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Continued fractions and their generalization, branched continued fractions, are the effective
tools used to study special functions. In this aspect, an important problem of continued fracti-
ons and branched continued fractions is the study of their numerical stability. The backward
recurrence algorithm is one of the main tools for computing approximants of both continued
fraction and branched continued fractions. Like most recursive processes, it is prone to error
growth. Each cycle of the recursive process not only generates its own rounding errors but also
inherits the rounding errors made in all the previous cycles. This paper considers numerical
stability of branched continued fraction expansion of the one ratio of Horn’s hypergeometric
functions H4 in the special case, namely, H4(a, d + 1; c, d; z)/H4(a, d + 2; c, d + 1; z). For this
purpose, the backward recurrence algorithm is investigated. It is proven that under certain
conditions on the parameters a, c, and d the some open bi-disc is the set of numerical stability
for branched continued fraction expansion, and it is found the estimate of relative rounding
error, produced by the backward recurrence algorithm in calculating an nth approximant of
this expansion.

The results of this paper provide a toolkit for analyzing the numerical stability of algorithms
that use branched continued fractions of the studied structure. Error estimates can be used
to choose computation parameters, control accuracy, and ensure the reliability of results in
applied problems that will use the aforementioned branched continued fractions.

1. Introduction. Functions of one or several variables play an important role in almost all
fields of science and engineering (see, for example, [16, 44, 55] and also books [8, 24, 58]).
Various aspects of their study are considered, in particular, their integral representations ([28,
29, 30]), approximations by trigonometric polynomials ([51, 56, 59]), symmetric polynomials
([31, 42, 60]) and block-symmetric polynomials ([47, 48, 49]), linear summation methods of
Fourier series (in particular, Taylor-Abel-Poisson method, Zygmund method, Fourier method
[13, 14, 57]), generalized sampling series ([1, 2, 3]) and positive linear operators ([12, 45, 46]),
representations by power series ([25, 26, 27]), as well as representations by continued fractions
(see [4, 36, 54] and books [15, 43, 52]) and branched continued fractions (see, for example,
[17, 39, 53] and also books [10, 11, 50]) are considered. Branched continued fractions as a
special family of functions have proven to be one of the most effective tools for approximating
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the special functions ([5, 7, 41]). The vital problem here is the study of the convergence of
the constructed expansions ([9, 22, 34]). Another essential direction in the investigation
of branched continued fraction expansions of special functions, in particular hypergeometric
functions, is the study of their numerical stability ([20, 33, 35]) and stability to perturbations
([32, 37, 40]).

This paper considers numerical stability of branched continued fraction expansion of the
one ratio of Horn’s hypergeometric functions H4 in a special case constructed in [6].

Recall that the Horn’s hypergeometric function H4 is defined as (see [38])

H4(a, b; c, d; z) =
∞∑

r,s=0

(a)2r+s(b)s
(c)r(d)s

zr1
r!

zs2
s!
, |z1| < p, |z2| < q, (1)

where a, b, c, d ∈ C; c, d ̸∈ {0,−1,−2, . . .}; p and q are positive numbers such that 4p =
(q − 1)2 and q ̸= 1; (α)0 = 1 and (α)n = α(α + 1) . . . (α + n− 1), z = (z1, z2) ∈ C2.

Theorem A ([6]). The ratio
H4(a, d+ 1; c, d; z)

H4(a, d+ 2; c, d+ 1; z)

has formal branched continued fraction expansion

1 +
v0z2

1− v1z2 −
u1z1

1− v2z2 −
u2z1

1− ...

, (2)

where

v0 =
a

d(d+ 1)
, v1 = 1− a

d+ 1
, u1 =

2(a+ 1)

c
, (3)

vk = 1, uk =
(2c− a+ k − 3)(a+ k)

(c+ k − 2)(c+ k − 1)
, k ≥ 2. (4)

The problem of convergence of (2) is considered in [19, 21]. In [6], branched continued
fraction expansions for such ratios

H4(a, b; c, b; z)

H4(a+ 1, b; c+ 1, b; z)
,

H4(a, d+ 1; c, d; z)

H4(a+ 1, d+ 1; c, d+ 1; z)

are also constructed. The domains of analytical continuation of these ratios were discussed
in [6, 20, 23] and the truncation error bounds for their expansions were considered in [18].
Numerical aspects related to the backward recurrence algorithm for computing the appro-
ximants of branched continued fractions were considered in [20].

