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In the paper, we present new findings concerning Cesàro-type operators. Special attention is
given to the Cesàro (C,α) summation operators, which form a widely used family of summation
methods in Fourier analysis. We establish sharp inequality for the upper bound of uniform
deviations of Cesàro (C,α) summation operators of the second order for the class of continuous
periodic functions.

Let n ∈ N and x
(n)
k = x

(n)
k−1+2π/(2n+ 1), k ∈ {0,±1, . . . ,±(n−1), n}, be the points from the

interval [−π, π] such that −π ≤ x
(n)
−n < x

(n)
−n+1 < . . . < x

(n)
−1 < x

(n)
0 < x

(n)
1 < . . . < x(n)
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k } is uniquely determined by the value of x(n)
0 . The Cesàro (C,α) summation

operators are defined by
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where Dν(t) = sin((ν+1/2)t)
2 sin(t/2) is the Dirichlet kernel, and Aα

n = (α+1)...(α+n)
n! (n ∈ N), Aα

0 = 1,

are the Cesàro numbers, α > −1. Let T = [−π, π] and C(T) be the space of continuouson T
functions with the norm ∥f∥C = max{|f(t)| : t ∈ T}.

The main result is contained in the following statement (Theorem 1): Let f ∈ C(T). Then
the inequality∥∥∥f − σ(2)

n [f ]
({

x
(n)
k

})∥∥∥
C
≤ 11

9 ln 2
· ln(n+ 1) · ω (f ; 2π/(2n+ 1)) , n ∈ N,

holds. The constant 11/(9 ln 2) in this inequality is sharp.

1. Introduction. Let C(T), where T = [−π, π] be the space of continuous, 2π-periodic
functions with the norm

∥f∥C = max{|f(t)| : t ∈ T},

and let ω(f ; δ) be the modulus of continuity of functions f ∈ C(T)
ω(f ; δ) = sup{|f(t1)− f(t2)| : |t1 − t2| ≤ δ}.

Cesàro (C, α) operators on C(T) are defined by the relation [32, Ch. 3]

σ(α)
n [f ](x) =

1

π

∫ π

−π

f(t)K(α)
n (t− x) dt, K(α)

n (t) =
1

Aα
n

n∑
ν=0

Aα−1
n−νDν(t),
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where Dν(t) =
sin((ν+1/2)t)

2 sin(t/2)
is the Dirichlet kernel, and Aα

n are the Cesàro numbers

Aα
0 = 1, Aα

n =
(α + 1) . . . (α + n)

n!
, n ∈ N, α > −1.

For α = 1, the Cesàro (C, α)-means are the Fejér (C, 1)-means, denoted by σn[f ]:

σn[f ](x) =
2

π(n+ 1)

∫ π

−π

f(t)
(sin ((n+ 1)(t− x)/2)

sin ((t− x)/2)

)2
dt.

Many prominent authors — including Fejér ([10]), Riesz ([20]), Zygmund ([31]), Leindler
([13, 14]), Móricz and Shi ([17]), Totik ([26, 27]), and others — have contributed to the study
of convergence and approximation properties of Cesàro (C, α) means in various function
spaces. Their ideas continue to develop in numerous works (see, for example, [1, 2, 6, 7, 8,
9, 15, 23, 24, 28, 30] and others). The concept of Cesàro means is presented in monographs
[5, 12, 25].

In numerical settings, it is often necessary to replace the integral operator by a discrete
counterpart. In this work, we consider summation analogues of Cesàro (C, α) operators,
which are defined as follows.

Let n ∈ N. Denote by An the family of sets of 2n+1 points {x(n)
k }, k = 0,±1,±2, . . . ,±n,

from the interval [−π, π] such that

−π ≤ x
(n)
−n < x

(n)
−n+1 < . . . < x

(n)
−1 < x

(n)
0 < x

(n)
1 < . . . < x(n)

n ≤ π,

and

x
(n)
k = x

(n)
k−1 +

2π

2n+ 1
, k = 0,±1, . . . ,±(n− 1), n.

It is clear that
− π

2n+ 1
≤ x

(n)
0 ≤ π

2n+ 1
,

and the set of points {x(n)
k } ∈ An is uniquely determined by the value of x(n)

0 .
The Cesàro (C, α) summation operators are defined by

σ(α)
n [f ]

({
x
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}
;x
)
=

2
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)
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)
.

