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In this paper, we propose a new three-point iterative scheme for solving nonlinear equa-
tions, which achieves seventh-order convergence. The method begins with a standard Newton
iteration, followed by two weighted-Newton steps constructed using power series expansions.
The present manuscript enhances the order of convergence by integrating divided difference
techniques with power series approaches, leading to an efficient and reliable iterative process.
The order of convergence has been established rigorously as seven, and the corresponding
error equations are derived to validate the theoretical results. A comprehensive convergence
analysis is carried out, encompassing both local and semilocal convergence aspects. The local
convergence results are obtained under assumptions involving only the first derivative of the
operator, and a computable radius of convergence is derived. Moreover, the uniqueness of the
solution within this radius is also discussed in detail. For the semilocal analysis, we employ
the majorizing sequence technique, which ensures convergence from a wider range of initial
approximations. Extensive numerical experiments are performed to demonstrate the validi-
ty and accuracy of the proposed method. The calculated results show excellent agreement
with the theoretical predictions, confirming the robustness and efficiency of the new algori-
thm, particularly when compared in terms of the number of iterations and the approximated
computational order of convergence.

1. Introduction. The task of solving nonlinear equations (NLEs), typically expressed as

F (u) = 0 (u ∈ R or u ∈ C). (1)

is a central and challenging aspect of scientific computing, engineering analysis, and applied
mathematical modelling. Such equations frequently appear in diverse practical applications
and often require specialised numerical approaches for effective resolution. This difficulty
arises because researchers across various disciplines often model real-world phenomena using
NLEs to gain deeper insight into their behaviour. Numerous examples of real-life situations
modelled as nonlinear equations can be found throughout the literature [3, 4, 17, 18,23].

Finding exact solutions to these nonlinear equations is generally challenging. Consequen-
tly, iterative methods are frequently employed to approximate solutions. Among the various
iterative methods, Newton’s iterative method (NIM, [4, 5, 11, 13, 19–22]) is widely favoured
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due to its quadratic convergence, making it a popular choice for solving equation (1). In
recent years, significant progress has been made in science and mathematics, leading to the
development and application of several advanced iterative techniques for solving nonlinear
equations [2, 5, 15, 19–21]. These methods rely on recursion formulas that iteratively refine
the solution u∗ improving its accuracy with each iteration until the exact or desired solution
is reached.

Recent advancements have further led to the discovery and utilisation of various sophisti-
cated iterative techniques for solving nonlinear equations. For example, Chun [10] introduced
a power series like expression into the second step of a modified NIM to develop a family
of two-point iterative methods (TPIM) with convergence order four. Similarly, Khattri and
Abbasbandy ([14]) used a different power series function in the second step of the modified
NIM to propose a new class of TPIM. The dynamic behaviour of the generalised methods
presented by Khattri and Abbasbandy ([14]) was later studied by Babajee and Khattri ([7]).
Further developments include the paper of Ahmad [1], Babajee [8], and Madhu [16], where
power series of varying forms were utilised as weight functions in modifying the NIM to
construct iterative methods.

Building upon these foundational works, the present manuscript enhances the order of
convergence by integrating divided difference techniques with power series approaches. In
this study, we propose and analyse a specific three-step iterative method, defined as follows:

vn = un −N(un), wn = un −N(un)

[
1 + [

∑k
i=1 ai(pn)

i]

1 + [
∑k

i=1 bi(pn)
i]

]
,

un+1 = wn −
F (wn)

[un, wn;F ] + [vn, wn;F ]− [vn, un;F ]
, (2)

where N(un) =
F (un)
F ′(un)

, pn = F (vn)
F (un)

and ai and bi are real constants which we will give value
later (see Theorem 1) and [u, v;F ] is the first order divided difference defined by [u, v;F ](u−
v) ≈ F (u)−F (v) [4]. It is important to note that the first step of this iteration corresponds
to the classical NIM, which serves as the foundation for the subsequent improvements.

