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For an entire transcendental function f and a sequence (λn) of positive numbers increasing
to +∞ let A(z) =

∑∞
n=1 anf(λnz) be a series in the system f(λnz) regularly convergent

in {z : |z| < R[A]} that is M(r,A) =
∑∞

n=1 |an|Mf (rλn) < +∞ for r ∈ [0, R[A]), where
Mf (r) = max{|f(z)| : |z| = r} (r ∈ [0,+∞)), µ(r,A) = max{|an|Mf (rλn) : n ≥ 1} is the
maximal term. Denote nλ(t) =

∑
λn≤t 1, and Γf (r) =

d lnMf (r)
d ln r is the right-hand derivative.

Estimates of M(r,A) by µ(r,A) are obtained, which are analogues of the Lockhart-Straus
inequality (1985). The article proves, in particular, the following statement (Theorem 1): If
0 < r < R[A] ≤ +∞, 0 < 2ε < R[A] − r and lnnλ(t) = o(Γf (rt)) as t → +∞ for every fixed
r > 0 then

M(r,A)

µ(r,A)
≤ nλ

(
Γ−1
f

(
2
lnµ(r + 2ε,A)− lnµ(r + ε,A)

ln(r + 2ε)− ln(r + ε)

))
+ 2.

The application of the obtained results is indicated to study the relationship between the growth
of M(r,A) and µ(r,A) in terms of two-member asymptotics.

1. Introduction. For an entire transcendental function

g(z) =
∞∑
k=0

gkz
k

we denote
Mg(r) = max{|g(z)| : |z| = r}, µg(r) = max{|gk|rk : k ≥ 0}.

P. Lockhart and E.G. Straus [1] proved that

Mg(r) ≤
4r + ε

ε
µg(r)

(
1 + ln

µg(r + ε)

µg(r)

)
, r < +∞, ε > 0.

Let f(z) =
∑∞

k=0 fkz
k be an entire transcendental function and

A(z) =
∞∑
n=1

anf(λnz) (1)

be a series in the system f(λnz), where Λ = (λn) is a sequence of positive numbers increasing
to +∞. Let R[A] be the radius of regular convergence of series (1), i.e.

M(r, A) =
∞∑
n=1

|an|Mf (rλn) < +∞ (2)

holds for r < R[A] and not holds for r > R[A].
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Denote
Γf (r) =

d lnMf (r)

d ln r
(in points where the derivative does not exist, under d lnMf (r)

d ln r
mean right-hand derivative).

Since the function lnMf (r) is logarithmically convex, we have Γf (r) ↗ +∞ as r → +∞.
It is known [2] that if Γf (cr) ≍ Γf (r) as r → +∞ for each c ∈ (0, +∞) and lnn =

o(Γf (λn)) as n → ∞ then

R[A] = lim
n→∞

1

λn

M−1
f

( 1

|an|

)
.

For r ∈ [0, R[A]) let µ(r, A) = max{|an|Mf (rλn) : n ≥ 1} be the maximal term of series
(2) and ν(r, A) = max{n ≥ 1: |an|Mf (rλn) = µ(r, A)} be its central index.

Obviously M(r, A) ≥ µ(r, A). In this note we will obtain upper bounds for M(r, A) by
µ(r, A) of the Lockhart-Straus inequality type.

2. Main theorem. Let nλ(t) =
∑

λn≤t 1 be the counting function of the sequence (λn). The
following theorem is the main one.

Theorem 1. If 0 < r < R[A] ≤ +∞, 0 < 2ε < R[A]−r and lnnλ(t) = o(Γf (rt)) as t → +∞
for every fixed r > 0 then

M(r, A)

µ(r, A)
≤ nλ

(
Γ−1
f

(
2
lnµ(r + 2ε, A)− lnµ(r + ε, A)

ln(r + 2ε)− ln(r + ε)

))
+ 2. (3)

Proof. Since µ(r, A) = |aν(r,A)|Mf (rλν(r,A)), for r + ε < R[A] we have

|an|Mf (rλn) = |an|Mf ((r + ε)λn)
Mf (rλn)

Mf ((r + ε)λn)
≤

≤ µ(r + ε, A)
Mf (rλn)

Mf ((r + ε)λn)
= |aν(r+ε,A)|Mf ((r + ε)λν(r+ε,A))

Mf (rλn)

Mf ((r + ε)λn)
=

= |aν(r+ε,A)|Mf (rλν(r+ε,A))
Mf ((r + ε)λν(r+ε,A))

Mf (rλν(r+ε,A))

Mf (rλn)

Mf ((r + ε)λn)
≤

≤ µ(r, A)
Mf ((r + ε)λν(r+ε,A))

Mf (rλν(r+ε,A))

Mf (rλn)

Mf ((r + ε)λn)
. (4)

But
Mf ((r + ε)λν(r+ε,A))

Mf (rλν(r+ε,A))
= exp{lnMf ((r + ε)λν(r+ε,A))− lnMf (rλν(r+ε,A))} =

= exp
{∫ (r+ε)λν(r+ε,A)

rλν(r+ε,A)

Γf (x)d lnx
}
≤ exp

{
Γf ((r + ε)λν(r+ε,A)) ln

r + ε

r

}
and similar

Mf (rλn)

Mf ((r + ε)λn)
= exp

{
−
∫ (r+ε)λn

rλn

Γf (x)d lnx
}
≤ exp

{
− Γf (rλn) ln

r + ε

r

}
.

