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In the article we derive sharp bounds for the third-order Hermitian-Toeplitz determinant
of starlike and convex functions associated with the exponential function, as well as for their
inverse classes. An analytic in the unit disk D = {z: |z| < 1} function f is said to be subordinate
to an analyic in D function g (denoted by f < g), if there exists an analytic in D function w with
|w(z)| < |z| and w(0) = 0 such that f(z) = g(w(z)). Let A be the class of analytic functions f
in D of the form f(z) =2+ .~ ,a,2", z € D, and S} be the class of functions f € A such
that zf'(2)/f(z) < e

In particular, the following statement has been proven (Theorem 1): If f € S, then
—L < T3:(f) < 1, where T3(f) is the third-order Hermitian-Toeplitz determinant of the
form T3 1(f) := 2 Re(a3 - a3) — 2|az|* — |ag|?> 4+ 1. The upper and lower bounds are sharp.

The article also obtained similar (sharp ) estimates in the class

and in the class

{f eA: 1+ fﬁ } <T31(f) <1 (Theorem 2),
g 31(f) <1 (Theorem 3).

1. Introduction. Let A denote the family of normalized analytic functions f in the open
unit disc D := {z € C: |z| < 1} having the Taylor series expansion

z):z+2anz", z € D. (1)
n=2

We write S for the subclass of A consisting of functions that are univalent in . A function
f is said to be subordinate to a function g, denoted by f < g, if there exists an analytic
function w with |w(2)| < |z|] and w(0) = 0 such that f(z) = g(w(z)). If g is univalent and
£(0) = 9(0), then f(D) C (D).

Let ¢ be an analytic and univalent function in D, starlike with respect to ¢(0) = 1,
satisfying ¢’(0) > 0, and symmetric about the real axis. Ma and Minda ([5]) extended the
classical families of bounded turning functions, starlike and convex functions by introducing

the following classes: R(¢) := {f'(2) < ¢(2)},

2f'(2)

<9(2)}, Clp)={fed1+
f(z)
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Recently, considerable attention has been devoted to subclasses of starlike and convex func-
tions in which the superordinate function ¢(z) does not necessarily map onto the right
half-plane. A natural choice is the exponential function, which gives rise to interesting and
nontrivial problems.

The family of starlike functions related to the exponential function was introduced by R.
Mendiratta, S. Nagpal and V. Ravichandran ([6]) and is given by

St = {f €A ZJ{(S> < 62}.

Similarly, the corresponding family of convex functions and bounded turning functions asso-
ciated with the exponential function are defined as

2f"(2)
f'(2)

M. F. Ali, D. K. Thomas and A. Vasudevarao (|1]) obtained sharp estimates of the
symmetric Toeplitz determinants for univalent and typically real functions. The extensive
research devoted to symmetric Toeplitz and Hankel determinants has motivated the study
of bounds for Hermitian-Toeplitz determinants.

For the sequence {ay} of coefficients of a normalized analytic function f, the Hermitian-
Toeplitz determinant of order n is defined by ([3, 7])

Ce::{fGA:1+ —<ez}, Re :={f'(z) < €’}.

Gp, (p41 crr Op4g-1
Ant1 Qp “rr Qpgg—2
Ton(f) == (2)
Uptg—1 Opiyg—2 Qn

From equation (2), it follows that the third-order Hermitian-Toeplitz determinant T3 (f)
reduces to the functional form

Ts.(f) := 2 Re(a3 - a3) — 2[as|* — [as]” + 1. (3)
If f € S, then the inverse function F' := f~' is well-defined and analytic in D, s, where
r(f) :==sup{r > 0: D, C f(D)}. Thus, we can write
F(w)=w+ Y A", w € Dyy), (4)
where A,, := a,(F).
It follows from equation (4) (e.g., [4, V.I, p. 57]) that
Ay = —ay, Ay = —as + 2a3, an = a,(f). (5)
Then from (3), (5), we deduce that
T31(f7') =2 Re(a3 - @3) — 2[Ao|* — |43 + 1 =2 Re(a3 - @3) — 2Jas|* — |aa* + 1 = T31(f).

In paper [2] were the first to establish sharp lower and upper bounds for the second
and third-order Hermitian—Toeplitz determinants for the classes of starlike and convex func-
tions of order a. V. Kumar, R. Srivastava and N. E. Cho ([8|) derived the sharp bounds for
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second and third-order Hermitian-Toeplitz determinants in the Janowski starlike and convex
function classes. More recently, S. Kumar, R. K. Pandey and P. Rai (|9]) determined sharp
bounds on Hermitian-Toeplitz determinants of associated Sakaguchi functions.