The structure of this paper is as follows: Section 2 delves into the method (2) and its
convergence analysis. Section 3 gives the some challenges associated with our convergence
analysis on Section 2 and tries to overcome these challenges by providing Local and Semi-
local Convergence without using Taylor series expansion. We have included some numerical
examples for validating our results in Section 2 and Section 3 and finally Section 4 concludes
with key findings and remarks.
2. Convergence analysis. We begin this section by proving the convergence of the method
described in equation (2) through the formal Theorem 1.

Theorem 1. Suppose F : D ⊂ R → R is a real valued function that is be sufficiently
differentiable in the domain D, such that u∗ ∈ D and |F ′(·)| ≠ 0 in D where u∗ is a simple
root of F . If u0 is close to u∗ and k = 3 then the sequence (uj)j≥0 of approximations in
R, generated by class of iterative method (2) converges to u∗ with convergence order seven
when the free parameters ai and bi follows the condition a1− b1− 1 = 0, a2− 2− b1− b2 = 0,
b2 + 5− a3 + 2b1 + b3 = 0.

Proof. Let u∗ be a simple zero of F and un be the nth approximation of u∗, defined by (2).
Expanding F (un) and F ′(un) with the help of Taylor’s series,

F (un) = F ′(u∗)
(
dn + c2d

2
n + c3d

3
n + c4d

4
n + c5d

5
n + c6d

6
n + c7d

7
n + c8d

8
n

)
, (3)
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F ′(un) = F ′(u∗)
(
1+2c2dn+3c3d

2
n+4c4d

3
n+5c5d

4
n+6c6d

5
n+7c7d

6
n+8c8d

7
n+9c9d

8
n+O[d

9
n]
)
, (4)

where dn = un − u∗, ci =
F (i)(u∗)
F ′(u∗)i!

and F (u∗) = 0.

From equation (3) and (4) we get vn as
vn = u∗ + c2d

2
n + (−2c22 + 2c3)d

3
n + . . .+ (64c72 − 304c52 + c3 + 176c42c4 + 75c23c4+

+c32(408c
2
3 − 92c5)− 31c4c5 + 6c6 + . . .+ 7c8)d

8
n +O[dn]

9.

Taylor series expansion of F (vn) is obtained as
F (vn) = c2d

2
n + (−2c22 + 2c3)d

3
n + . . .+ (144c72 − 552c52c3 + . . .

. . .+ c2(−147c33 + 134c3c5 − 19c7) + 7c8)d
8
n +O[dn]

9.

Substituting F (vn), F (un), F ′(un) in (2)
wn = u∗ + (c2 − a1c2 + b1c2)d

2
n + (−(2 + a2 + 4b1 + b21 − a1(4 + b1)− b2)c

2
2−

−2(−1 + a1 − b1)c3)d
3
n + . . .

. . .+ (−(−64 + 1289a3 − 688b1 + 590a3b1 + · · ·+ 7c8 − 7a1c8 + 7b1c8))d
8
n +O[dn]

9.

Now substituting above expansion of wn in (2) and we will obtain
un+1 = u∗ + (1− a1 + b1)

2c32d
4
n−

−(−1 + a1 − b1)c
2
2(−2(2 + a2 + 4b1 + b21 − a1(4 + b1)− b2)c

2
2 + (4− 5a1 + 5b1)c3)d

5
n + . . .

. . .+ (−2(10− 12a3 + 64b1 − 15a3b1 + . . .− a1(17 + 18b1))c5))d
7
n +O[dn]

8.

From the above expansion in order to achieve maximum possible order of convergence the
coefficients of d4n, d5n and d6n must vanish. To achieve this, the following system of equations
must be satisfied

a1 = 1 + b1, a2 = 2 + b1 + b2, a3 = 5 + b3 + 2b1 + b2. (5)

Substituting (5) in un+1 we will obtain

un+1 = u∗ + c22c
2
3d

7
n +O[dn]

8. (6)

Thus the iterative scheme defined in (2) is of order seven.

