)})) \ln \frac{r+\varepsilon}{r}\right\}. \quad (5)$$

Let $n_0(r) = \min\{n : \Gamma_f(r\lambda_n) \geq 2\Gamma_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)})\}$. Then $\Gamma_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)}) \leq \Gamma_f(r\lambda_n)/2$ ($n \geq n_0(r)$) and (4) implies

$$|a_n|M_f(r\lambda_n) \leq \mu(r, A) \exp \left\{ -\frac{\Gamma_f(r\lambda_n)}{2} \ln \frac{r+\varepsilon}{r} \right\}.$$

Therefore,

$$\frac{\mathfrak{M}(r, A)}{\mu(r, A)} \leq \left(\sum_{n=1}^{n_0(r)-1} + \sum_{n_0(r)}^{\infty} \right) \frac{|a_n|M_f(r\lambda_n)}{\mu(r, A)} \leq n_0(r) - 1 + \sum_{n=n_0(r)}^{\infty} \exp \left\{ -\frac{\Gamma_f(r\lambda_n)}{2} \ln \frac{r+\varepsilon}{r} \right\}. \quad (6)$$

It is clear that (5) implies $\lambda_{n_0(r)-1} \leq \Gamma_f^{-1}(2\Gamma_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)}))$, whence

$$n_0(r) - 1 \leq n_{\lambda}(\Gamma_f^{-1}(2\Gamma_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)}))). \quad (7)$$

On the other hand, since $\ln n_{\lambda}(t) = o(\Gamma_f(rt))$ as $t \rightarrow +\infty$ for every fixed $r > 0$, we can consider $n_0(r)$ so big that $\ln n_{\lambda}(t) \leq \frac{\Gamma_f(rt)}{4} \ln \frac{r+\varepsilon}{r}$ for $t \geq \lambda_{n_0(r)}$. Then

$$\begin{aligned} \sum_{n=n_0(r)}^{\infty} \exp \left\{ -\frac{\Gamma_f(r\lambda_n)}{2} \ln \frac{r+\varepsilon}{r} \right\} &\leq \int_{\lambda_{n_0(r)}}^{\infty} \exp \left\{ -\frac{\Gamma_f(rt)}{2} \ln \frac{r+\varepsilon}{r} \right\} dn_{\lambda}(t) \leq \\ &\leq \int_{\lambda_{n_0(r)}}^{\infty} n_{\lambda}(t) \exp \left\{ -\frac{\Gamma_f(rt)}{2} \ln \frac{r+\varepsilon}{r} \right\} d\left(\frac{\Gamma_f(rt)}{2} \ln \frac{r+\varepsilon}{r}\right) \leq \\ &\leq 2 \exp \left\{ -\frac{\Gamma_f(r\lambda_{n_0(r)})}{4} \ln \frac{r+\varepsilon}{r} \right\} \leq 2. \end{aligned} \quad (8)$$

From (6), (7) and (8) we get

$$\frac{\mathfrak{M}(r, A)}{\mu(r, A)} \leq n_{\lambda}(\Gamma_f^{-1}(2\Gamma_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)}))) + 2. \quad (9)$$

In [3] it is proved that $\ln \mu(r, A) - \ln \mu(r_0, A) = \int_{r_0}^r \Gamma_f(t\lambda_{\nu(t, A)}) d \ln t$, $0 \leq r_0 \leq r < +\infty$. Therefore,

$$\ln \frac{\mu(r+2\varepsilon, A)}{\mu(r+\varepsilon, A)} = \int_{r+\varepsilon}^{r+2\varepsilon} \Gamma_f(t\lambda_{\nu(t, A)}) d \ln t \geq \Gamma_f((r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)}) \ln \frac{r+2\varepsilon}{r+\varepsilon}$$

and, thus,

$$(r+\varepsilon)\lambda_{\nu(r+\varepsilon, A)} \leq \Gamma_f^{-1} \left(\frac{\ln \mu(r+2\varepsilon, A) - \ln \mu(r+\varepsilon, A)}{\ln(r+2\varepsilon, A) - \ln(r+\varepsilon, A)} \right).$$

From hence and (9) we obtain (3). \square

Remark 1. Suppose that $hr \leq \Gamma_f(r) \leq Hr$ for all r , where $0 < h \leq H < +\infty$. Then $\ln n_{\lambda}(t) = o(\Gamma_f(rt))$ as $t \rightarrow +\infty$ for every fixed $r > 0$ if and only if $\ln n_{\lambda}(t) = o(t)$ as $t \rightarrow +\infty$, $x/H \leq \Gamma_f^{-1}(x) \leq x/h$ and (3) holds if

$$\frac{\mathfrak{M}(r, A)}{\mu(r, A)} \leq n_{\lambda} \left(\frac{2 \ln \mu(r+2\varepsilon, A) - \ln \mu(r+\varepsilon, A)}{\ln(r+2\varepsilon) - \ln(r+\varepsilon)} \right) + 2. \quad (10)$$