We consider the problem of computing the minimal value of the constant A(α) in the
inequality ∥∥∥f − σ(α)

n [f ]
({

x
(n)
k

})∥∥∥
C
≤ A(α) ln(n+ 1)ω

(
f ;

2π

2n+ 1

)
,

which is determined by the relation

A∗(α) = sup
{
sup

{
sup

{∥∥f − σ(α)
n [f ]

({
x
(n)
k

})∥∥
C

/(
ln(n+ 1)ω

(
f ; 2π/(2n+ 1)

))
:

f ∈ C(T), f ̸≡ const
}
: {x(n)

k } ∈ An

}
: n ∈ N

}
.

Our goal is to obtain the sharp constant for the approximation of periodic functions by
second-order Cesàro (C, α) summation operators. This study continues the author’s earlier
studies reported in [18, 19], in which sharp constants of approximation were obtained for



SHARP CONSTANT OF APPROXIMATION 163

Cesàro integral operators of the second and third order acting on classes of periodic Lipschi-
tz functions. Sharp constants of approximation have been obtained for Fejér summation
operators in [16], and for some integral operators in [3, 4, 11, 16, 21, 22, 29].

2. Result. Our main result is contained in the following theorem.

Theorem 1. Let f ∈ C(T), n ∈ N. Then the inequality∥∥∥f − σ(2)
n [f ]

({
x
(n)
k

})∥∥∥
C
≤ 11

9 ln 2
· ln(n+ 1) · ω (f ; 2π/(2n+ 1)) (1)

holds. The constant 11/(9 ln 2) is sharp.

Proof. It is known that the equalities

n∑
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cosmx
(n)
k = 0,

n∑
k=−n

sinmx
(n)
k = 0, m, n ∈ N (2)

hold for every set of points {x(n)
k } ∈ An ([33, Ch. 1]).

Based on (2), one obtains the identity

σ(2)
n [1]

({
x
(n)
k

}
;x
)
≡ 1, n ∈ N, (3)

which will be essential in what follows.
In view of (2) and the properties of the modulus of continuity ω(f ; δ), it follows that for

each set {x(n)
k } ∈ An and each function f ∈ C(T), there exists a constant A > 0 such that

the inequality∥∥∥f − σ(2)
n [f ]
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x
(n)
k
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C
≤ A ln(n+ 1) · ω (f ; 2π/(2n+ 1)) , n ∈ N (4)

holds.
As in [4] (see also [16]), for a similar quantity, we obtain

sup
f∈C(T)
f ̸≡const

∥∥∥f − σ
(2)
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x
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})∥∥∥
C

ω
(
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2n+1

) = σ(2)
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({
x
(n)
k

}
; 0
)
, (5)

where fn(x) is an even 2π-periodic function defined on [0, π] by the relation

fn(x) =

{
[ (2n+1)x

2π
] + 1, 2kπ/(2n+ 1) < x < 2(k+1)π

2n+1
,

[ (2n+1)x
2π

], x = 2kπ/(2n+ 1), k = 0, 1, . . . , n.
(6)

Here, [a] denotes the floor function (integer part of a real number a).
Denote
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n∈N
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and
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=
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}
; 0
)
. (8)
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First, we derive a set {x(n)
k } ∈ An such that x

(n)
0 = 0. We have

λn ({2kπ/(2n+ 1)}) = 1

ln(n+ 1)

2

2n+ 1

n∑
k=−n
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(
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(n)
k

)
K(2)

n

(
x
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k

)
=

=
2

ln(n+ 1)(2n+ 1)

n∑
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fn (2kπ/(2n+ 1))K(2)
n (2kπ/(2n+ 1)) =

=
4

(2n+ 1) ln(n+ 1)

n∑
k=1

kK(2)
n (2kπ/(2n+ 1)) . (9)

Next, we obtain a convenient representation for the kernel K(2)
n (t). One can see that

K(2)
n (t) =
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(n+ 1)(n+ 2)

n∑
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(n− ν + 1)
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=

=
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((
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t
)
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and
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(n− ν) sin ((ν + 1/2) t) +
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sin ((ν + 1/2) t) =

=
1

4

(
2n

sin (t/2)
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+

3
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)
=

1

4

(
2n+ 3
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)
.