3. Local and semilocal convergence without Taylor series expansion. The Taylor
expansion series approach of iterative methods are frequently employed to show the conver-
gence of iterative methods and consequently of (2) has certain drawbacks which limit their
applicability. We begin by listing each problem individually, followed by our corresponding
solutions for each.
The problems (P1)− (P6) are addressed as follows:

(P1) According to Theorem 1 the function must be at least nine times differentiable and u∗
must be a simple solution of the equation F (u) = 0.

Let us consider the toy example given for say D = [−2, 2] and function F : D →
(−∞,∞) defined by

F (u) =

{
α1u

10 log(u) + α2u
11 + α3u

12, u ̸= 0;

0, u = 0,

where α1 ̸= 0 and α2 + α3 = 0. It follows by the definition that u∗ = 1 ∈ D solves
the equation F (u) = 0. But the ninth derivative of the function F is not continuous
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at u = 0 ∈ D. So, the results of Theorem 1 cannot assure the convergence of {un} to
u∗=1. However, the sequence {un} converges to u∗ = 1 if for example u0 = 0.9 ∈ D,
α1 = α2 = 1 and α3 = −1. It is concluded by this observation that the conditions of
Theorem 1 can be weakened.

(P2) The selection of u0 is a «shot in the dark» since the radius of convergence for the
method un is not given in Theorem 1.

(P3) Let ϵ > 0 denote the desired error tolerance. Then the minimum number K of iterations
to be carried out such that ∥un − u∗∥ < ϵ for each n ≥ K is not available in Theorem 1
due to the lack of computable priori estimates on ∥u0 − u∗∥.

(P4) The isolation of u∗ in a neighbourhood containing is not discussed.

(P5) The results are restricted to hold on the real line.

(P6) The most challenging and important semilocal convergence analysis is not provided.

We next present the solutions corresponding to each of the problems outlined above. However,
first let S = R or S = C. Consider solving the equation F (u) = 0 in the more general setting
where F : D ⊂ S → S, where D is an open and convex subset of S. Then, the method (2)
can be defined as

vn = un − F ′(un)
−1F (un), wn = un −B−1

n AnF
′(un)

−1F (un), un+1 = wn − C−1
n F (wn), (7)

where Pn = F (vn)
F (un)

, An = 1 +
∑3

i=1 aiP
i
n, Bn = 1 +

∑3
i=1 biP

i
n, a1 − b1 = 1, a2 − b2 = b1 + 2,

a3 − b3 = 2b1 + b2 + 5 and Cn = [un, wn;F ] + [vn, wn;F ]− [vn, un;F ].

(S1) The local convergence is shown using only the functions on the method (7) F, F ′ and
[·, ·;F ].

(S2) A computable radius of convergence becomes available. So u0 is picked from a certain
ball about u∗.

(S3) A priori computable error bounds on ∥u∗−un∥ are provided, so K is known in advance
(see Theorem 2).

(S4) The uniqueness of u∗ in a certain domain is discussed.

(S5) The results are provided on the more general setting of the complex plane S.

(S6) The semilocal convergence analysis of the sequence un is presented using majorizing
sequence ([3, 5, 6, 17,22]).

The items (S1)–(S6) constitute the novelty of this section.

3.1. Local convergence. Let us introduce some functions which play a vital role in showing
the local convergence of method (7). Let L(D,S) denote set of all linear operators from D
to S and E(u, α) denote the open ball centered at u ∈ D and α > 0. Let T=[0,+∞).

The following assumptions are used for local convergence analysis:

(H1) There exists a continuous and nondecreasing function f0 : T → T such that the function
1 − f0(t) has a smallest positive zero in the interval T which is denoted by s0. Set
T0 = [0, s0).



ITERATIVE METHOD HAVING SEVENTH ORDER OF CONVERGENCE 183

(H2) There exists a continuous and nondecreasing function f : T0 → T such that for g1 : T0 →
T defined by

g1(t) =

∫ 1

0
f((1− θ)t)dθ

1− f0(t)
,

the function 1 − g1(t) has a smallest positive zero in the interval T0 which is denoted
by µ1.