3. Corollaries. For entire functions (1) the following statement is correct.

Corollary 1. If $R[A] = +\infty$, $0 < h, H < +\infty$, $hr \leq \Gamma_f(r) \leq Hr$ ($\forall r$), $\ln n_{\lambda}(t) \leq q \ln t$ for some $q \in (0, +\infty)$ and all $t \geq t_0$ then for every $\alpha \in (0, +\infty)$ and all r enough large

$$\ln \mathfrak{M}(r, A) \leq \ln \mu(r, A) + q \ln \ln \frac{\mu((1+2\alpha)r, A)}{\mu((1+\alpha)r, A)} + q \ln \frac{4(1+\alpha)}{h\alpha} + 2 \ln 2. \quad (11)$$

Proof. Since $\ln \frac{r+2\varepsilon}{r+\varepsilon} \geq \frac{\varepsilon}{2(r+\varepsilon)}$ and $n_\lambda(t) \leq t^q$, for $\varepsilon = \alpha r$ from (10) we get

$$\mathfrak{M}(r, A) \leq \mu(r, A) \left(\left(\frac{4(1+\alpha)}{h\alpha} \right)^q \ln^q \frac{\mu((1+2\alpha)r, A)}{\mu((1+\alpha)r, A)} + 2 \right),$$

whence (11) follows. \square

If series (1) has a finite radius of regular convergence, then the situation is somewhat different. If $R[A] < +\infty$ then the function $\mu(r, A)$ can be bounded on $[0, R[A]]$. The following statement is correct.

Proposition 1. *In order that $\mu(r, A) \rightarrow +\infty$ as $r \rightarrow R[A]$, it is necessary and sufficient that $\overline{\lim}_{n \rightarrow \infty} |a_n| M_f(R[A] \lambda_n) = +\infty$.*

Proof. If $\overline{\lim}_{n \rightarrow \infty} |a_n| M_f(R[A] \lambda_n) < +\infty$ then $(\exists K)(\forall n \geq 1)$: $|a_n| M_f(R[A] \lambda_n) \leq K < +\infty$. Therefore, $|a_n| M_f(r \lambda_n) \leq K$ for all $n \geq 1$ and $r \in [0, R[A]]$, i.e., $\mu(r, A) \leq K$ for all $r \in [0, R[A]]$. On the contrary, if $\mu(r, A) \leq K$ for all $r \in [0, R[A]]$ then $|a_n| M_f(r \lambda_n) \leq K$ for all $n \geq 1$ and $r \in [0, R[A]]$. Fixing n and directing $r \rightarrow R[A]$ from here we get $|a_n| M_f(R[A] \lambda_n) \leq K$. \square

In what follows, we will assume that the condition $\overline{\lim}_{n \rightarrow \infty} |a_n| M_f(R[A] \lambda_n) = +\infty$ is satisfied and we prove the following statement.

Corollary 2. *If $0 < R[A] < +\infty$, $0 < h, H < +\infty$, $hr \leq \Gamma_f(r) \leq Hr$ for all r and $\ln n_\lambda(t) \leq q \ln t$ for some $q \in (0, +\infty)$ and all $t \geq t_0$ then*

$$\ln \mathfrak{M}(r, A) \leq \ln \mu(r, A) + q \ln \ln \frac{\mu((R[A] + r)/2, A)}{\mu((R[A] + 3r)/4, A)} + q \ln \frac{1}{R[A] - r} + q \ln \frac{16R[A]}{h} + 2 \ln 2. \quad (12)$$

Proof. Indeed, if we choose $\varepsilon = (R[A] - r)/4$ then $r + 2\varepsilon = (R[A] + r)/2 < R[A]$ for $r < R[A]$ and

$$\ln \frac{r + 2\varepsilon}{r + \varepsilon} \geq \frac{\varepsilon}{2(r + \varepsilon)} = \frac{(R[A] - r)/4}{2(r + (R[A] - r)/4)} = \frac{R[A] - r}{2(R[A] + 3r)} > \frac{R[A] - r}{8R[A]}.$$

Therefore, from (10) we get

$$\frac{\mathfrak{M}(r, A)}{\mu(r, A)} \leq \left(\frac{16R[A]}{h(R[A] - r)} \ln \frac{\mu((R[A] + r)/2, A)}{\mu((R[A] + 3r)/4, A)} \right)^q + 2,$$

whence (12) follows. \square

4. Two-term asymptotics.

Suppose that $R[A] = +\infty$ and

$$\ln \mu(r, A) \leq T e^{\varrho r} + (1 + o(1)) \tau e^{\varrho_1 r} \quad (r \rightarrow +\infty), \quad (13)$$

where $0 < \varrho_1 < \varrho < +\infty$, $T \in (0, +\infty)$ and $\tau \in \mathbb{R} \setminus 0$. Then for every $\alpha \in (0, +\infty)$ and all r enough large we have

$$\ln \ln \frac{\mu((1+2\alpha)r, A)}{\mu((1+\alpha)r, A)} \leq \ln \ln \mu((1+2\alpha)r, A) \leq \ln T + \varrho(1+2\alpha)r + o(1) = o(e^{\varrho_1 r}) \quad (r \rightarrow +\infty).$$