Therefore, (5) implies

|an|Mf (rλn) ≤ µ(r, A) exp
{
− (Γf (rλn)− Γf ((r + ε)λν(r+ε,A))) ln

r + ε

r

}
. (5)

Let n0(r) = min{n : Γf (rλn) ≥ 2Γf ((r+ε)λν(r+ε,A))}. Then Γf ((r+ε)λν(r+ε,A)) ≤ Γf (rλn)/2
(n ≥ n0(r)) and (4) implies
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|an|Mf (rλn) ≤ µ(r, A) exp
{
− Γf (rλn)

2
ln

r + ε

r

}
.

Therefore,

M(r, A)

µ(r, A)
≤

(
n0(r)−1∑
n=1

+
∞∑

n0(r)

)
|an|Mf (rλn)

µ(r, A)
≤ n0(r)− 1 +

∞∑
n=n0(r)

exp
{
− Γf (rλn)

2
ln

r + ε

r

}
.

(6)
It is clear that (5) implies λn0(r)−1 ≤ Γ−1

f (2Γf ((r + ε)λν(r+ε,A))), whence

n0(r)− 1 ≤ nλ(Γ
−1
f (2Γf ((r + ε)λν(r+ε,A)))). (7)

On the other hand, since lnnλ(t) = o(Γf (rt)) as t → +∞ for every fixed r > 0, we can
consider n0(r) so big that lnnλ(t) ≤ Γf (rt)

4
ln r+ε

r
for t ≥ λn0(r). Then

∞∑
n=n0(r)

exp
{
− Γf (rλn)

2
ln

r + ε

r

}
≤
∫ ∞

λn0(r)

exp
{
− Γf (rt)

2
ln

r + ε

r

}
dnλ(t) ≤

≤
∫ ∞

λn0(r)

nλ(t) exp
{
− Γf (rt)

2
ln

r + ε

r

}
d
(Γf (rt)

2
ln

r + ε

r

)
≤

≤ 2 exp
{
−

Γf (rλn0(r))

4
ln

r + ε

r

}
≤ 2. (8)

From (6), (7) and (8) we get
M(r, A)

µ(r, A)
≤ nλ(Γ

−1
f (2Γf ((r + ε)λν(r+ε,A)))) + 2. (9)

In [3] it is proved that lnµ(r, A)− lnµ(r0, A) =
∫ r

r0
Γf (tλν(t,A))d ln t, 0 ≤ r0 ≤ r < +∞.

Therefore,

ln
µ(r + 2ε, A)

µ(r + ε, A)
=

r+2ε∫
r+ε

Γf (tλν(t,A))d ln t ≥ Γf ((r + ε)λν(r+ε,A)) ln
r + 2ε

r + ε

and, thus,

(r + ε)λν(r+ε,A) ≤ Γ−1
f

( lnµ(r + 2ε, A)− lnµ(r + ε, A)

ln(r + 2ε, A)− ln(r + ε, A)

)
.

From hence and (9) we obtain (3).

Remark 1. Suppose that hr ≤ Γf (r) ≤ Hr for all r, where 0 < h ≤ H < +∞. Then
lnnλ(t) = o(Γf (rt)) as t → +∞ for every fixed r > 0 if and only if lnnλ(t) = o(t) as
t → +∞, x/H ≤ Γ−1

f (x) ≤ x/h and (3) holds if
M(r, A)

µ(r, A)
≤ nλ

(2
h

lnµ(r + 2ε, A)− lnµ(r + ε, A)

ln(r + 2ε)− ln(r + ε)

)
+ 2. (10)

3. Corollaries. For entire functions (1) the following statement is correct.

Corollary 1. If R[A] = +∞, 0 < h,H < +∞, hr ≤ Γf (r) ≤ Hr (∀r), lnnλ(t) ≤ q ln t for
some q ∈ (0,+∞) and all t ≥ t0 then for every α ∈ (0,+∞) and all r enough large

lnM(r, A) ≤ lnµ(r, A) + q ln ln
µ((1 + 2α)r, A)

µ((1 + α)r, A)
+ q ln

4(1 + α)

hα
+ 2 ln 2. (11)
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Proof. Since ln r+2ε
r+ε

≥ ε
2(r+ε)

and nλ(t) ≤ tq, for ε = αr from (10) we get

M(r, A) ≤ µ(r, A)
((4(1 + α)

hα

)q
lnq µ((1 + 2α)r, A)

µ((1 + α)r, A)
+ 2
)
,

whence (11) follows.

If series (1) has a finite radius of regular convergence, then the situation is somewhat
different. If R[A] < +∞ then the function µ(r, A) can be bounded on [0, R[A]). The following
statement is correct.

Proposition 1. In order that µ(r, A) → +∞ as r → R[A], it is necessary and sufficient
that lim

n→∞
|an|Mf (R[A]λn) = +∞.

