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In the paper, we present new findings concerning Cesaro-type operators. Special attention is
given to the Cesaro (C, &) summation operators, which form a widely used family of summation
methods in Fourier analysis. We establish sharp inequality for the upper bound of uniform
deviations of Cesaro (C, «) summation operators of the second order for the class of continuous
periodic functions.

Let n € Nand x,g”) = x,(€n_)1+27r/(2n +1),ke{0,£1,...,£(n—1),n}, be the points from the

interval [—m, 7] such that —7 < x(n,)L < m(_n,)LH <. . < x(_nl) < x(()n) < x§"> <...<az™ < the

set of points {x,(cn)} is uniquely determined by the value of xén). The Cesaro (C, @) summation

operators are defined by
n

o1 ({o}50) = 55 S 7 () K (o —al) KO0 = = 3 A,
k=—n

n =0
where D, (t) = % is the Dirichlet kernel, and AS = W (n e N), Ay =1,
are the Cesaro numbers, a > —1. Let T = [—m, 7] and C(T) be the space of continuouson T

functions with the norm || f|c = max{|f(t)|: t € T}.
The main result is contained in the following statement (Theorem 1): Let f € C(T). Then
the inequality

Hf — @[] ({x;)})HC < 932 T+ 1)-w(f;2n/@n+ 1), neN,

holds. The constant 11/(91n2) in this inequality is sharp.

1. Introduction. Let C(T), where T = [—7, 7] be the space of continuous, 27-periodic
functions with the norm

[flle = max{[f()]: t € T},
and let w(f;0) be the modulus of continuity of functions f € C(T)

w(f;6) = sup{|f(tr) — f(t2)]: [tx — tof < 6}
Cesaro (C, «) operators on C(T) are defined by the relation [32, Ch. 3]

n

) =+ [ HORD @) KO0 = 2> A0,
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where D, (t) = W is the Dirichlet kernel, and A are the Cesaro numbers

...
Ar—q, o= oD |(O‘+”), neN, a> -1
n:

For a = 1, the Cesaro (C, a)-means are the Fejér (C, 1)-means, denoted by o,[f]:

B 2 i sin ((n+ 1)(t —x)/2)\2
@) = /_ﬂf(t)< sin ((f — 2)/2) ) dt.

Many prominent authors — including Fejér ([10]), Riesz (|20]), Zygmund (|31]), Leindler
(|13, 14]), Méricz and Shi ([17]), Totik (|26, 27]), and others — have contributed to the study
of convergence and approximation properties of Cesaro (C,a) means in various function
spaces. Their ideas continue to develop in numerous works (see, for example, [1, 2, 6, 7, 8,
9, 15, 23, 24, 28, 30| and others). The concept of Cesaro means is presented in monographs
[5, 12, 25].

In numerical settings, it is often necessary to replace the integral operator by a discrete
counterpart. In this work, we consider summation analogues of Cesaro (C,«) operators,
which are defined as follows.

Let n € N. Denote by A,, the family of sets of 2n+1 points {x,(j)}, k=0,£1,£2,...,+n,
from the interval [—m, 7| such that

(n)

—r<ux n<x("rz+1<...<x(nl) <z <z

<...<a:£L")§7r,

and

n n 2
d):d4+dnir k=0,4+1,....,£(n—1),n.

It is clear that
™ (n) s
- <zy S o
2n+1 2n+1
and the set of points {x,(cn)} € A, is uniquely determined by the value of x[()").
The Cesaro (C, ) summation operators are defined by

n

({7} ) - 5 ) R )

=—n

We consider the problem of computing the minimal value of the constant A(«) in the

inequality
[ =o ({e ] = Ay + 00 (515757

o1
which is determined by the relation

A*(a) = sup { sup { sup {Hf - Jr(la)[f]({xlgn)})uc /(ln(n +Dw(f;2r/(2n+1))):
feC(T), f# const}: {ZB](:)} € .An}: ne N}.
Our goal is to obtain the sharp constant for the approximation of periodic functions by

second-order Cesaro (C,«) summation operators. This study continues the author’s earlier
studies reported in [18, 19|, in which sharp constants of approximation were obtained for
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Cesaro integral operators of the second and third order acting on classes of periodic Lipschi-
tz functions. Sharp constants of approximation have been obtained for Fejér summation
operators in [16], and for some integral operators in [3, 4, 11, 16, 21, 22, 29].

2. Result. Our main result is contained in the following theorem.

Theorem 1. Let f € C(T), n € N. Then the inequality

|7 = 0@ ({2} < 510 - Inln + 1) (f5 20/ 2 4 1) (1)

holds. The constant 11/(91n2) is sharp.

Proof. 1t is known that the equalities

Z cosma\"” =0, Z sinma” =0, m,neN (2)

k=—n k=—n

hold for every set of points {x,(cn)} e A, (|33, Ch.1]).
Based on (2), one obtains the identity

@) ({2} ;)

which will be essential in what follows.