Inspired by the previous studies on Hermitian-Toeplitz determinants, this paper focuses
on deriving sharp upper and lower bounds for the third-order Hermitian-Toeplitz determinant
corresponding to functions belonging to the classes S, C. and R..

We recall the following result due to R. J. Libera and E. J. Zlotkiewicz ([10]).

Lemma 1 ([10], Lemma 3, p.254). Let P denote the class of analytic functions with the
Taylor expansion

p(2) =14+piz+p2® +p32 +-- -, (6)

satisfying Re{p(z)} > 0 for z € D. Then 2p, = p? + (4 — p?) £ for some € € D.

2. Main results.

Theorem 1. Let f € 8¢ and be given by (1). Then

~E<Talf) <L Y

The upper bound and lower bound are sharp for the functions f, and fs defined by

e’ —1 1,
fl(z):zexp< dt>:z+—z +...,
.t 3

fa(2) = exp/ exp ((t 56/15t — 2t*) (2 — ¢ 56/15)) % =2+ /14/152* + ng” +...,
0

respectively.

Proof. Let f € S). By definition of the class S, there exists a Schwarz function w with
w(0) = 0 and |w(z)| < |z| in D such that

zf'(2) (2)
— ew(z) 8
08 )
Let p € P. Then, using the definition of subordination, we can write
p(z) =1
= 9
wie) =25 )

Let p be given by (6). From (8) and (9), by equating coefficients we obtain

1 1, 1
as = =p1, as = —pi + —pa. 10
2 22?1 3 16]91 4]02 (10)
Before proceeding with the estimates, it is important to note that both the class P of
functions with positive real part and the class S are invariant under rotations. Hence,
without loss of generality, since |p,| < 2, we may assume 0 < p; < 2.
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In view of Lemma 1 together with (10), we obtain, for some ¢ € D, that

P 1_ =
2Re(a; - ag)—2Re<41> (16 Pl + P ) L (pi+2(pi+ (4 —p}) Re §) =
3pt P4 — p ) Re & 1
= 3—21 L 1 , —2|@2|2 = _519%, (11>
1 2
—lag|* = — Epﬁr pz = ‘—pl —p)¢| =
= et~ P4 = ) Re €~ (4 - ) IeP (12)

By applying equations (11), (12), equation (3) can be written as

3p; pid—phReé 1, 9 3 2 (4 —pd)? g2
T 14 o2 Zd 20 e Y Re ¢ - o PUISE
51(f) to5 16 5P 256191 64191( pi) Re § ol
= o5 (256 + 15p7 — 128p? + 4p?(4 — p?) Re € — 4(4 — p?)* [¢]%) . (13)

Next, we aim to maximize the right-hand side of (13). Since Re¢ < [¢], it follows from (13)
that

1

Tsa(f) < 55 (256 + 15pt — 128p7 + 4pt (4 — p})|€] — 4(4 — p})? |€°) =

1

PR 1D, (14)

Setting p? =: x € [0,4] and [¢| =: y € [0,1], then F(p?, |¢]) can be written as follows
F(z,y) = 256 + 152° — 128z + 4x(4 — )y — 4(4 — )*y°. (15)
By simple standard calculation we obtain
Tor(f) < %maX{F(w,y): ve0,4], ye 0,1} =1.

Next, for obtain a lower estimate of T5;(f) we apply the two inequalities Re{ > —[¢| and
€] < 1in (13). Set again p? =: z € [0,4]. Therefore,

Ts1(f) = 55 (256 + 15p1 — 128p] — dpi(4 — pr)l¢] — 4(4 = p1)* [€°) 2
1
> oot min{256 4+ 152% — 1287 — 42(4 — ) —4(4 — 2)%): v € [0,4]} =
1 1
= %mln{l’éx — 11224+ 192: z € [0,4]} = T

Equality for the upper bound in inequality (7) is attained for the function f;, where

3

zZ _1 1
fl(Z)IzeXp</€ - dt>=z+§z4+--~.
0

We now present the extremal functions corresponding to the attainment of the lower bounds
in the various cases.
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Consider the function p;: D — C defined by

1—2?

pl(z) = o )]
IL—y/Ez+=z

The function p; is analytic in D and p; € P. Also p; has only simple poles at the points
2y = Y1 € g
£~ "5 -9
The equality

z € D.

