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For an entire transcendental function f and a sequence (A,) of positive numbers increasing
to 400 let A(z) = Y07 anf(Ay2) be a series in the system f()\,z) regularly convergent
in {z: |z| < R[A]} that is M(r, A) = > 7, |an|Mys(rA,) < +oo for r € [0, R[A]), where
My (r) = max{|f(2)|: |z| = r} (r € [0,400)), u(r,A) = max{|an|Ms(rA,): n > 1} is the
maximal term. Denote nx(t) = >, -, 1, and T'¢(r) = dh;]l\ﬁfr(r) is the right-hand derivative.

Estimates of 2(r, A) by u(r, A) are obtained, which are analogues of the Lockhart-Straus
inequality (1985). The article proves, in particular, the following statement (Theorem 1): If
0 <7 < R[A] < 400, 0 < 2¢ < R[A] —r and Inny(t) = o(T'f(rt)) as t — 400 for every fixed
r > 0 then

M(r, A) <y (r;l (2lnu(r +2,A) —Inp(r+¢,A) )) oy
w(r, A) In(r 4+ 2¢) —In(r +¢)

The application of the obtained results is indicated to study the relationship between the growth

of M(r, A) and p(r, A) in terms of two-member asymptotics.

1. Introduction. For an entire transcendental function

9(z) =D g2
k=0

M,(r) = max{|g(2)|: |z| =7}, py(r)= max{|gk|rk: k> 0}.
P. Lockhart and E.G. Straus [1] proved that
4
T+€/J/g(r)<1 +IHM

€ fig(T)
Let f(z) = > 1, fxz" be an entire transcendental function and

we denote

My(r) <

>, r < 400, > 0.

A(z) =D anf(An2) (1)

be a series in the system f(\,z), where A = (),) is a sequence of positive numbers increasing
to +o00. Let R[A] be the radius of regular convergence of series (1), i.e.

M(r, A) = |an| My(rA,) < +o00 (2)

holds for » < R[A] and not holds for r > R[A].
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Denote
dIn My(r)

Ly(r) = dlnr
(in points where the derivative does not exist, under dh;ﬁ’; ™) mean right-hand derivative).
Since the function In My(r) is logarithmically convex, we have I'f(r) / +o0 as r — +o0.
It is known [2]| that if I';(cr) < I'y(r) as r — oo for each ¢ € (0, +00) and Inn =
o(I't(A\,)) as n — oo then

_ 1. 471
R[A] = lim 5~ M <|an\>'
For r € [0, R[A]) let pu(r, A) = max{|a,|Ms(rA,): n > 1} be the maximal term of series
(2) and v(r, A) = max{n > 1: |a,|Ms(rX,) = p(r, A)} be its central index.
Obviously M(r, A) > u(r, A). In this note we will obtain upper bounds for M(r, A) by
w(r, A) of the Lockhart-Straus inequality type.

2. Main theorem. Let ny(t) = >, _, 1 be the counting function of the sequence (). The
following theorem is the main one.

Theorem 1. If0 < r < R[A] < 400, 0 < 2¢ < R[A]—r and Inn,(t) = o(I'f(rt)) ast — +oo
for every fixed r > 0 then

M(r, A) faInp(r+2e,A) —Inp(r + ¢, A)
p(r, A) =M (Ff <2 In(r +2¢) —In(r +¢) )) 2 (3)

Proof. Since u(r, A) = |ay(r.a)| Ms (1A, a)), for r + e < R[A] we have

— Mf(rAn>
|an|My(rAn) = |an| Mp((r +€)An) M ((r + 2)An) <
S IU(T +¢, A) ijzfi(_:)\;)l\n) = ’au(r+€,A)|Mf((T + E)AV(TJre,A)) ijzfi(:_)\;)l\n) -

Myp((r +€)Arien))  Mp(rhy)
My(rAvgie,a)  Mp((r+e)h,) —

My((r + ) Airie,ny)  Mp(rhy)

= |Gy (rpe, ) [ M (T A(rse,4))