In view of (2) and the properties of the modulus of continuity w(f;d), it follows that for
each set {a:,(cn)} € A, and each function f € C(T), there exists a constant A > 0 such that
the inequality

1, neN, (3)

Hf — o] ({x,@}) HC <Aln+1)-w(f;2r/@n+1), neN (4)

holds.
As in [4] (see also [16]), for a similar quantity, we obtain

o1 ({al
- Hf /] <{ }>Hc — o D[f] ({x(")} ;0> 7 (5)

.2
feC(T) w (f; 2n11)
f#const

where f,(x) is an even 27-periodic function defined on [0, 7] by the relation

(2n+1)z 2(k+1)m
fn(:c):{[ £ 41, k(o0 +1) < < M

(Gl w=2kn/(2n+1), k=0,1,...,n.

Here, [a] denotes the floor function (integer part of a real number a).
Denote

1
A" =sup sup ———oP[f,] ({x(n)} ;O) ’ (@)
neN {xl(cn)}eAn ln(n + 1) g

w ({70}) = et ({0} 0). ®)

and
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First, we derive a set {xén)} € A, such that x(()") = 0. We have

A ({2km/(2n 4+ 1)}) = ln(n1+ D 2n2+ ] i fn (:cén)) K® (:w(cn)) =

2

D@ 1) 2 Jr R/ @ D) K (Gl (24 1)) =

4

" 20+ Dn(n+1) 2RI (2hr/(2n -+ 1)). )

Next, we obtain a convenient representation for the kernel K (). One can see that

n

2) (1) — 2 sin (v +1/2)t)
K00 = (n+1)(n+2) ;("_”H) 2sin (t/2)
1 n '
" (n+ D)(n+2)sin (1/2) ;(” — v+ Dsin ((v+1/2)1), (10)

and

n n

(n—v+1)sin((v+1/2)t) = (n—v)sin((v+1/2)t) + > sin((v+1/2)t) =

V:(i 2n sin((2n+ ?))t/Q)V:O 3 _ 1/ 2n+3  sin((2n+3)t/2)
(sin + ) (Sin (t/2) sin? (t/2) )<'11>

4

(t/2) sin? (¢/2) sin (¢/2) 4

Combining (10) and (11), the following formula is obtained

2 1 2n+3  sin((2n+ 3)t/2)
K1) = 4(n+1)(n+2) <sm2 (t/2)  sin®(¢/2) ) el (12)

From (12), it follows that

2n + 3) + 2(=1)*"cos(km/(2n + 1))
4n+1)(n+2)sin®(kn/(2n + 1))

K% (2kn/(2n+ 1)) = (

Applying Jordan’s inequality «|sint| > 2¢, t € [0,5], we obtain

K% (2kr/(2n+ 1)) < (

An+1)(n+2) 2 km

2n + 3) + 2(=1)"" cos(km/(2n + 1)) (W)2 (2” + 1)2.
2

Then

((2n+3) +2(—=1)"* ' cos(kn/(2n+ 1)) (2n+1)* 1
16(n + 1)(n + 2) k2
(2n+3)+2)2n+1)*>1  (2n+5)(2n+1)

K2 (2kr/(2n+1)) < <

21
160+ 1)(n+2) K 1601+ 1)(n+2) K (13)
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Combining (9) and (13), we obtain

4 ~ (2n+5)(2n+1)2 1
A 2R/ Cn DY) < G (e & 1) 4 160 T )(n 1 2) B2

=1

(2n +1)(2n + 5) "1 (1)

T A+ D)+ 2)n(n+1) =k

Combining the inequality ([16])

(2n+1) 1  In(2n+1)
ST >
2(n+1)In(n+1) —~k In(n+ 1)

and (9), (14), we have

(2n+5)In(2n + 1)
A ({2 /Cn+ DD < S 1)

In particular, from the last inequality we obtain

91n5
- > 9. (15)

M ({2km/(2n+ D)) < =2 n>

It follows directly from (9) that

2k 4 91n5
A ({T})‘sm (1/2+_COS_) 91n2 < 83’ (16)

< 0 can be seen analogously).

Next, let z; ) £0,0< xo ) < snr (the case —575 <z
Using (8) and (6), we have

1)) K(2 ( (1)>
n ({7 = 31n2 Zf (=

2 2 1 2 1 1
- (74 P () 225 () -
2 1

(2 + 3 (cos xgi + cos x(()l) + 2cos x§1)>> .