56 , 222
() meo L

=eri®x+l = ¢ 57
f(z)

holds for the function f,, which give

Vit -2 1 /56 , 2
fo(2) = exp /—exp =z+ oA+
; /—t 2V 15

and s0 ay = 54/22, a3 = 2. It is easy to verify that T3, (f) = —1. [

9
Theorem 2. Let f € C, and be given by (1). Then 16 <T31(f) <1
The upper bound and lower bound are sharp for the functions f3 and f, defined by

2 Tet’ 1 1
f3(2):/0 exp(/o ; dt) dx—z%—ﬁz +.
: Tt 1 1, 1
f4(z):/exp(/ ¢ dt)dx:z+—22+—z3+...,
. .t 27 1

Proof. Let f € C.. There exists a Schwarz function w with w(0) = 0 and |w(z)| < |z| in D
such that

respectively.

Zf”( ) w(z) (16)

=€

el
Let p be given by (6). From (16) and (9), by equating coefficients we obtain

1 1 1

az = —p1, az = —pi +

1 AP T P (17)

Prior to carrying out the estimates, we remark that both the class P of functions with

positive real part and the class C, are preserved under rotations. Consequently, without any

loss of generality, and since |p,| < 2, we may restrict ourselves to the case 0 < p; < 2.
Applying Lemma 1, (17), we get, for some £ € D, that

16 ) \ 48" " 16 384

_pi o, pid—pi)Re
128 192 ’

P 1 1 P2 —
2Re(a? - @3) = 2Re( 1) (—p2 + —pQ) L (pf+2(p] + (4 —p}) Re §) =

1
2l =~ (19)
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2

1
‘_P1 v _p%)f =

48

—las]? = -

1

= __pl

S5t~ T3 2(4—pl>Res——<4— 27 1€, (19)

576
By applying equations (18), (19), equation (3) can be written as

p%(él—p%) Re g 1,

A
Tyi(f) =142+

128 102 T T
1 A 1 1 212 |¢|2
= _ﬁ 192]91(4 pl)Re 5_ %(4 _pl) ‘5’ =
1
2304 (2304 + 9p1 - 288171 4(4 - p1) €| ) = 2304 (plv €]). (20)

Setting p? =: x € [0,4] and [¢| =: y € [0,1], then I(p}, 1) can be written as follows
I(x,y) = 2304 + 92* — 2887 — 4(4 — z)*y*. (21)
Now, differentiating partially (21) with respect to z and y we obtain

oI(x,y)
ox

I
187 — 2884 8(4— 2)y?, 2 g”y Y) - _s4— a2y

Solving an equations &.J(z,y) = 0 and & ,J(2,y) = 0, we obtain that the only critical
point is (16,0) & [0,4] x [0 1]. Therefore, the maximum value of /(x,y) is attained on the
boundary of [0,4] x [0, 1].

On the boundary of the rectangular region [0, 4] x [0, 1], the function F'(x,y) takes the
following forms:

1(0,y) = 2304 — 64y* < 2304, 1(4,y) = 1296 for ally € [0, 1]
and
I(x,0) = 2304 + 92* — 288z, I(x,1) = 5a® — 2562 + 2240 for all € [0, 4].

We see that I'(z,0) < 0 and I'(xz,1) < 0 for all = € [0,4]. Therefore I(x,0) < 1296 and
I(z,1) <1296 for all x € [0,4]. From above discussion, we deduce that

max{2304, 1296} = 1.

1
Tsa(f) < 2304

Next, we aim to minimize the right-hand side of (20). Now from (20) we have

Ts1(f) = (2304 4 9p} — 288p; — 4(4 — p})? [¢]%) > ——1(p}, 1).

2304 2304

Setting p? =: x € [0,4]. then I(p?,]€|) can be written as follows
I(z,1) = 2304 + 9p* — 288p% — 4(4 — p?)* = 522 — 256 + 2240.

Here, it is easy to clear that I'(z,1) < 0 for = € [0,4]. Moreover, since ["”(z,1) = 10 > 0, it
follows that I(z,1) attains its minimum at = = 4. Therefore I(x,1) > 1296 for all = € [0, 4].
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From above discussion, we deduce that

1296 9
T371(f) > = —.

— 2304 16
Hence proved.
The equality T3(f) = 1 is attained for the function

f(Z):f:s(z):/Ozex]D(/oze t_ldt>dx:z+%z4+---.

We now present the extremal functions corresponding to the attainment of the lower bounds
in the various cases.