< p(r, A) : (4)
My(rdvies)  Mp((r+e)An)
P M+ )
WA — exp{n M ((r + &) Aurie ) — In My(rAypen)} =
M ( )‘ (1E+s xSl))\)
r+e v(r+e,A)
= exp { / [¢(z)dIn m} < exp {Ff((r + ) A\(re,a)) In I 5}
v(r+e,A)
and similar :
My(rhn) (N r+e
M ((r + 290 exp{ / ) Ff(m)dlnx} < exp{ Ly(rA,)In }
Therefore, (5) implies
r+e
anMy(rAn) < p(r, A)exp { = (Tp(rAn) = TA((r + & Apiep)) I —— . (5)

Let ng(r) = min{n: I'f(rA,) > 2Tt ((r +€) Avirte,n)) }- Then Ip((r+)Aprre,n)) < Tp(rA,)/2
(n > no(r)) and (4) implies
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Ce(rA
lan|Me(rA,) < p(r, A) exp{ - f(; n) In il 6}.
r
Therefore,
no(r)—1 0o
M(r, A) K || M (r A, ) Ty ( m W), THE

< + —_— -1+ exp In .

p(r, A) ( ; %)) p(r, A) nnzor { r }
(6)

It is clear that (5) implies A, (-1 < F;l(QFf((r + €)A\(re,4))), Whence

no(r) =1 < my(Lp Q2L ((r + ) Aurten))). (7)

On the other hand, since Inn,(t) =
consider ng(r) so big that Inn,(t) <

i exp{—rf(r)\n)lnr+€}§/oo exp{—rf(rt)lnrJrg}dn)\(t)S

o(I'f(rt)) as t — +oo for every fixed r > 0, we can
L 4”) In == for t > Ay (). Then

n=no(r) 2 " g (1) 2 "
S/ nA(t)eXp{—Ff(rt) 1nr+8}d(Ff(rt) 1nr—|—5> <
Mg () 2 r 2 r
I )\n r
§2exp{— i 0())lnr+6}§2. (8)
4 r
From (6), (7) and (8) we get
M(r, A _

T S m R D )2 )

In [3] it is proved that In i(r, A) — In pu(ro, A) = fT ydint, 0 <ry <r < +oo.
Therefore,

( 49 A) r+2e 4o
p(r + 2e, r
In————= = Le(tA, dlnt > T Au(rten)) ]
S [ T dine > Tyl i) n
r+e
and, thus,
/Inp(r+2e,A) —lnp(r+¢, A)
Mrien) T7( : =)
(r+)hpsen STy In(r +2¢,A) — In(r + ¢, A)
From hence and (9) we obtain (3). O

Remark 1. Suppose that hr < I'y(r) < Hr for all r, where 0 < h < H < +o00. Then
Inny(t) = o(l'¢(rt)) as t — oo for every fixed r > 0 if and only if Inn,(tf) = o(t) as
t — 400, x/H < F;l(a:) < x/h and (3) holds if
M(r, A) 2lnpu(r+2e,A) —lnu(r+¢, A)
< ny (-
w(r, A) h In(r +2¢) —In(r + ¢)

)+2 (10)

3. Corollaries. For entire functions (1) the following statement is correct.
Corollary 1. If R[A] = 400, 0 < h, H < 400, hr < T'¢(r) < Hr (Vr), Inny(t) < ¢lnt for
some q € (0,400) and all t >t then for every o € (0,4+00) and all r enough large

p((1+2a)r, A) 41+ )
In9M(r, A) <Inp(r, A) + ¢lnln T ) —|-qlnT

+2In2. (11)
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r+25
+e — 2(r+£

41+ o) ¢ H((1+2a)r, A)
M, 4) < plr, A)((F507) Y 2).
whence (11) follows. O

Proof. Since In and n(t) < t?, for € = ar from (10) we get

If series (1) has a finite radius of regular convergence, then the situation is somewhat
different. If R[A] < +o0 then the function p(r, A) can be bounded on [0, R[A]). The following
statement is correct.