Proof. If lim
n→∞

|an|Mf (R[A]λn) < +∞ then (∃K)(∀n ≥ 1) : |an|Mf (R[A]λn) ≤ K < +∞.
Therefore, |an|Mf (rλn) ≤ K for all n ≥ 1 and r ∈ [0, R[A]), i.e. , µ(r, A) ≤ K for all
r ∈ [0, R[A]). On the contrary, if µ(r, A) ≤ K for all r ∈ [0, R[A]) then |an|Mf (rλn) ≤
K for all n ≥ 1 and r ∈ [0, R[A]). Fixing n and directing r → R[A] from here we get
|an|Mf (R[A]λn) ≤ K

In what follows, we will assume that the condition lim
n→∞

|an|Mf (R[A]λn) = +∞ is satisfied
and we prove the following statement.

Corollary 2. If 0 < R[A] < +∞, 0 < h,H < +∞, hr ≤ Γf (r) ≤ Hr for all r and
lnnλ(t) ≤ q ln t for some q ∈ (0,+∞) and all t ≥ t0 then

lnM(r, A) ≤ lnµ(r, A) + q ln ln
µ((R[A] + r)/2, A)

µ((R[A] + 3r)/4, A)
+ q ln

1

R[A]− r
+ q ln

16R[A]

h
+ 2 ln 2.

(12)

Proof. Indeed, if we choose ε = (R[A]−r)/4 then r+2ε = (R]A]+r)/2 < R]A] for r < R]A]
and

ln
r + 2ε

r + ε
≥ ε

2(r + ε)
=

(R[A]− r)/4

2(r + (R[A]− r)/4)
=

R[A]− r

2(R[A] + 3r)
>

R[A]− r

8R[A]
.

Therefore, from (10) we get
M(r, A)

µ(r, A)
≤
( 16R[A]

h(R[A]− r)
ln

µ((R[A] + r)/2, A)

µ((R[A] + 3r)/4, A)

)q
+ 2,

whence (12) follows.

4. Two-term asymptotics. Suppose that R[A] = +∞ and

lnµ(r, A) ≤ Teϱr + (1 + o(1))τeϱ1r (r → +∞), (13)

where 0 < ϱ1 < ϱ < +∞, T ∈ (0,+∞) and τ ∈ R \ 0. Then for every α ∈ (0,+∞) and all r
enough large we have

ln ln
µ((1 + 2α)r, A)

µ((1 + α)r, A)
≤ ln lnµ((1 + 2α)r, A) ≤ lnT + ϱ(1 + 2α)r + o(1) = o(eϱ1r) (r → +∞).

Therefore, if hr ≤ Γf (r) ≤ Hr for all r and lnnλ(t) = O(ln t) as t → +∞ then by Corollary
1 we get

lnM(r, A) ≤ Teϱr + (1 + o(1))τeϱ1r + q ln ln
µ((1 + 2α)r, A)

µ((1 + α)r, A)
+ o(eϱ1r) (r → +∞),

i.e.
lnM(r, A) ≤ Teϱr + (1 + o(1))τeϱ1r (r → +∞). (14)
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On the other hand, since µ(r, A) ≤ M(r, A), (14) implies (13). Thus, the following
statement is correct.

Proposition 2. Let R[A] = +∞, 0 < h,H < +∞, 0 < ϱ1 < ϱ < +∞, T ∈ (0,+∞) and
τ ∈ R \ 0. If hr ≤ Γf (r) ≤ Hr for all r and lnnλ(t) = O(ln t) as t → +∞ then (14) holds if
and only if (13) holds.

Now let 0 < R[A] < +∞ and
lnµ(r, A) ≤ T

(R[A]− r)ϱ
+

(1 + o(1))τ

(R[A]− r)ϱ1
, r ↑ R[A]. (15)

Then
ln ln

µ((R[A] + r)/2, A)

µ((R[A] + 3r)/4, A)
≤ ln lnµ((R[A] + r)/2, A) ≤

≤ ln
(1 + o(1))T

(R[A]− (R[A] + r)/2)ϱ
= ln

(1 + o(1))T2ϱ

(R[A]− r)ϱ
= (1 + o(1))ϱ ln

1

R[A]− r
, r ↑ R[A].

Therefore, by Corollary 2 we get

lnM(r, A) ≤ lnµ(r, A) +O
(
ln

1

R[A]− r

)
= lnµ(r, A) + o

( 1

(R[A]− r)ϱ1

)
, r ↑ R[A],

i.e.
lnM(r, A) ≤ T

(R[A]− r)ϱ
+

(1 + o(1))τ

(R[A]− r)ϱ1
, r ↑ R[A]. (16)

On the other hand, since µ(r, A) ≤ M(r, A), (16) implies (15). Thus, the following statement
is correct.

Proposition 3. Let 0 < R[A] < +∞, 0 < h,H < +∞, 0 < ϱ1 < ϱ < +∞, T ∈ (0,+∞)
and τ ∈ R \ 0. If hr ≤ Γf (r) ≤ Hr for all r and lnnλ(t) = O(ln t) as t → +∞ then (15)
holds if and only if (16) holds.
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