Consider the function py: D — C defined by py(z) := }fz, z € D. Since, % =z, we
define the function f; by the conditions

z //(Z) po—1
L4 = = en®t = €%, f4(0) =0, fi(0) = 1.
7i(2) 1(0)=0. £1(0)
Then we have
fo = | exp(/ ‘ dt) FRRIDNS UERS U S
0 o t 2 4
Clearly a; = 3 and ag = ;. Hence Ty, (f) = 1%, i.e. the equality holds. n

Theorem 3. Let f € R, and be given by (1). Then

g <T3:1(f) <1 (22)

The upper bound and lower bound are sharp.

Proof. Let f € C. and p be given by (6). There exists a Schwarz function w with w(0) = 0
and |w(z)| < |z| in D such that f/(z) = ¢“*). From last equality and (9), by equating

coefficients, we obtain
1 1 1

Qs = lela az = —ﬁpf + 6]92- (23)

Prior to carrying out the estimates, we remark that both the class P of functions with

positive real part and the class R. are preserved under rotations. Consequently, without any

loss of generality, and since |p,| < 2, we may restrict ourselves to the case 0 < p; < 2.
Applying Lemma 1, (23), for some ¢ € D we get,

2 4 2 2 ra
_ P L, 1 pi , pi(4—pi) Re &
2 2, =2 <_> - — = = 24
Re(a; - @) = 2Re (75 ( 2 T 6p2) 192 " 9% : (24)
1
—2[ag|? = —gpi (25)
1 1 2 1 1 2
. 2 N 2 - N P 2 i 4 2 —
|as| ‘ SaP1 T 6p2‘ ‘24171 + 12( pi)§
]‘ 4 1 2 2 ]‘ 2\2 2
— . 24 —p ) Re E— —(4— . 2
576p1 144171( pl) e § 144( pl) |€| ( )
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By applying equations (24)—(26), equation (3) can be written as

2 2 z
pt p?(4 —p?) Re 1 1 1
2 il 1) Re ¢ o 1 — —pi(4 —p}) Re &~

Ty (f) =1 I
si(f)=1+75+ 96 P17 Bret T 1
1
—Ta4- P2 e = 35 (288+p1 36p7 4+ pi (4 —pi) Re £ —2(4 —p})* [€°). (27

Next, we aim to maximize the right-hand side of (27). Since Re < [£], it follows from (27)
that

1

Tya(f) < g (285 4+ p1 = 3657 + 94— Pl — 204 — R IEP) = oo

< T 1€)).

Setting p? =: x € [0,4] and |¢| =: y € [0, 1], then J(p?,]€|) can be written as follows
J(z,y) = 288 + 2% — 36z + (4 — x)y — 2(4 — z)*y°. (28)
Now, differentiating partially (28) with respect to x and y we obtain

9J(x,y)
ox

=2z — 36 + (4 — 22)y + 4(4 — 2)y?, aj(;y? v) =x(4 — 1) —4(4 — 2)%y.

Solving the equations a%](x, y) = 0 and %J(w,y) = 0, we obtain that the only critical
points are (4,—7),(16,—3) ¢ [0,4] x [0,1]. Therefore, the maximum value of J(z,y) is
attained on the boundary of [0, 4] x [0, 1].

On the boundary of the rectangular region [0,4] x [0, 1], the function J(z,y) takes the
following forms: J(0,y) = 288 — 32y* < 288, [(4,y) = 160 for all y € [0,1] and J(z,0) =
288 + 22 — 36z, I(x,1) = —22? — 162 + 256 for all = € [0,4]. We see that J'(z,0) < 0 and
J'(z,1) < 0 for all z € [0,4]. Therefore J(z,0) < 288 and I(z,1) < 288 for all x € [0,4].
From above discussion, we deduce that T3 (f) < max{160,288}/288 = 1.

Next, we aim to minimize the right-hand side of (27). Now from (27) we have

1
—K(pi,1).

Tsalf) = = 288

> oog (2884 p1 = 36p1 — pi(4 — p)IE] = 2(4 = p1)° €)=

Setting p? =: x € [0,4]. then I(p?,]£|) can be written as follows
K(x,1) =288 + 2% — 362 — (4 — x) — 2(4 — x)* = 256 — 24x.

Here, it is easy to clear that K'(x,1) < 0 for « € [0,4]. Moreover, it follows that K(x,1)
attains its minimum at x = 4. Therefore K(z,1) > 160 for all z € [0,4].
From above discussion, we deduce that

160

5
288 9’

T3.(f) >

The equalities T51(f5) = 1 and T51(fs) = 5 is attained for the functions
f5(z):/0 etgdt:z+%z4+1—l427+..., fe(2) :/0 edt=z+12+ 12+,

respectively. O]
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