This paper proves that under certain conditions on the parameters of the function (1)
some open bi-disc is the set of numerical stability for branched continued fraction expansion
(2) and founds the estimate of relative rounding error, produced by the backward recurrence
algorithm in calculating an nth approximant of this expansion.

2. Auxiliary results. We recall the necessary notations and definitions ([20]). Let n be an
arbitrary natural number.

The backward recurrence algorithm for computing the nth approximant
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fn = 1 +
c0,1

1 + c1,1 +
c0,2

1 + ...+c1,n−2 +
c0,n−1

1 + c1,n−1 + c0,n
of a branched continued fraction

1 +
c0,1

1 + c1,1 +
c0,2

1 + ...

(5)

consists of setting U
(n)
n = 1 and successively computing

U
(n)
k = 1 + c1,k +

c0,k+1

U
(n)
k+1

, n− 1 ≥ k ≥ 1,

for n ≥ 2. And, therefore, fn = U
(n)
0 , where U

(n)
0 = 1 + c0,1/U

(n)
1 .

For 1 ≤ k ≤ n, let ĉ1,k, ĉ0,k be the rounded values of c1,k, c0,k of the branched continued
fraction (5), respectively, and

f̂n = 1 +
ĉ0,1

1 + ĉ1,1 +
ĉ0,2

1 + ...+ĉ1,n−2 +
ĉ0,n−1

1 + ĉ1,n−1 + ĉ0,n

be the computed value of fn.

Definition 1. A numerical stability set D is a set to which for any ε > 0 there exists
δ > 0 depending only on ε and D such that |(f̂n − fn)/fn| < ε, n ≥ 1, for every branched
continued fraction (5) with c1,k, c0,k, ĉ1,k, ĉ0,k ∈ D, k ≥ 1, such that |(ĉ1,k − c1,k)/c1,k| < δ,
|(ĉ0,k − c0,k)/c0,k| < δ, k ≥ 1.

Now, for branched continued fraction (2) we need to set

W
(n)
k (z) = 1− vkz2 −

ukz1

1− vk+1z2 −
uk+1z1

1− ...−vn−2z2 −
un−2z1

1− vn−1z2 − un−1z1

,

where 1 ≤ k ≤ n− 1 for n ≥ 2. It gives us

W
(n)
k (z) = 1− vkz2 −

ukz1

W
(n)
k+1(z)

, 1 ≤ k ≤ n− 1, (6)

for n ≥ 2, and fn(z) = W
(n)
0 (z), where

W
(n)
0 (z) = 1 +

v0z2

W
(n)
1 (z)

, W (n)
n (z) = 1. (7)

Next, let α1, α2, γ0, γ1, and βk, 1 ≤ k ≤ n, be the relative errors in the rounded values
ẑ1, ẑ2, v̂0, v̂1, ûk, 1 ≤ k ≤ n, of z1, z2, v0, v1, and uk, 1 ≤ k ≤ n, respectively, so that

ẑ1 = z1(1 + α1), ẑ2 = z2(1 + α2), (8)
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v̂0 = v0(1 + γ0), v̂1 = v1(1 + γ1), ûk = uk(1 + βk), 1 ≤ k ≤ n. (9)

Similarly, for 0 ≤ k ≤ n, let ε(n)k be the relative error in Ŵ
(n)
k (ẑ) of computing W

(n)
k (z) using

ẑ1, ẑ2, v̂0, v̂1, and ûk, 1 ≤ k ≤ n. And, therefore,

Ŵ
(n)
k (ẑ) = W

(n)
k (z)(1 + ε

(n)
k ), 0 ≤ k ≤ n, (10)

with initial conditions

Ŵ (n)
n (ẑ) = W (n)

n (z) = 1, ε(n)n = 0. (11)

Also, let α̂1, α̂2, γ̂0, γ̂1, β̂k, 1 ≤ k ≤ n, and ε̂
(n)
k , 0 ≤ k ≤ n, be the relative errors defined by

z1 = ẑ1(1 + α̂1), z2 = ẑ2(1 + α̂2), v0 = v̂0(1 + γ̂0), v1 = v̂1(1 + γ̂1),

uk = ûk(1 + β̂k), 1 ≤ k ≤ n, W
(n)
k (z) = Ŵ

(n)
k (ẑ)(1 + ε̂

(n)
k ), 0 ≤ k ≤ n,

respectively.
In what follows, we will establish the recurrence relations for ε

(n)
k , 0 ≤ k ≤ n − 1. For

k = 0 we have

ε
(n)
0 =

Ŵ
(n)
0 (ẑ)−W

(n)
0 (z)

W
(n)
0 (z)

=
1

W
(n)
0 (z)

(
1 +

v̂0ẑ2

Ŵ
(n)
1 (ẑ)

)
− 1 =

=
1

W
(n)
0 (z)

(
1 +

v0(1 + γ0)z2(1 + α2)

W
(n)
1 (z)(1 + ε

(n)
1 )

)
− 1 =

1

W
(n)
0 (z)

+
v0(1 + γ0)z2(1 + α2)(1 + ε̂

(n)
1 )

W
(n)
0 (z)W

(n)
1 (z)

− 1.

