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In the article we derive sharp bounds for the third-order Hermitian-Toeplitz determinant
of starlike and convex functions associated with the exponential function, as well as for their
inverse classes. An analytic in the unit disk D = {z : |z| < 1} function f is said to be subordinate
to an analyic in D function g (denoted by f ≺ g), if there exists an analytic in D function w with
|w(z)| ≤ |z| and w(0) = 0 such that f(z) = g(w(z)). Let A be the class of analytic functions f
in D of the form f(z) = z +

∑∞
n=2 anz

n, z ∈ D, and S∗
e be the class of functions f ∈ A such

that zf ′(z)/f(z) ≺ ez.
In particular, the following statement has been proven (Theorem 1): If f ∈ S∗

e , then
− 1

15 ≤ T3,1(f) ≤ 1, where T3,1(f) is the third-order Hermitian-Toeplitz determinant of the
form T3,1(f) := 2 Re

(
a22 · a3

)
− 2|a2|2 − |a3|2 + 1. The upper and lower bounds are sharp.

The article also obtained similar (sharp) estimates in the class

Ce :=
{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ ez

}
:

9

16
≤ T3,1(f) ≤ 1 (Theorem 2),

and in the class
Re := {f ′(z) ≺ ez} :

5

9
≤ T3,1(f) ≤ 1 (Theorem 3).

1. Introduction. Let A denote the family of normalized analytic functions f in the open
unit disc D := {z ∈ C : |z| < 1} having the Taylor series expansion

f(z) = z +
∞∑
n=2

anz
n, z ∈ D. (1)

We write S for the subclass of A consisting of functions that are univalent in D. A function
f is said to be subordinate to a function g, denoted by f ≺ g, if there exists an analytic
function w with |w(z)| ≤ |z| and w(0) = 0 such that f(z) = g(w(z)). If g is univalent and
f(0) = g(0), then f(D) ⊆ g(D).

Let φ be an analytic and univalent function in D, starlike with respect to φ(0) = 1,
satisfying φ′(0) > 0, and symmetric about the real axis. Ma and Minda ([5]) extended the
classical families of bounded turning functions, starlike and convex functions by introducing
the following classes: R(φ) := {f ′(z) ≺ φ(z)},

S∗(φ) :=
{
f ∈ A :

zf ′(z)

f(z)
≺ φ(z)

}
, C(φ) :=

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ φ(z)

}
,
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Recently, considerable attention has been devoted to subclasses of starlike and convex func-
tions in which the superordinate function φ(z) does not necessarily map onto the right
half-plane. A natural choice is the exponential function, which gives rise to interesting and
nontrivial problems.

The family of starlike functions related to the exponential function was introduced by R.
Mendiratta, S. Nagpal and V. Ravichandran ([6]) and is given by

S∗
e :=

{
f ∈ A :

zf ′(z)

f(z)
≺ ez

}
.

Similarly, the corresponding family of convex functions and bounded turning functions asso-
ciated with the exponential function are defined as

Ce :=
{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ ez

}
, Re := {f ′(z) ≺ ez} .

M. F. Ali, D. K. Thomas and A. Vasudevarao ([1]) obtained sharp estimates of the
symmetric Toeplitz determinants for univalent and typically real functions. The extensive
research devoted to symmetric Toeplitz and Hankel determinants has motivated the study
of bounds for Hermitian-Toeplitz determinants.

For the sequence {ak} of coefficients of a normalized analytic function f , the Hermitian-
Toeplitz determinant of order n is defined by ([3, 7])

Tq,n(f) :=

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an · · · an+q−2
...

... . . . ...
an+q−1 an+q−2 · · · an

∣∣∣∣∣∣∣∣∣ . (2)

From equation (2), it follows that the third-order Hermitian-Toeplitz determinant T3,1(f)
reduces to the functional form

T3,1(f) := 2 Re
(
a22 · a3

)
− 2|a2|2 − |a3|2 + 1. (3)

If f ∈ S, then the inverse function F := f−1 is well-defined and analytic in Dr(f), where
r(f) := sup{r > 0: Dr ⊂ f(D)}. Thus, we can write

F (w) = w +
∞∑
n=2

Anw
n, w ∈ Dr(f), (4)

where An := an(F ).
It follows from equation (4) (e.g., [4, V.I, p. 57]) that

A2 = −a2, A3 = −a3 + 2a22, an := an(f). (5)

Then from (3), (5), we deduce that

T3,1(f
−1) := 2 Re

(
a22 · a3

)
− 2|A2|2 − |A3|2 + 1 = 2 Re

(
a22 · a3

)
− 2|a2|2 − |a3|2 + 1 = T3,1(f).