(H3) For functions h(1) : T0 → T , h(2) : T0 → T , P̄ : T0 → T and ϕ(1) : T0 → T defined by

h(1)(t) =

∫ 1

0

f0(θt)dθ, P̄ (t) =
(1 +

∫ 1

0
f0(θg1(t)t)dθ)g1(t)

1− h(1)
, h(2)(t) =

3∑
i=1

|bi|P̄ (t)i

and
ϕ(1)(t) = (1 + |b1 + 2|P̄ (t) + |2b1 + b2 + 5|P̄ 2(t))P̄ (t)

the functions 1 − h(1)(t) and 1 − h(2)(t) have smallest positive zeros in the interval T0
which are denoted by s1, s2 respectively . Set s̄ = min{s1, s2} and T1 = [0, s̄).

(H4) Define g2 : T1 → T defined by

g2(t) =

∫ 1

0
f((1− θ)t)dθ

1− f0(t)
+
ϕ(1)(t)(1 +

∫ 1

0
f0(θt)dθ)

(1− f0(t))(1− h(2)(t))
,

such that the function 1− g2(t) has a smallest positive zero in the interval T1 which is
denoted by µ2.

(H5) There exists continuous and nondecreasing symmetric functions q0 : T1 × T1 → T ,
q1 : T1×T1 → T and q2 : T1×T1×T1 → T such that functions 1−f0(g2(t)t), 1−h(3)(t),
where h(3)(t) = q0(t, g2(t)t) + q2(t, g1(t)t), g2(t)t) have smallest positive zeros in the
interval T1, which are denoted by s3, s4 respectively. Set s = min{s3, s4} and T2 = [0, s).
Define the function

ϕ(2)(t) = q1(t, g2(t)t) + q2(t, g1(t)t, g2(t)t)

and

g3(t) =

(∫ 1

0
f((1− θ)g2(t)t)dθ

1− f0(g2(t)t)
+
ϕ(2)(t)(1 +

∫ 1

0
f0(θg2(t)t)dθ)

(1− f0(g2(t)t))(1− h(3)(t))

)
g2(t).

(H6) The function 1 − g3(t) has a smallest positive zero in the interval T2 which is denoted
by µ3.

Define the parameter µ and interval T ∗ by

µ = min{µm}, m = 1, 2, 3 and T ∗ = [0, µ). (8)

The parameter µ is shown to be a radius of convergence for the method (7) in Theorem 2.
It follows by these definition that for each t ∈ T ∗

0 ≤ f0(t) < 1, (9)

0 ≤ h(1)(t) < 1, (10)

0 ≤ h(2)(t) < 1, (11)



184 C. D. SREEDEEP, I. K. ARGYROS, K. C. GOPIKA DINESH and others

0 ≤ h(3)(t) < 1, (12)
0 ≤ f0(g2(t)t) < 1 (13)

and

0 ≤ gm(t) < 1. (14)

Let us relate the functions f0, f, q0, q1 and q2 to the ones on the method (7).

(H7) There exists a solution u∗ ∈ D and a linear operator M ∈ L(S, S) which is invertible
such that for each w ∈ D

∥M−1(F ′(w)−M)∥ ≤ f0(∥w − u∗∥).

Set D0 = E(u∗, s0) ∩D.
(H8)

∥M−1(F ′(v)− F ′(w))∥ ≤ f(∥v − w∥), w, v ∈ D0,

∥M−1([u,w;F ]−M)∥ ≤ q0(∥u− u∗∥, ∥∥w − u∗∥), u, w ∈ D0,

∥M−1([u,w;F ]− F ′(w))∥ ≤ q1(∥u− u∗∥, ∥w − u∗∥),
∥M−1([v, w;F ]− [v, u;F ])∥ ≤ q2(∥u− u∗∥, ∥v − u∗∥, ∥w − u∗∥), u, v, w ∈ D0.

(H9) E(u∗, µ) ⊆ D.