Since
1

W
(n)
0 (z)

= 1− v0z2

W
(n)
0 (z)W

(n)
1 (z)

, then

ε
(n)
0 =

v0z2

W
(n)
0 (z)W

(n)
1 (z)

((1 + γ0)(1 + α2)(1 + ε̂
(n)
1 )− 1) =

=
v0z2

W
(n)
0 (z)Ŵ

(n)
1 (ẑ)

(γ0 + α2 + γ0α2) +
v0z2

W
(n)
0 (z)W

(n)
1 (z)

ε̂
(n)
1 . (12)

For k = 1 we obtain

ε
(n)
1 =

Ŵ
(n)
1 (ẑ)−W

(n)
1 (z)

W
(n)
1 (z)

=
1

W
(n)
1 (z)

(
1− v̂1ẑ2 −

û1ẑ1

Ŵ
(n)
2 (ẑ)

)
− 1 =

=
1

W
(n)
1 (z)

(
1− v1(1 + γ1)z2(1 + α2)−

u1(1 + β1)z1(1 + α1)

W
(n)
2 (z)(1 + ε

(n)
2 )

)
− 1 =

=
1

W
(n)
1 (z)

− v1(1 + γ1)z2(1 + α2)

W
(n)
1 (z)

− u1(1 + β1)z1(1 + α1)(1 + ε̂
(n)
2 )

W
(n)
1 (z)W

(n)
2 (z)

− 1.

Since
1

W
(n)
1 (z)

= 1 +
v1z2

W
(n)
1 (z)

+
u1z1

W
(n)
1 (z)W

(n)
2 (z)

,

then

ε
(n)
1 = − v1z2

W
(n)
1 (z)

(γ1 + α2 + γ1α2)−
u1z1

W
(n)
1 (z)W

(n)
2 (z)

((1 + β1)(1 + α1)(1 + ε̂
(n)
2 )− 1) =



NUMERICAL STABILITY OF THE BRANCHED CONTINUED FRACTION 137

= −v1z2(γ1 + α2 + γ1α2)

W
(n)
1 (z)

− u1z1(β1 + α1 + β1α1)

W
(n)
1 (z)Ŵ

(n)
2 (ẑ)

− u1z1ε̂
(n)
2

W
(n)
1 (z)W

(n)
2 (z)

. (13)

Similarly,

ε̂
(n)
1 = − v̂1ẑ2(γ̂1 + α̂2 + γ̂1α̂2)

Ŵ
(n)
1 (ẑ)

− û1ẑ1(β̂1 + α̂1 + β̂1α̂1)

Ŵ
(n)
1 (ẑ)W

(n)
2 (z)

− û1ẑ1ε
(n)
2

Ŵ
(n)
1 (ẑ)Ŵ

(n)
2 (ẑ)

. (14)

For k, 2 ≤ k ≤ n− 1, and for n ≥ 3, we have

ε
(n)
k =

Ŵ
(n)
k (ẑ)−W

(n)
k (z)

W
(n)
k (z)

=
1

W
(n)
k (z)

(
1− ẑ2 −

ûkẑ1

Ŵ
(n)
k+1(ẑ)

)
− 1 =

=
1

W
(n)
k (z)

(
1− z2(1 + α2)−

uk(1 + βk)z1(1 + α1)

W
(n)
k+1(z)(1 + ε

(n)
k+1)

)
− 1 =

=
1

W
(n)
k (z)

− z2(1 + α2)

W
(n)
k (z)

−
uk(1 + βk)z1(1 + α1)(1 + ε̂

(n)
k+1)

W
(n)
k (z)W

(n)
k+1(z)

− 1.