In paper [2] were the first to establish sharp lower and upper bounds for the second
and third-order Hermitian–Toeplitz determinants for the classes of starlike and convex func-
tions of order α. V. Kumar, R. Srivastava and N. E. Cho ([8]) derived the sharp bounds for
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second and third-order Hermitian-Toeplitz determinants in the Janowski starlike and convex
function classes. More recently, S. Kumar, R. K. Pandey and P. Rai ([9]) determined sharp
bounds on Hermitian-Toeplitz determinants of associated Sakaguchi functions.

Inspired by the previous studies on Hermitian-Toeplitz determinants, this paper focuses
on deriving sharp upper and lower bounds for the third-order Hermitian-Toeplitz determinant
corresponding to functions belonging to the classes S∗

e , Ce and Re.
We recall the following result due to R. J. Libera and E. J. Zlotkiewicz ([10]).

Lemma 1 ([10], Lemma 3, p.254). Let P denote the class of analytic functions with the
Taylor expansion

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · , (6)

satisfying Re{p(z)} > 0 for z ∈ D. Then 2p2 = p21 + (4− p21) ξ for some ξ ∈ D.

2. Main results.

Theorem 1. Let f ∈ S∗
e and be given by (1). Then

− 1

15
≤ T3,1(f) ≤ 1. (7)

The upper bound and lower bound are sharp for the functions f1 and f2 defined by

f1(z) = z exp
(∫ z

0

et
3 − 1

t
dt
)
= z +

1

3
z4 + . . . ,

f2(z) = exp

∫ z

0

exp
((

t
√

56/15t− 2t2
)(
2− t

√
56/15

)) dt

t
= z +

√
14/15z2 +

2

3
z3 + . . . ,

respectively.

Proof. Let f ∈ S∗
e . By definition of the class S∗

e , there exists a Schwarz function w with
w(0) = 0 and |w(z)| < |z| in D such that

zf ′(z)

f(z)
= ew(z). (8)

Let p ∈ P . Then, using the definition of subordination, we can write

w(z) =
p(z)− 1

p(z) + 1
. (9)

Let p be given by (6). From (8) and (9), by equating coefficients we obtain

a2 =
1

2
p1, a3 =

1

16
p21 +

1

4
p2. (10)

Before proceeding with the estimates, it is important to note that both the class P of
functions with positive real part and the class S∗

e are invariant under rotations. Hence,
without loss of generality, since |pn| ≤ 2, we may assume 0 ≤ p1 ≤ 2.
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In view of Lemma 1 together with (10), we obtain, for some ξ ∈ D, that

2Re(a22 · a3) = 2Re

(
p21
4

)(
1

16
p21 +

1

4
p2

)
=

p21
32

(
p21 + 2(p21 + (4− p21) Re ξ

)
=

=
3p41
32

+
p21(4− p21) Re ξ

16
, −2|a2|2 = −1

2
p21, (11)

−|a3|2 = −
∣∣∣∣ 116p21 + 1

4
p2

∣∣∣∣2 = −
∣∣∣∣ 316p21 + 1

8
(4− p21) ξ

∣∣∣∣2 =
= − 9

256
p41 −

3

64
p21(4− p21) Re ξ − 1

64
(4− p21)

2 |ξ|2. (12)

By applying equations (11), (12), equation (3) can be written as

T3,1(f) = 1 +
3p41
32

+
p21(4− p21) Re ξ

16
− 1

2
p21 −

9

256
p41 −

3

64
p21(4− p21) Re ξ − (4− p21)

2 |ξ|2

64
=

=
1

256

(
256 + 15p41 − 128p21 + 4p21(4− p21) Re ξ − 4(4− p21)

2 |ξ|2
)
. (13)

Next, we aim to maximize the right-hand side of (13). Since Re ξ ≤ |ξ|, it follows from (13)
that

T3,1(f) ≤
1

256

(
256 + 15p41 − 128p21 + 4p21(4− p21)|ξ| − 4(4− p21)

2 |ξ|2
)
=

1

256
F (p21, |ξ|). (14)

Setting p21 =: x ∈ [0, 4] and |ξ| =: y ∈ [0, 1], then F (p21, |ξ|) can be written as follows

F (x, y) = 256 + 15x2 − 128x+ 4x(4− x)y − 4(4− x)2y2. (15)

By simple standard calculation we obtain

T3,1(f) ≤
1

256
max{F (x, y) : x ∈ [0, 4], y ∈ [0, 1]} = 1.