Remark 1. Possible choices for M = I or M = F ′(ū), where ū ∈ D is an auxiliary point
other than u∗ or M = F ′(u∗). Under the last case it follows that u∗ is a simple solution of
the equation F (x) = 0. But notice however that such assumption is not made or implied by
the conditions (H1)–(H9).

The main results follows for the local convergence analysis of method (7) based on the
conditions (H1)–(H9). Set E0 = E(u∗, µ)− {u∗}.

Theorem 2. Suppose that the conditions (H1)–(H9) hold and the initial point u0 ∈ E0.
Then, the following assertions hold for sequence {un} generated by the method (7)

{un} ⊂ E(u∗, µ), (15)
∥vn − u∗∥ ≤ g1(∥un − u∗∥)∥un − u∗∥ ≤ ∥un − u∗∥ < r, (16)
∥wn − u∗∥ ≤ g2(∥un − u∗∥)∥un − u∗∥ ≤ ∥un − u∗∥, (17)
∥un+1 − u∗∥ ≤ g3(∥un − u∗∥)∥un − u∗∥ ≤ ∥un − u∗∥ (18)

and the sequence {un} is convergent to u∗ so that

∥un − u∗∥ ≤ cn∥u0 − u∗∥, (19)

where c = g3(∥u0 − u∗∥) ∈ [0, 1).

Proof. Assertions (15)–(18) are established using induction on j. Assertion (15) holds if
j = 0, since by hypothesis u0 ∈ E0 ⊆ E. Let w ∈ E0 be an arbitrary number. Then, it
follows by conditions (H1), (H7), (8) and (9) that

∥M−1(F ′(w)−M)∥ ≤ f0(∥w − u∗∥) ≤ f0(µ) < 1. (20)
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By (20) and Banach lemma on invertible functions ([3, 4, 17]) we conclude that F ′(w)−1

exists and
∥F ′(w)−1M∥ ≤ 1

1− f0(∥w − u∗∥)
. (21)

In particular, estimate (21) holds if w = u0. So, the first iterate v0 exists by the first substep
of the method (8) and we can write in turn

v0 − u∗ = u0 − u∗ − F ′(u0)
−1F (u0) =

=
(
F ′(u0)

−1M
)(

M−1

∫ 1

0

[F ′(u0)− F ′(u∗ + θ(u0 − u∗))] dθ

)
(u0 − u∗).

We can use the conditions (H8), (8), (14) for m = 3, (20) for w = u0 in the identity (21) to
obtain

∥v0 − u∗∥ ≤
∫ 1

0
f((1− θ)∥u0 − u∗∥)dθ∥u0 − u∗∥

1− f0(∥u0 − u∗∥)
≤ g1(∥u0 − u∗∥)∥u0 − u∗∥ ≤

≤ ∥u0 − u∗∥ < µ. (22)

Thus, the iterate v0 ∈ E and the assertion (17) holds if j = 0.
We suppose u0 ̸= u∗, since otherwise we have found the solution. Then, by (8), (9) and

(H7) we have

∥∥(M(u0 − u∗))−1 [F (u0)− F (u∗)−M(u0 − u∗)]
∥∥ ≤

∫ 1

0

f0 (θ∥u0 − u∗∥) dθ = h
(1)
0 < 1, (23)

where we also used the estimates

F (u0) = F (u0)− F (u∗) =

∫ 1

0

F ′(u∗ + θ(u0 − u∗))dθ(u0 − u∗).

Hence, by (23) and since F (u0) ̸= 0,

∥F (u0)−1M∥ ≤ 1

∥u0 − u∗∥(1− h
(1)
0 )

and B0 is well defined. Moreover, we can write by (8) and (11)

∥B0 − I∥ =

∥∥∥∥∥
3∑

i=1

biP
i
0

∥∥∥∥∥≤
3∑

i=1

|bi|P̄ i = h
(2)
0 < 1. (24)

So,

∥B0∥−1 ≤ 1

1− h
(2)
0

, (25)

where, we have used

F (v0) = F (v0)− F (u∗) =

∫ 1

0

F ′(u∗ + θ(v0 − u∗))dθ(v0 − u∗)
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and