Since 1

W
(n)
k (z)

= 1 + z2

W
(n)
k (z)

+ ukz1

W
(n)
k (z)W

(n)
k+1(z)

, then

ε
(n)
k =

z2

W
(n)
k (z)

− z2(1 + α2)

W
(n)
k (z)

− ukz1

W
(n)
k (z)W

(n)
k+1(z)

((1 + βk)(1 + α1)(1 + ε̂
(n)
k+1)− 1) =

= − z2α2

W
(n)
k (z)

− ukz1

W
(n)
k (z)Ŵ

(n)
k+1(ẑ)

(βk + α1 + βkα1)−
ukz1

W
(n)
k (z)W

(n)
k+1(z)

ε̂
(n)
k+1. (15)

Similarly, for ε̂
(n)
k , 2 ≤ k ≤ n− 1, and for n ≥ 3, we obtain

ε̂
(n)
k = − ẑ2α̂2

Ŵ
(n)
k (ẑ)

− ûkẑ1

Ŵ
(n)
k (ẑ)W

(n)
k+1(z)

(β̂k + α̂1 + β̂kα̂1)−
ûkẑ1

Ŵ
(n)
k (ẑ)Ŵ

(n)
k+1(ẑ)

ε
(n)
k+1. (16)

Now, from (12)–(16) for n ≥ 3 we get the following

εn = ε
(n)
0 =

v0z2(γ0 + α2 + γ0α2)

W
(n)
0 (z)Ŵ

(n)
1 (ẑ)

+
v0z2ε̂

(n)
1

W
(n)
0 (z)W

(n)
1 (z)

=
v0z2(γ0 + α2 + γ0α2)

W
(n)
0 (z)Ŵ

(n)
1 (ẑ)

+

+
(
v̂1ẑ2(γ̂1 + α̂2 + γ̂1α̂2) +

û1ẑ1(β̂1 + α̂1 + β̂1α̂1)

W
(n)
2 (z)

) π
(n)
0 (z)

Ŵ
(n)
1 (ẑ)

− π
(n)
0 (z)π̂

(n)
1 (ẑ)ε

(n)
2

and

−π
(n)
0 (z)π̂

(n)
1 (ẑ)ε

(n)
2 =

=
π
(n)
0 (z)π̂

(n)
1 (ẑ)

W
(n)
2 (z)

(
z2α2 +

u2z1(β2 + α1 + β2α1)

Ŵ
(n)
3 (ẑ)

)
+

u2z1π
(n)
0 (z)π̂

(n)
1 (ẑ)ε̂

(n)
3

W
(n)
2 (z)W

(n)
3 (z)

=

=
π
(n)
0 (z)π̂

(n)
1 (ẑ)

W
(n)
2 (z)

(
z2α2 +

u2z1(β2 + α1 + β2α1)

Ŵ
(n)
3 (ẑ)

)
+

+
π
(n)
0 (z)π̂

(n)
1 (ẑ)π

(n)
2 (z)

Ŵ
(n)
3 (ẑ)

(
ẑ2α̂2 +

û3ẑ1(β̂3 + α̂1 + β̂3α̂1)

W
(n)
4 (z)

)
− π

(n)
0 (z)π̂

(n)
1 (ẑ)π

(n)
2 (z)π̂

(n)
3 (ẑ)ε

(n)
4 =
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=
n−1∑
k=2

π
(n)
0 (z)

W̃
(n)
k

(
z2,kα2,k +

ũkz1,k(β̃k + α1,k + β̃kα1,k)

W̃
(n)
k+1

) k−1∏
r=1

π̃(n)
r ,

where

zr,k =

{
zr, if k even;
ẑr, if k odd,

αr,k =

{
αr, if k even;
α̂r, if k odd,

r = 1, 2, β̃k =

{
βk, if k even;
β̂k, if k odd,

ũk =

{
uk, if k even;
ûk, if k odd,

π̃
(n)
k =

{
π
(n)
k (z), if k even;

π̂
(n)
k (ẑ), if k odd,

W̃
(n)
k =

{
W

(n)
k (z), if k even;

Ŵ
(n)
k (ẑ), if k odd,

π
(n)
0 (z) = − v0z2

W
(n)
0 (z)W

(n)
1 (z)

, (17)

π
(n)
2k (z) = − u2kz1

W
(n)
2k (z)W

(n)
2k+1(z)

, π̂
(n)
2k−1(ẑ) = − û2k−1ẑ1

Ŵ
(n)
2k−1(ẑ)Ŵ

(n)
2k (ẑ)

, 1 ≤ k ≤
[n− 1

2

]
, (18)

(here [ξ] is the integer part of the number ξ).
Thus, for n ≥ 3,

εn =
v0z2(γ0 + α2 + γ0α2)