(11)

Combining (10) and (11), the following formula is obtained

K(2)
n (t) =

1

4(n+ 1)(n+ 2)

(
2n+ 3

sin2 (t/2)
− sin((2n+ 3)t/2)

sin3 (t/2)

)
, n ∈ N. (12)

From (12), it follows that

K(2)
n (2kπ/(2n+ 1)) =

(2n+ 3) + 2(−1)k+1 cos(kπ/(2n+ 1))

4(n+ 1)(n+ 2) sin2(kπ/(2n+ 1))
.

Applying Jordan’s inequality π| sin t| ≥ 2t, t ∈
[
0, π

2

]
, we obtain

K(2)
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4(n+ 1)(n+ 2)

(π
2

)2(2n+ 1

kπ

)2

.

Then

K(2)
n (2kπ/(2n+ 1)) ≤

(
(2n+ 3) + 2(−1)k+1 cos(kπ/(2n+ 1))

)
(2n+ 1)2

16(n+ 1)(n+ 2)

1

k2
≤

≤ ((2n+ 3) + 2) (2n+ 1)2

16(n+ 1)(n+ 2)

1

k2
=

(2n+ 5) (2n+ 1)2

16(n+ 1)(n+ 2)

1

k2
. (13)
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Combining (9) and (13), we obtain

λn ({2kπ/(2n+ 1)}) ≤ 4

(2n+ 1) ln(n+ 1)

n∑
k=1

k
(2n+ 5) (2n+ 1)2

16(n+ 1)(n+ 2)

1

k2
=

=
(2n+ 1)(2n+ 5)

4(n+ 1)(n+ 2) ln(n+ 1)

n∑
k=1

1

k
. (14)

Combining the inequality ([16])

(2n+ 1)

2(n+ 1) ln(n+ 1)

n∑
k=1

1

k
<

ln(2n+ 1)

ln(n+ 1)
, n ≥ 2,

and (9), (14), we have

λn ({2kπ/(2n+ 1)}) ≤ (2n+ 5) ln(2n+ 1)

2(n+ 2) ln(n+ 1)
, n ≥ 2.

In particular, from the last inequality we obtain

λn ({2kπ/(2n+ 1)}) ≤ 9 ln 5

8 ln 3
, n ≥ 2. (15)

It follows directly from (9) that
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({
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3

})
=

4
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1

3
cos
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3

)
=

4

9 ln 2
<
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Next, let x(n)
0 ̸= 0, 0 < x

(n)
0 ≤ π

2n+1
(the case − π

2n+1
≤ x

(n)
0 < 0 can be seen analogously).

Using (8) and (6), we have
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=
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1

(
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)
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1

(
x
(1)
1
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=

=
2

3 ln 2

(
2 +

1

3

(
cosx

(1)
−1 + cosx

(1)
0 + 2 cosx

(1)
1

))
.

Taking into account the definition of set
{
x
(n)
k

}
, we have
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x
(1)
k

})
=

2

3 ln 2

(
2 +

1

3

(
− 1/2 cosx

(1)
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√
2

3
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(1)
0

))
=

=
2

3 ln 2

(
2− 1

3
cos
(
x
(1)
0 − π

3

))
.

Since 0 < x
(1)
0 ≤ π

3
, then

sup
{x(1)

k }∈A1

λ1

({
x
(1)
k

})
= λ1

({
(2k + 1)

π

3

})
=

11

9 ln 2
. (17)
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We now consider the quantities λn({x(n)
k }) for n ≥ 2. Using the inequalities

2kπ

2n+ 1
< x

(n)
k ≤ (2k + 1)π

2n+ 1
, (18)

(2k − 1)π

2n+ 1
≤
∣∣∣x(n)

−k

∣∣∣ < 2kπ

2n+ 1
, k = 1, 2, . . . , n, (19)

equality (3), and, according to the evenness of the function fn(x), we have

λn

({
x
(n)
k

})
=

2

(2n+ 1) ln(n+ 1)

(
n∑

k=1

kK(2)
n

(
x
(n)
−k

)
+

n∑
k=0

(k + 1)K(2)
n

(
x
(n)
k

))
=

=
2

(2n+ 1) ln(n+ 1)

(
n∑

k=1

(k − 1)K(2)
n

(
x
(n)
−k

)
+

n∑
k=1

K(2)
n

(
x
(n)
−k

)
+

+
n∑

k=0

kK(2)
n

(
x
(n)
k

)
+

n∑
k=0

K(2)
n

(
x
(n)
k

))
=

=
1

ln(n+ 1)