Therefore, if $hr \leq \Gamma_f(r) \leq Hr$ for all r and $\ln n_\lambda(t) = O(\ln t)$ as $t \rightarrow +\infty$ then by Corollary 1 we get

$$\ln \mathfrak{M}(r, A) \leq T e^{\varrho r} + (1 + o(1)) \tau e^{\varrho_1 r} + q \ln \ln \frac{\mu((1+2\alpha)r, A)}{\mu((1+\alpha)r, A)} + o(e^{\varrho_1 r}) \quad (r \rightarrow +\infty),$$

i.e.

$$\ln \mathfrak{M}(r, A) \leq T e^{\varrho r} + (1 + o(1)) \tau e^{\varrho_1 r} \quad (r \rightarrow +\infty). \quad (14)$$

On the other hand, since $\mu(r, A) \leq \mathfrak{M}(r, A)$, (14) implies (13). Thus, the following statement is correct.

Proposition 2. *Let $R[A] = +\infty$, $0 < h, H < +\infty$, $0 < \varrho_1 < \varrho < +\infty$, $T \in (0, +\infty)$ and $\tau \in \mathbb{R} \setminus 0$. If $hr \leq \Gamma_f(r) \leq Hr$ for all r and $\ln n_\lambda(t) = O(\ln t)$ as $t \rightarrow +\infty$ then (14) holds if and only if (13) holds.*

Now let $0 < R[A] < +\infty$ and

$$\ln \mu(r, A) \leq \frac{T}{(R[A] - r)^\varrho} + \frac{(1 + o(1))\tau}{(R[A] - r)^{\varrho_1}}, \quad r \uparrow R[A]. \quad (15)$$

Then

$$\begin{aligned} & \ln \ln \frac{\mu((R[A] + r)/2, A)}{\mu((R[A] + 3r)/4, A)} \leq \ln \ln \mu((R[A] + r)/2, A) \leq \\ & \leq \ln \frac{(1 + o(1))T}{(R[A] - (R[A] + r)/2)^\varrho} = \ln \frac{(1 + o(1))T 2^\varrho}{(R[A] - r)^\varrho} = (1 + o(1))\varrho \ln \frac{1}{R[A] - r}, \quad r \uparrow R[A]. \end{aligned}$$

Therefore, by Corollary 2 we get

$$\ln \mathfrak{M}(r, A) \leq \ln \mu(r, A) + O\left(\ln \frac{1}{R[A] - r}\right) = \ln \mu(r, A) + o\left(\frac{1}{(R[A] - r)^{\varrho_1}}\right), \quad r \uparrow R[A],$$

i.e.

$$\ln \mathfrak{M}(r, A) \leq \frac{T}{(R[A] - r)^\varrho} + \frac{(1 + o(1))\tau}{(R[A] - r)^{\varrho_1}}, \quad r \uparrow R[A]. \quad (16)$$

On the other hand, since $\mu(r, A) \leq \mathfrak{M}(r, A)$, (16) implies (15). Thus, the following statement is correct.

Proposition 3. *Let $0 < R[A] < +\infty$, $0 < h, H < +\infty$, $0 < \varrho_1 < \varrho < +\infty$, $T \in (0, +\infty)$ and $\tau \in \mathbb{R} \setminus 0$. If $hr \leq \Gamma_f(r) \leq Hr$ for all r and $\ln n_\lambda(t) = O(\ln t)$ as $t \rightarrow +\infty$ then (15) holds if and only if (16) holds.*

REFERENCES

1. P. Lockhart, E.G. Straus, *Relations between maximum modulus and maximum term of entire functions*, Pacific J. Math., **118** (1985), №2, 479–485.
<https://projecteuclid.org/journalArticle/Download?urlId=pjm%2F1102706455>
2. M.M. Sheremeta, *On regularly converging series in systems of functions in a disk*, Visn. Lviv Univ. Ser. Mech. Math., **94** (2022), 98–108. doi.<http://dx.doi.org/10.30970/vmm.2023.94.098-108>.
3. M.M. Sheremeta, *Spaces of series in system of functions*, Mat. Stud., **59** (2023), №1, 46–59.
<https://doi.org/10.30970/ms.59.1.46-59>

Ivan Franko National University of Lviv
Lviv, Ukraine

oksana.holovata@lnu.edu.ua
m.m.sheremeta@gmail.com

Received 26.06.2025

Revised 01.12.2025