Next, for obtain a lower estimate of T3,1(f) we apply the two inequalities Re ξ ≥ −|ξ| and
|ξ| ≤ 1 in (13). Set again p21 =: x ∈ [0, 4]. Therefore,

T3,1(f) ≥
1

256

(
256 + 15p41 − 128p21 − 4p21(4− p21)|ξ| − 4(4− p21)

2 |ξ|2
)
≥

≥ 1

256
min{256 + 15x2 − 128x− 4x(4− x)− 4(4− x)2) : x ∈ [0, 4]} =

=
1

256
min{15x2 − 112x+ 192: x ∈ [0, 4]} = − 1

15
.

Equality for the upper bound in inequality (7) is attained for the function f1, where

f1(z) = z exp
(∫ z

0

et
3 − 1

t
dt
)
= z +

1

3
z4 + · · · .

We now present the extremal functions corresponding to the attainment of the lower bounds
in the various cases.
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Consider the function p1 : D → C defined by

p1(z) :=
1− z2

1−
√

56
15
z + z2

, z ∈ D.

The function p1 is analytic in D and p1 ∈ P . Also p1 has only simple poles at the points
z± =

√
14±i√
15

∈ ∂D.
The equality

zf ′(z)

f(z)
= e

p1(z)−1
p1(z)+1 = e

√
56
15 z−2z2

2−
√

56
15 z

holds for the function f2, which give

f2(z) = exp

∫ z

0

1

t
exp


√

56
15
t− 2t2

2−
√

56
15
t

 dt

 = z +
1

2

√
56

15
z2 +

2

3
z3 + · · ·

and so a2 =
1
2

√
56
15

, a3 = 2
3
. It is easy to verify that T3,1(f) = − 1

15
.

Theorem 2. Let f ∈ Ce and be given by (1). Then
9

16
≤ T3,1(f) ≤ 1.

The upper bound and lower bound are sharp for the functions f3 and f4 defined by

f3(z) =

∫ z

0

exp

(∫ x

0

et
3 − 1

t
dt

)
dx = z +

1

12
z4 + . . . ,

f4(z) =

∫ z

0

exp

(∫ x

0

et − 1

t
dt

)
dx = z +

1

2
z2 +

1

4
z3 + . . . ,

respectively.

Proof. Let f ∈ Ce. There exists a Schwarz function w with w(0) = 0 and |w(z)| < |z| in D
such that

1 +
zf ′′(z)

f ′(z)
= ew(z). (16)

Let p be given by (6). From (16) and (9), by equating coefficients we obtain

a2 =
1

4
p1, a3 =

1

48
p21 +

1

12
p2. (17)

Prior to carrying out the estimates, we remark that both the class P of functions with
positive real part and the class Ce are preserved under rotations. Consequently, without any
loss of generality, and since |pn| ≤ 2, we may restrict ourselves to the case 0 ≤ p1 ≤ 2.

Applying Lemma 1, (17), we get, for some ξ ∈ D, that

2Re(a22 · a3) = 2Re

(
p21
16

)(
1

48
p21 +

1

16
p2

)
=

p21
384

(
p21 + 2(p21 + (4− p21) Re ξ

)
=

=
p41
128

+
p21(4− p21) Re ξ

192
, −2|a2|2 = −1

8
p21, (18)
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−|a3|2 = −
∣∣∣∣ 148p21 + 1

12
p2

∣∣∣∣2 = −
∣∣∣∣ 116p21 + 1

24
(4− p21) ξ

∣∣∣∣2 =
= − 1

256
p41 −

1

192
p21(4− p21) Re ξ − 1

576
(4− p21)

2 |ξ|2. (19)