Proposition 1. In order that u(r, A) — +oo as r — R[A], it is necessary and sufficient
that lim |a,|M;(R[A]\,) = +o0.
n—oo

Proof. If Tim |a,|M;(R[A])\,) < +oco then (3K)(Vn > 1): |a,|M;(R[A])\,) < K < +o0.
n—oo
Therefore, |a,|M¢(rA,) < K for all n > 1 and r € [0, R[A]), i.e. , u(r,A) < K for all
€ [0, R[A]). On the contrary, if u(r,A) < K for all r € [0, R[A]) then |a,|M(rA,) <
K for all n > 1 and r € [0, R[A]). Fixing n and directing » — R[A] from here we get
|an|Mf(R[A]/\n> <K O
In what follows, we will assume that the condition lim |a,|M(R[A])\,) = 400 is satisfied
n—oo

and we prove the following statement.

Corollary 2. If 0 < R[A] < +00, 0 < h,H < 400, hr < I'g(r) < Hr for all r and
Inny(t) < gqlnt for some q € (0,+00) and all t > t, then

p((RA] +7)/2,A)
p((R[A] +3r)/4, A)

16R[A] +21In2.

(12)

1
4+ qln ——— +¢gln

In9M(r,A) <Ilnp(r,A) +q¢qlnln RIA —r

Proof. Indeed, if we choose € = (R[A] —r)/4 then r+2¢ = (R|A]+71)/2 < R]A|] for r < R]A|

and rt2 e (RA-0M __RA-r _RA-r

rte ~2rte) 20+ (RA —r)/4)  2RA+3r)  8R[A]
Therefore, from (10) we get

In

M(r, A) 16R[A] p((RIA] +1)/2, A) \¢
< | 2
i) < Chiria] =0 ™ ) + o) 2
whence (12) follows. O
4. Two-term asymptotics. Suppose that R[A] = 400 and
Inp(r, A) < Te” + (1 + o(1))7e?”  (r — +00), (13)

where 0 < 91 < 0 < 400, T € (0,400) and 7 € R\ 0. Then for every a € (0,+0c0) and all r

enough large we have

Inln M((((11_|——1—2o(j))7‘r;14)) Inln pe((1 4 2a)r, A) <InT + o(1 + 20)r + o(1) = o(e®*") (1 — 400).

Therefore, if hr < T'y(r) < Hr for all r and Inny(t) = O(Int) as t — 400 then by Corollary
1 we get

InM(r, A) < Te® + (1+o0(1))7e?" + ¢Inln

(14 2a)r, A)

(T o), A) + 0(e?") (r — +00),

- M (r, A) < Te? + (1 + o(1))7e?" (r — +00). (14)
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On the other hand, since p(r,A) < M(r, A), (14) implies (13). Thus, the following
statement is correct.

Proposition 2. Let R[A] = 400, 0 < h,H < 400, 0 < g1 < 9 < +0o0, T € (0,+00) and
7€ R\O. If hr <T'f(r) < Hr for all r and Inn,(t) = O(Int) as t — +oo then (14) holds if
and only if (13) holds.

Now let 0 < R[A] < +o00 and T N (14 o(1)r

In p(r, A) < R = T RAT =)o r 1 R[A]. (15)
Fhen RIA] +1)/2, A
In'n l%((]%[z]]jg%/ o A>) < Inln pu((R[A] +r)/2, A) <
(14 o(1)T (1+ o(1))T2¢ 1
=R (RAL e ) e e TR

Therefore, by Corollary 2 we get

InM(r,A) <lInpu(r,A) + O(ln ﬁ) =lnu(r, A) + 0(@), r 1T R[A4],
- T (1+ o(1))r
In9M(r, A) < (RIA =12 + (R[A]—r)or” r 1 R[A]. (16)

On the other hand, since u(r, A) < M(r, A), (16) implies (15). Thus, the following statement
1s correct.

Proposition 3. Let 0 < R[A] < 400, 0 < h, H < 400, 0 < 91 < 0 < 400, T € (0,+00)
and 7 € R\ 0. If hr < T'y(r) < Hr for all r and Inn,(t) = O(Int) as t — +oo then (15)
holds if and only if (16) holds.
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