W
(n)
0 (z)Ŵ

(n)
1 (ẑ)

+
(
v̂1ẑ2(γ̂1 + α̂2 + γ̂1α̂2) +

û1ẑ1(β̂1 + α̂1 + β̂1α̂1)

W
(n)
2 (z)

) π
(n)
0 (z)

Ŵ
(n)
1 (ẑ)

+

+
n−1∑
k=2

π
(n)
0 (z)

W̃
(n)
k

(
z2,kα2,k +

ũkz1,k(β̃k + α1,k + β̃kα1,k)

W̃
(n)
k+1

) k−1∏
r=1

π̃(n)
r . (19)

2. Main results. The following theorem holds.

Theorem 1. Let there exists a constant α, 0 < α < 1, such that

|α1| ≤ α, |α2| ≤ α, |γ0| ≤ α, |γ1| ≤ α, |βk| ≤ α k ≥ 1, (20)

where α1, α2, γ0, γ1, βk, k ≥ 1, are relative errors of z1, z2, v0, v1, uk, k ≥ 1, respectively,
herewith v0, v1, uk, k ≥ 1, are defined in (3) and (4), z ∈ Du,v,τ ,

Du,v,τ =

{
z ∈ C2 : |z1| <

τ(1− τ)

2u
, |z2| <

1− τ

2v

}
, (21)

u = max

{
sup
k∈N

|uk|, sup
k∈N

|ûk|
}
, v = max{v1, 1}, τ ∈ (0, 1) \ {1/3}, (22)

ûk, k ≥ 1, are defined in (9), and |v0| < v, v1 ≥ 0. Then the set (21) forms the numerical
stability set of the branched continued fraction (2), and, in addition, if εn denotes the relative
errors of nth approximant of (2), then, for n ≥ 3,

|εn| <
2|v0|(1− τ)α

1 + τ + |1− 3τ |

( 2 + α

v − |v0|
+

4(1− τ)

v(1 + τ + |1− 3τ |)− 2|v0|(1− τ)
×

×
(3 + α

2
+

4τ(2 + α)

1 + τ + |1− 3τ |

)ητ − ηn−1
τ

1− ητ

)
, (23)

where

ητ =

{
2τ/(1− τ), if 0 < τ < 1/3;

(1− τ)/(2τ), if 1/3 < τ < 1.
(24)
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Note that that for complex constants a, c, and d such that

|uk| − Re(uk) ≤ rs(1− s), k ≥ 1, v1 ≥ 0,

the branched continued fraction (2) converges uniformly on every compact subset of the
domain (21), where uk, k ≥ 1, v1 are defined in (3) and (4) herewith c, d ̸∈ {0,−1,−2, . . .},
and r > 0, 0 < s < 1, (see [19, Theorem 3]).

Proof of Theorem 1. In [20] the continued fraction

(1 + τ)/2− τ(1− τ)/2

(1 + τ)/2− τ(1− τ)/2

(1 + τ)/2− ...

(25)

is considered and it is shown that (25) converges to

f =
1 + τ + |1− 3τ |

4
(26)

for 0 < τ < 1 (here the elements of the continued fraction (25) satisfy the Theorem 3.2
in [43]). It is also noted that its approximants fn, n ≥ 1, forms a monotonically decreasing
sequence (which is easy to verify).

Let n be an arbitrary natural number such that n ≥ 3. In what follows, we will prove
that

|W (n)
k (z)| > fn−k, 1 ≤ k ≤ n− 1, (27)

where W
(n)
k (z), 1 ≤ k ≤ n− 1, are defined in (6) and (7).

For k = n− 1 we have

|W (n)
n−1(z)| ≥ 1− vn−1|z2| − |un−1||z1| >

1 + τ

2
− τ(1− τ)

2
> (1 + τ)/2− τ(1− τ)/2

(1 + τ)/2
= f1.