By applying equations (18), (19), equation (3) can be written as

T3,1(f) = 1 +
p41
128

+
p21(4− p21) Re ξ

192
− 1

8
p21 =

= − 1

256
p41 −

1

192
p21(4− p21) Re ξ − 1

576
(4− p21)

2 |ξ|2 =

=
1

2304

(
2304 + 9p41 − 288p21 − 4(4− p21)

2 |ξ|2
)
=

1

2304
I(p21, |ξ|). (20)

Setting p21 =: x ∈ [0, 4] and |ξ| =: y ∈ [0, 1], then I(p21, 1) can be written as follows

I(x, y) = 2304 + 9x2 − 288x− 4(4− x)2y2. (21)

Now, differentiating partially (21) with respect to x and y we obtain

∂I(x, y)

∂x
= 18x− 288 + 8(4− x)y2,

∂I(x, y)

∂y
= −8(4− x)2y.

Solving an equations ∂
∂x
J(x, y) = 0 and ∂

∂y
J(x, y) = 0, we obtain that the only critical

point is (16, 0) ̸∈ [0, 4] × [0, 1]. Therefore, the maximum value of I(x, y) is attained on the
boundary of [0, 4]× [0, 1].

On the boundary of the rectangular region [0, 4] × [0, 1], the function F (x, y) takes the
following forms:

I(0, y) = 2304− 64y2 ≤ 2304, I(4, y) = 1296 for all y ∈ [0, 1]

and

I(x, 0) = 2304 + 9x2 − 288x, I(x, 1) = 5x2 − 256x+ 2240 for all x ∈ [0, 4].

We see that I ′(x, 0) < 0 and I ′(x, 1) < 0 for all x ∈ [0, 4]. Therefore I(x, 0) ≤ 1296 and
I(x, 1) ≤ 1296 for all x ∈ [0, 4]. From above discussion, we deduce that

T3,1(f) ≤
1

2304
max{2304, 1296} = 1.

Next, we aim to minimize the right-hand side of (20). Now from (20) we have

T3,1(f) =
1

2304

(
2304 + 9p41 − 288p21 − 4(4− p21)

2 |ξ|2
)
≥ 1

2304
I(p21, 1).

Setting p21 =: x ∈ [0, 4]. then I(p21, |ξ|) can be written as follows

I(x, 1) = 2304 + 9p41 − 288p21 − 4(4− p21)
2 = 5x2 − 256x+ 2240.

Here, it is easy to clear that I ′(x, 1) < 0 for x ∈ [0, 4]. Moreover, since I ′′(x, 1) = 10 > 0, it
follows that I(x, 1) attains its minimum at x = 4. Therefore I(x, 1) ≥ 1296 for all x ∈ [0, 4].
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From above discussion, we deduce that

T3,1(f) ≥
1296

2304
=

9

16
.

Hence proved.
The equality T3(f) = 1 is attained for the function

f(z) = f3(z) =

∫ z

0

exp

(∫ x

0

et
3 − 1

t
dt

)
dx = z +

1

12
z4 + · · · .

We now present the extremal functions corresponding to the attainment of the lower bounds
in the various cases.

Consider the function p2 : D → C defined by p2(z) :=
1+z
1−z

, z ∈ D. Since, p2(z)−1
p2(z)+1

= z, we
define the function f4 by the conditions

1 +
zf ′′

4 (z)

f ′
4(z)

= e
p2−1
p2+1 = ez, f4(0) = 0, f ′

4(0) = 1.

Then we have

f4(z) =

∫ z

0

exp

(∫ x

0

et − 1

t
dt

)
dx = z +

1

2
z2 +

1

4
z3 + · · · .

Clearly a2 =
1
2

and a3 =
1
4
. Hence T3,1(f) =

9
16

, i.e. the equality holds.

Theorem 3. Let f ∈ Re and be given by (1). Then

5

9
≤ T3,1(f) ≤ 1. (22)

The upper bound and lower bound are sharp.

Proof. Let f ∈ Ce and p be given by (6). There exists a Schwarz function w with w(0) = 0
and |w(z)| < |z| in D such that f ′(z) = ew(z). From last equality and (9), by equating
coefficients, we obtain

a2 =
1

4
p1, a3 = − 1

24
p21 +

1

6
p2. (23)

Prior to carrying out the estimates, we remark that both the class P of functions with
positive real part and the class Re are preserved under rotations. Consequently, without any
loss of generality, and since |pn| ≤ 2, we may restrict ourselves to the case 0 ≤ p1 ≤ 2.