:31112

Taking into account the definition of set {xé")}, we have

2 1 2
() = 5o (- et - Fmat)) -
2

- 31n2<2_ %COS (‘”‘()1) N g) )

Since 0 < x(()l) < %, then

v 0 ((7) =0 (e 13]) = oty n
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We now consider the quantities An({xén)}) for n > 2. Using the inequalities

2k < x(n) <
2n +1 ko=

2km
2n + 1’

2k + 1)m
2n+1

k=1,2....n, (19)

: (18)

(2k — 1)

(n)
< <
m+1 )x*’f

equality (3), and, according to the evenness of the function f,(x), we have

An ({xlg”)}> = Gt 1)1(” =y (i kK® (xﬂ",i) + i(k +1)KP (;L«,gn))> -

k=1 k=0

= 1)2111(” -y (Z(k; -1 KP (;,;92) +5S KD (x(l?) i
1

- 2 - (n) (n)
n(n+ 1) (1 g1 ook DK (o) + S kK? (o} )) : (20)

Using (12) and Jordan’s inequality, we obtain

on+3 sin %x,&")

sin? (atggn)/Z) sin® (xgcn)/Q)
1 -3 ()
Wnt Dnt2) sin™® (2}7/2)]) <

! ((Qn +3) <7r/93,(c")>2 + (W/x,(gn)f) : (21)

S it +2)

>’§4M+J;n+%

K (o4

((Qn + 3) sin ™2 (x,(cn)/Q) +

Combining (18) and (21), we have

‘K’(f) <$’(§ ))’ = 4(n + 1§(n +2) ((2n : 3il(§n - - (2718;31) ) ‘

Similarly, we have

1 )] g (O () o et

n

3
) e
From (19) and (23), it follows that

1 (2n+3)2n+1)2  (2n+1)3
)‘ “An+1)(n+2) ( —(i_Qk—l):_ (2ki_1)3) '

K2 (o @)

Combining (20), (22), (24), we obtain

An ({x’(“n)}> = m <1 * 2n2+ 1 (k 4(n —fl;(:z +2) <(2n —({—22)(—2%? : *

=2
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(2n +1)3 & k 2n+3)2n+1)%2  (2n+1)°
+(2k—1)3>+;4(n+1)(n+2)( e LT ))):

1 (2n 4+ 1)(2n + 3) 2n+3(2n+1) k-1
- |1
ln(n+1)< T 8mr )12 Zk 1)(n+2) ;(2k—1)2+

(2n+1)? 2n + 1) "L k-1
+16(n+1 n+2) Zk:2 n+1)(n+2)kz_;(2k;_1)3>‘ (25)

Let us note estimations:

N 2kt dr _ n
Z - Z/ - (In(2k +1) —In(2k — 1)) = In(2n+ 1), n>2;
x
k=1
"1 2 =1 2
BT 2 g
k=1 k=n+1
n n—1 n—1
k—1 k 1 1 1
A -y < Sm@n-—1 > 3.
Z(Qk—l)Z S RE T a2 Sl mz2s
k=2 k=1 k=1
k-1 — k = k ™ 7
2 k—1p k; k13 ; i1 16 16
Returning to (25), for n > 3, we have
n 1 2n+1)2n+3)In(2n — 1) +In(2n + 1)
A (Lo
({}) = M+ 1) 8t Dmt2) In(n + 1) *
(2n +1)? 42
— —7&(3 26
TRnrDmrymmry L3 @ (26)
Show that the sequence
1 In(2n — 1) +In(2n + 1)
In = +
In(n+1) In(n+1)

Gnt1) i _ (1) | 5@ 4
+32(n+1)(n+2)1n(n+1)( 73 )> = ey + o) + ol

is monotone decreasing for n > 3. Obviously, the sequences go( ) and goq(f’) are decreasing.
Let us prove that the sequence go( ) is also decreasing. Consider a function go( ) whose

values for x > 3 at integer points coincide with the elements of the sequence gon We have

ooy (In(2x —1) ' In(2z +1)\"
gp(x)_<ln(x+1)) +<ln(a:+1)) -
1 (ln(x +1) In(2z—1) N In(z+1) In(2z+ 1))
In*(z+1) \ 2z—1 v+ 1 2 +1 r+1 )7

Since the function f(x) = xInx is increasing for « > 3, then

In(x+1) In(2x —1) <0 In(z+1) In(2z-1)

— < 0.
2 — 1 x+1 ’ 2w — 1 x+1
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The above inequalities imply that ¢'(z) < 0 for z > 3, and therefore the function ¢(x)
is monotonically decreasing on this interval. Consequently, the sequence 90%2) (and hence 7,)
also monotonically decreases for n > 3.
Using inequality
(2n+1)(2n + 3)

8(n+1)(n+2)

1
< -, e N,
Sgn

for n > 16 we have

11
9In2’

Mo ({2}) <00+ 1/262 + 60 < (6 +1/262 +69),_, < (27)

In view of (27), applying inequality (25) for n = 2,3,...,6 and inequality (26) for
n=28,9,...,15, we conclude that

() < gy n2 e

Comparing (15)—(17) and (28), we have

womm o () = (fer02)) =

neN {xgcn) JEA,
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