∥M−1F (v0)∥ =

∥∥∥∥M−1

∫ 1

0

(F ′(u∗ + θ(v0 − u∗))−M +M) dθ(v0 − u∗)

∥∥∥∥ ≤

≤
(
1 +

∥∥∥∥∫ 1

0

M−1(F ′(u∗ + θ(v0 − u∗))−M)dθ

∥∥∥∥) ∥v0 − u∗∥ ≤

≤
(
1 +

∫ 1

0

f0(θ∥v0 − u∗∥)dθ
)
∥v0 − u∗∥, (26)

to obtain by (25). Also we have used

∥P0∥ =
∥M−1F (v0)∥
∥M−1F (u0)∥

≤
(1 +

∫ 1

0
f0(θ∥v0 − u∗∥)dθ)∥v0 − u∗∥
∥u0 − u∗∥(1− h

(1)
0 )

≤

≤
(1 +

∫ 1

0
f0(θg1(∥u0 − u∗∥)∥u0 − u∗∥)dθ)g1(∥u0 − u∗∥)∥u0 − u∗∥

∥u0 − u∗∥(1− h
(1)
0 )

= P̄0. (27)

Furthermore, by the definition of A0 and B0, we have in turn

B0 − A0 =
3∑

i=1

(bi − ai)P
i
0 = −P0 − (b1 + 2)P 2

0 − (2b1 + b2 + 5)P 3
0 ,

so by (27)
∥B0 − A0∥ ≤ (1 + |b1 + 2|P̄0 + |2b1 + b2 + 5|P̄0

2
)P̄0 = ϕ

(1)
0 .

It follows by (21) (for w = u0), (24) and (25) that iterate w0 is well defined by the second
substep of the method (8) and we can write in turn

w0 − u∗ = u0 − u∗ − F (u0)
−1F (u0) + (I −B−1

0 A0)F
′(u0)

−1F (u0) =

= u0 − u∗ − F ′(u0)
−1F (u0) +B−1

0 (B0 − A0)F
′(u0)

−1F (u0). (28)

In view of (8), (14) (for m = 2), (21) (for w = u0), (22) and (24)–(28) identity (28) can give

∥w0 − u∗∥ ≤

∫ 1

0
f((1− θ)∥u0 − u∗∥) dθ
1− f0(∥u0 − u∗∥)

+
ϕ
(1)
0

(
1 +

∫ 1

0
f0(θ∥u0 − u∗∥) dθ

)
(1− h

(2)
0 )(1− f0(∥u0 − u∗∥))

 ∥u0 − u∗∥ ≤

≤ g2(∥u0 − u∗∥)∥u0 − u∗∥ ≤ ∥u0 − u∗∥.

Thus, the iterate w0 ∈ E0 and the assertion (18) holds if j = 0.
Next, we need to show that C−1

0 exists. It follows by (8), (12), (H8) and the definition of
C0 that

∥M−1(C0 −M)∥ ≤ ∥M−1([u0, w0;F ]−M)∥+ ∥M−1([v0, w0;F ]− [v0, u0;F ])∥ ≤
≤ q0(∥u0 − u∗∥, ∥w0 − u∗∥) + q2(∥u0 − u∗∥, ∥v0 − u∗∥, ∥w0 − u∗∥) ≤ h

(3)
0 < 1.

So, C−1
0 exists and

∥C−1
0 M∥ ≤ 1

1− h
(3)
0

. (29)
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Consequently, the iterate u1 exists by the third substep of the method (2) and we can
write in turn that

u1 − u∗ = w0 − u∗ − F ′(w0)
−1F (w0) + (F ′(w0)

−1 − C−1
0 )F (w0) =

= w0 − u∗ − F ′(w0)
−1F (w0) + F ′(w0)

−1(C0 − F ′(w0))C
−1
0 F (w0). (30)