Applying Lemma 1, (23), for some ξ ∈ D we get,

2Re(a22 · a3) = 2Re
(p21
16

)(
− 1

24
p21 +

1

6
p2

)
=

p41
192

+
p21(4− p21) Re ξ

96
, (24)

−2|a2|2 = −1

8
p21, (25)

−|a3|2 = −
∣∣∣− 1

24
p21 +

1

6
p2

∣∣∣2 = −
∣∣∣ 1
24

p21 +
1

12
(4− p21) ξ

∣∣∣2 =
= − 1

576
p41 −

1

144
p21(4− p21) Re ξ − 1

144
(4− p21)

2 |ξ|2. (26)
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By applying equations (24)–(26), equation (3) can be written as

T3,1(f) = 1 +
p41
192

+
p21(4− p21) Re ξ

96
− 1

8
p21 −

1

576
p41 −

1

144
p21(4− p21) Re ξ−

− 1

144
(4− p21)

2 |ξ|2 = 1

288

(
288 + p41 − 36p21 + p21(4− p21) Re ξ − 2(4− p21)

2 |ξ|2
)
. (27)

Next, we aim to maximize the right-hand side of (27). Since Re ξ ≤ |ξ|, it follows from (27)
that

T3,1(f) ≤
1

288

(
288 + p41 − 36p21 + p21(4− p21)|ξ| − 2(4− p21)

2 |ξ|2
)
=

1

288
J(p21, |ξ|).

Setting p21 =: x ∈ [0, 4] and |ξ| =: y ∈ [0, 1], then J(p21, |ξ|) can be written as follows

J(x, y) = 288 + x2 − 36x+ x(4− x)y − 2(4− x)2y2. (28)

Now, differentiating partially (28) with respect to x and y we obtain

∂J(x, y)

∂x
= 2x− 36 + (4− 2x)y + 4(4− x)y2,

∂J(x, y)

∂y
= x(4− x)− 4(4− x)2y.

Solving the equations ∂
∂x
J(x, y) = 0 and ∂

∂y
J(x, y) = 0, we obtain that the only critical

points are (4,−7), (16,−1
3
) ̸∈ [0, 4] × [0, 1]. Therefore, the maximum value of J(x, y) is

attained on the boundary of [0, 4]× [0, 1].
On the boundary of the rectangular region [0, 4] × [0, 1], the function J(x, y) takes the

following forms: J(0, y) = 288 − 32y2 ≤ 288, I(4, y) = 160 for all y ∈ [0, 1] and J(x, 0) =
288 + x2 − 36x, I(x, 1) = −2x2 − 16x + 256 for all x ∈ [0, 4]. We see that J ′(x, 0) < 0 and
J ′(x, 1) < 0 for all x ∈ [0, 4]. Therefore J(x, 0) ≤ 288 and I(x, 1) ≤ 288 for all x ∈ [0, 4].
From above discussion, we deduce that T3,1(f) ≤ max{160, 288}/288 = 1.

Next, we aim to minimize the right-hand side of (27). Now from (27) we have

T3,1(f) ≥
1

288

(
288 + p41 − 36p21 − p21(4− p21)|ξ| − 2(4− p21)

2 |ξ|2
)
≥ 1

288
K(p21, 1).

Setting p21 =: x ∈ [0, 4]. then I(p21, |ξ|) can be written as follows

K(x, 1) = 288 + x2 − 36x− x(4− x)− 2(4− x)2 = 256− 24x.

Here, it is easy to clear that K ′(x, 1) < 0 for x ∈ [0, 4]. Moreover, it follows that K(x, 1)
attains its minimum at x = 4. Therefore K(x, 1) ≥ 160 for all x ∈ [0, 4].

From above discussion, we deduce that

T3,1(f) ≥
160

288
=

5

9
.

The equalities T3,1(f5) = 1 and T3,1(f6) =
5
9

is attained for the functions

f5(z) =

∫ z

0

et
3

dt = z + 1
4
z4 + 1

14
z7 + . . . , f6(z) =

∫ z

0

et dt = z + 1
2
z2 + 1

6
z3 + . . . ,

respectively.
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