(
1 +

2

2n+ 1

n∑
k=2

(k − 1)K(2)
n

(
x
(n)
−k

)
+

n∑
k=1

kK(2)
n

(
x
(n)
k

))
. (20)

Using (12) and Jordan’s inequality, we obtain

∣∣∣K(2)
n

(
x
(n)
k

)∣∣∣ ≤ 1

4(n+ 1)(n+ 2)

∣∣∣∣∣ 2n+ 3

sin2 (x
(n)
k /2)

−
sin 2n+3

2
x
(n)
k

sin3 (x
(n)
k /2)

∣∣∣∣∣ ≤
1

4(n+ 1)(n+ 2)

(
(2n+ 3) sin−2 (x

(n)
k /2) +

∣∣∣sin−3 (x
(n)
k /2)

∣∣∣) ≤

≤ 1

4(n+ 1)(n+ 2)

(
(2n+ 3)

(
π/x

(n)
k

)2
+
(
π/x

(n)
k

)3)
. (21)

Combining (18) and (21), we have∣∣∣K(2)
n

(
x
(n)
k

)∣∣∣ ≤ 1

4(n+ 1)(n+ 2)

(
(2n+ 3)(2n+ 1)2

4k2
+

(2n+ 1)3

8k3

)
. (22)

Similarly, we have∣∣∣K(2)
n

(
x
(n)
−k

)∣∣∣ ≤ 1

4(n+ 1)(n+ 2)

(
(2n+ 3)

(
π/x

(n)
−k

)2
+
∣∣∣π/x(n)

−k

∣∣∣3) . (23)

From (19) and (23), it follows that∣∣∣K(2)
n

(
x
(n)
−k

)∣∣∣ ≤ 1

4(n+ 1)(n+ 2)

(
(2n+ 3)(2n+ 1)2

(2k − 1)2
+

(2n+ 1)3

(2k − 1)3

)
. (24)

Combining (20), (22), (24), we obtain

λn

({
x
(n)
k

})
≤ 1

ln(n+ 1)

(
1 +

2

2n+ 1

(
n∑

k=2

k − 1

4(n+ 1)(n+ 2)

(
(2n+ 3)(2n+ 1)2

(2k − 1)2
+
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+
(2n+ 1)3

(2k − 1)3

)
+

n∑
k=1

k

4(n+ 1)(n+ 2)

(
(2n+ 3)(2n+ 1)2

4k2
+

(2n+ 1)3

8k3

)))
=

=
1

ln(n+ 1)

(
1 +

(2n+ 1)(2n+ 3)

8(n+ 1)(n+ 2)

n∑
k=1

1

k
+

(2n+ 3)(2n+ 1)

2(n+ 1)(n+ 2)

n∑
k=2

k − 1

(2k − 1)2
+

+
(2n+ 1)2

16(n+ 1)(n+ 2)

n∑
k=1

1

k2
+

(2n+ 1)2

2(n+ 1)(n+ 2)

n∑
k=2

k − 1

(2k − 1)3

)
. (25)

Let us note estimations:
n∑

k=1

1

k
<

n∑
k=1

∫ 2k+1

2k−1

dx

x
=

n∑
k=1

(ln(2k + 1)− ln(2k − 1)) = ln(2n+ 1), n ≥ 2;

n∑
k=1

1

k2
=

π2

6
−

∞∑
k=n+1

1

k2
<

π2

6
;

n∑
k=2

k − 1

(2k − 1)2
<

n−1∑
k=1

k

(2k)2
=

1

4

n−1∑
k=1

1

k
<

1

4
ln(2n− 1), n ≥ 3;

n∑
k=2

k − 1

(2k − 1)3
=

∞∑
k=1

k

(2k + 1)3
−

∞∑
k=n

k

(2k + 1)3
<

π2

16
− 7

16
ξ(3).

Returning to (25), for n ≥ 3, we have

λn

({
x
(n)
k

})
≤ 1

ln(n+ 1)
+

(2n+ 1)(2n+ 3)

8(n+ 1)(n+ 2)

ln(2n− 1) + ln(2n+ 1)

ln(n+ 1)
+

+
(2n+ 1)2

32(n+ 1)(n+ 2) ln(n+ 1)

(
4π2

3
− 7ξ(3)

)
. (26)

Show that the sequence

γn :=
1

ln(n+ 1)
+

ln(2n− 1) + ln(2n+ 1)

ln(n+ 1)
+

+
(2n+ 1)2

32(n+ 1)(n+ 2) ln(n+ 1)

(
4π2

3
− 7ξ(3)

)
:= φ(1)

n + φ(2)
n + φ(3)

n

is monotone decreasing for n ≥ 3. Obviously, the sequences φ
(1)
n and φ

(3)
n are decreasing.