We need some estimates for

C0 − F ′(w0) = ([u0, w0;F ]− F ′(w0)) + ([v0, w0;F ]− [v0, u0;F ]),

which can give

∥M−1(C0−F ′(w0))∥ ≤ q1(∥u0−u∗∥, ∥w0−u∗∥)+ q2(∥u0−u∗∥, ∥v0−u∗∥, ∥w0−u∗∥) = ϕ
(2)
0 ,

as well as

F (w0) = F (w0)− F (u∗) =

∫ 1

0

F ′(u∗ + θ(w0 − u∗))dθ(w0 − u∗),

implying, as in (26)(for v0 = w0)

∥M−1(F (w0))∥ ≤ (1 +

∫ 1

0

f0(θ∥w0 − u∗∥)dθ)∥w0 − u∗∥. (31)

It follows by (8), (14) (for m = 3), (21) (for w = w0), (22)(for v0 = u0) (29) and (31) that
(30) can also give

∥u1 − u∗∥ ≤
∫ 1

0
f((1− θ)∥w0 − u∗∥) dθ
1− f0(∥w0 − u∗∥)

∥w0 − u∗∥+

+
ϕ
(2)
0

(
1 +

∫ 1

0
f0(θ∥w0 − u∗∥) dθ

)
(1− f0(∥w0 − u∗∥))(1− h

(3)
0 )

∥w0 − u∗∥ ≤ g3(∥u0 − u∗∥)∥u0 − u∗∥ ≤ ∥u0 − u∗∥.

Hence, the iterate u1 ∈ E and the assertion (18) holds if j = 0. Furthermore, simply exchange
u0, v0, w0, u1 by un, vn, wn, un+1 respectively in the preceding calculations to complete the
induction for the assertions (16)–(18). Then, assertion (18) also implies (19) from which it
follows that lim

n→∞
un = u∗.

A domain is established next that contains only u∗ as a solution of the equation F (x) = 0.

Proposition 1. Suppose the condition (H7) holds in the ball E(u∗, d1) for some d1 > 0 and
there exists d2 ≥ d1 such that ∫ 1

0

f0(θd2)dθ < 1. (32)

Define the domain D1 = E[u∗, µ]∩D. Then, u∗ is the only solution of the equation F (x) = 0
in the domain D1.

Proof. Suppose there exists w∗ ∈ D1 solving the equation F (u) = 0 such that w∗ ̸= u∗. Define
the linear function L =

∫ 1

0
F ′(u∗+θ(w∗−u∗))dθ. Then, the application of the condition (H7)

and (32) can give ∥M−1(L−M)∥ ≤
∫ 1

0
f0(θ∥w∗ − u∗∥)dθ ≤

∫ 1

0
f0(θd2)dθ < 1. Consequently,

L−1 exists and from the identity w∗ − u∗ = L−1(F (w∗) − F (u∗)) = L−1(0) = 0, we deduce
that w∗ = u∗.
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Remark 2. 1) The radius µ in (H9) can be replaced by s0 given in (H1).
2) Under all conditions (H1)–(H9), we can set d1 = µ in the Proposition 1.

3.2. Semi local convergence. The formulas and calculations are the same as in the local
analysis of the method (7). But the role of u∗, f0, f, q0 and q2 is exchanged by u0, f̃0, f̃ , q̃0
and q̃2, respectively. The following assumptions are used for semilocal convergence analysis
(C1) There exists a continuous and nondecreasing function f̃0 : T → T such that the function

1 − f̃0(t) has a smallest positive zero in the interval T which is denoted by δ̃. Set
T3 = [0, δ̃).

(C2) There exists continuous and nondecreasing functions f̃ : T3 → T , q̃0 : T3 × T3 → T and
q̃2 : T3 × T3 × T3 → T .
Define the sequences {αn}, {βn} and {γn} for α0 = 0, some β0 ≥ 0 and each n ∈
{0, 1, 2, . . .} by

P̃n =

∫ 1

0
f̃(θ(βn − αn))dθ

(1− f̃0(αn))
, h̃(1)n =

3∑
i=1

|bi|P̃ i
n,

ψn = (1 + |b1 + 2|P̃n + |2b1 + b2 + 5|P̃ 2
n)P̃n, γn = βn +

ψn(βn − αn)