Let (27) holds for k = s + 1 ≤ n − 1. Then, using the induction assumption, for k = s
from (6) we obtain

|W (n)
s (z)| =

∣∣∣1− vsz2 −
usz1

W
(n)
s+1(z)

∣∣∣ ≥ 1− vs|z2| −
|us||z1|

|W (n)
s+1(z)|

>
(1 + τ)

2
− τ(1− τ)/2

fn−s−1

= fn−s,

which proves (27).
Since the sequence {fn} is monotonically decreasing, then fn > f, n ≥ 1, and, therefore,

|W (n)
k (z)| > f, 1 ≤ k ≤ n− 1, where f is defined by (26). Now, we estimate the following

|W (n)
0 (z)| =

∣∣∣1 + v0z2

W
(n)
1 (z)

∣∣∣ ≥ 1− |v0||z2|
|W (n)

1 (z)|
> 1− 2(1− τ)

1 + τ + |1− 3τ |
≥ 1− |v0|

v
. (28)

Next, we estimate the values π
(n)
0 (z), π

(n)
2k (z), 1 ≤ k ≤ [(n − 1)/2], which are defined in

(17) and (18). We have

|π(n)
0 (z)| =

∣∣∣ v0z2

W
(n)
0 (z)W

(n)
1 (z)

∣∣∣ ≤
|v0||z2|

|W (n)
1 (z)|

1− |v0||z2|
|W (n)

1 (z)|

<
2|v0|(1− τ)

v(1 + τ + |1− 3τ |)− 2|v0|(1− τ)
, (29)
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and for any k, 1 ≤ k ≤ [(n− 1)/2], we get

|π(n)
2k (z)| =

∣∣∣ u2kz1

W
(n)
2k (z)W (n)

2k+1(z)

∣∣∣ ≤
|u2k||z1|

|W (n)
2k+1(z)|

1− v2k|z2| −
|u2k||z1|

|W (n)
2k+1(z)|

<

<
τ(1− τ)

(1 + τ)
1 + τ + |1− 3τ |

4
− τ(1− τ)

= ητ , (30)

where ητ is defined by (24). Now, since ẑ ∈ Du,v,τ , where Du,v,τ is defined by (21), then

|Ŵ (n)
k (ẑ)| > fn−k, 1 ≤ k ≤ n− 1, (31)

and, therefore,

π̂
(n)
2k−1(ẑ) < ητ , 1 ≤ k ≤ [(n− 1)/2], (32)

where Ŵ
(n)
k (ẑ), 1 ≤ k ≤ n − 1, and π̂

(n)
2k−1(ẑ), 1 ≤ k ≤ [(n − 1)/2], are defined in (10) and

(18). In addition, from the conditions of this theorem it follows

|z1,k| <
τ(1− τ)

2u
, |z2,k| <

1− τ

2v
, |ũk| ≤ u, 1 ≤ k ≤ n.

Now, from (19) we have

|εn| ≤
|v0||z2|

|W (n)
0 (z)||Ŵ (n)

1 (ẑ)|
(|γ0|+ |α2|+ |γ0||α2|)+

+
(
|v̂1||ẑ2|(|γ̂1|+ |α̂2|+ |γ̂1||α̂2|) +

|û1||ẑ1|(|β̂1|+ |α̂1|+ |β̂1||α̂1)|
|W (n)

2 (z)|

) |π(n)
0 (z)|

|Ŵ (n)
1 (ẑ)|

+

+
n−1∑
k=2

|π(n)
0 (z)|
|W̃ (n)

k |

(
|z2,k||α2,k|+

|ũk||z1,k|(|β̃k|+ |α1,k|+ |β̃k|α1,k|)
|W̃ (n)

k+1|

) k−1∏
r=1

|π̃(n)
r |.

Using (20)–(22) and (26)–(32), we get

|εn| <
2|v0|(1− τ)α

1 + τ + |1− 3τ |
×

×
( 2 + α

v − |v0|
+

4(1− τ)

v(1 + τ + |1− 3τ |)− 2|v0|(1− τ)

(3 + α

2
+

4τ(2 + α)

1 + τ + |1− 3τ |

) n−1∑
k=2

ηk−1
τ

)
.

Applying the equality
∑n−1

k=2 η
k−1 = η · 1−ηn−2

1−η
, η ̸= 1, we obtain (23).

Let τ ∈ (0, 1) \ {1/3}. Then we consider the function φ(α) defined by the right side of
(23). Since lim

α→0+
φ(α) = 0, then for any ϵ > 0 there exists δϵ > 0 such that for any 0 < α < δϵ,

φ(α) < ϵ. Thus, if

|α1| ≤ α < δϵ, |α2| ≤ α < δϵ, |γ0| ≤ α < δϵ, |γ1| ≤ α < δϵ, |βk| ≤ α < δϵ k ≥ 1,

then |ϵn| ≤ φ(α) < ϵ, n ≥ 3, proving numerical stability of branched continued fraction (2).

Remark 1. If τ = 1/3 in (22), then from (30) it follows that ητ = 1 and then ε depends
on n, which contradicts Definition 1.
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