Let us prove that the sequence φ
(2)
n is also decreasing. Consider a function φ(x) whose

values for x ≥ 3 at integer points coincide with the elements of the sequence φ
(2)
n . We have

φ′(x) =

(
ln(2x− 1)

ln(x+ 1)

)′

+

(
ln(2x+ 1)

ln(x+ 1)

)′

=

=
1

ln2(x+ 1)

(
ln(x+ 1)

2x− 1
− ln(2x− 1)

x+ 1
+

ln(x+ 1)

2x+ 1
− ln(2x+ 1)

x+ 1

)
.

Since the function f(x) = x lnx is increasing for x ≥ 3, then

ln(x+ 1)

2x− 1
− ln(2x− 1)

x+ 1
< 0,

ln(x+ 1)

2x− 1
− ln(2x− 1)

x+ 1
< 0.



168 O. ROVENSKA

The above inequalities imply that φ′(x) < 0 for x ≥ 3, and therefore the function φ(x)

is monotonically decreasing on this interval. Consequently, the sequence φ
(2)
n (and hence γn)

also monotonically decreases for n ≥ 3.
Using inequality

(2n+ 1)(2n+ 3)

8(n+ 1)(n+ 2)
≤ 1

2
, n ∈ N,

for n ≥ 16 we have

λn

({
x
(n)
k

})
≤ φ(1)

n + 1/2φ(2)
n + φ(3)

n <
(
φ(1)
n + 1/2φ(2)

n + φ(3)
n

)
n=15

<
11

9 ln 2
. (27)

In view of (27), applying inequality (25) for n = 2, 3, . . . , 6 and inequality (26) for
n = 8, 9, . . . , 15, we conclude that

λn

({
x
(n)
k

})
<

11

9 ln 2
, n ≥ 2. (28)

Comparing (15)–(17) and (28), we have

A∗ = sup
n∈N

sup
{x(n)

k }∈An

λn

({
x
(n)
k

})
= λ1

({
(2k + 1)

π

3

})
=

11

9 ln 2
.
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7. G. Gàt, U. Goginava, Cesàro means with varying parameters of Walsh-Fourier series, Period. Math.
Hung., 87 (2023), 57–74.

8. U. Goginava, On the approximation properties of Cesaro means of negative order of Walsh-Fourier series,
J. Approx. Theory., 115 (2002), №1, 9–20.

9. A. Guven, V. Kokilashvili, On the mean summability by Cesaro method of Fourier trigonometric series
in two-weighted setting, J. Inequal. Appl., 2006, 41837. https://doi.org/10.1155/JIA/2006/41837

10. L. Fejér, Untersuchungen iiber Fouriersche Reihen, Math. Ann., 58 (1904), 501–569.
11. V.T. Gavrilyuk, Approximation of continuous periodic functions of one or two variables by Rogozinski

polynomials of interpolation type, Ukr. Math. J., 25 (1973), №5, 530–537.
https://doi.org/10.1007/BF01091946

12. Y. Katznelson, An introduction to harmonic analysis, Cambridge, Univ. Press, 2004.



SHARP CONSTANT OF APPROXIMATION 169

13. L. Leindler, On the degree of approximation of continuous functions, Acta Math. Hungar., 104 (2004),
106–113.

14. L. Leindler, Necessary and sufficient conditions for uniform convergence of boundedness of general class
of sine series, Aust. J. Math. Anal. Appl., 4 (2007), 10.

15. D. Leladze, On some properties of multiple conjugate trigonometric series, Georgian Math. J., 1, (1994),
№3, 287–302.

16. V.T. Martynyuk, Best constants for approximations of periodic functions by Fejér operators, Ukr. Math.
J., 42 (1990), №1, 66–74. https://doi.org/10.1007/BF01066366

17. F. Moricz, X. Shi, Approximation to continuous functions by Cesaro means of double fourier series and
conjugate series, J. Approx. Theory, 49 (1987), 346–317.

18. O.G. Rovenska, An exact constant on the estimation of the approximation of classes of periodic functions
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