1− h̃
(1)
n

,

λn =

∫ 1

0

f̃((θ)(γn − αn))dθ(γn − αn) + (1 + f̃0(αn))(γn − βn),

h̃(2)n = q̃0(αn, γn) + q̃2(αn, βn, γn), αn+1 = γn +
λn

1− h̃
(2)
n

,

µn+1 =

∫ 1

0

f̃((θ)(αn+1 − αn))dθ(αn+1 − αn) + (1 + f̃0(αn))(αn+1 − βn)

and
βn+1 = αn+1 +

µn+1

1− f̃0(αn+1)
.

It is shown in Theorem 3 that the sequence αn is majorizing for {un}. But first a general
convergence condition for the sequence {αn} is needed.

(C3) There exists δ ∈ [0, δ̃) such that for each n = 0, 1, 2, . . .. h̃(1)n < 1, h̃
(2)
n < 1, f̃0(αn) < 1

and αn ≤ δ. This condition and the definition of the sequence {αn} imply by induction
that 0 ≤ αn ≤ βn ≤ γn ≤ αn+1 < δ and there exists α∗ ∈ [0, δ] such that

lim
n→∞

αn = α∗.

It is known that α∗ is the unique least upper bound of the sequence {αn}. As in the
local analysis f̃0, f̃ , q̃0 and q̃2 relate to the functions on the method (7).

(C4) There exists u0 ∈ D and an invertible linear function M such that for each u ∈ D
∥M−1(F ′(u) − M)∥ ≤ f̃0(∥u − u0∥). It follows by this condition that if u = u0,
∥M−1(F ′(u)−M)∥ ≤ f̃0(0) < 1. So, F ′(u0)

−1 exists and we can take
β0 ≥ ∥F ′(u0)

−1F (u0)∥.
(C5) Define the domain D2 = E(u0, δ) ∩D and for each w, v ∈ D2

∥M−1(F ′(v)− F ′(u))∥ ≤ f̃(∥v − u∥),
∥M−1([u,w;F ]−M)∥ ≤ q̃0(∥u− u0∥, ∥w − u0∥),

∥M−1([v, w;F ]− [v, u;F ])∥ ≤ q̃2(∥u− u0∥, ∥v − u0∥, ∥w − u0∥)
and
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(C6) E[u0, α∗] ⊆ D0.

Remark 3. As in the local analysis , one can choose M = I or M = F ′(ũ) for some auxilary
point ũ ∈ D with ũ ̸= u0 or M = F ′(u0) or M = [ū, ũ;F ] for ū, ũ ∈ D or some other choice.

The main semilocal analysis of this subsection follows for the method (7).

Theorem 3. Suppose that the conditions (C1)–(C6) hold. Then, the sequence {un} generated
by the method (7) converges to a solution u∗ ∈ E(u0, α

∗) of the equation F (x) = 0. Moreover,
the following assertion holds for each n = 0, 1, 2, . . .

∥u∗ − un∥ ≤ α∗ − αn. (33)

Proof. The following assertions are established using induction on j

{uj} ⊂ E(u0, α
∗), (34)

∥vj − uj∥ ≤ βj − αj, (35)
∥wj − vj∥ ≤ γj − βj (36)

and

∥uj+1 − wj∥ ≤ αj+1 − γj. (37)

Assertion (34) holds for j = 0, since u0 ∈ E(u0, α
∗). By the definition of the parameter

β0 in the condition C4, (8), and the first substep of the method (7), we have

∥v0 − u0∥ = ∥F ′(u0)
−1F (u0)∥ ≤ β0 − α0 = β0 < α∗.

Thus, v0 ∈ E(u0, α
∗), and assertion (35) holds for n = 0. We need some estimates

F (vj) = F (vj)− F (uj)− F ′(uj)(vj − uj) =

∫ 1

0

(F ′(uj + θ(vj − uj))− F ′(uj)) dθ(vj − uj),

∥M−1F (vj)∥ ≤
∫ 1

0

f̃ (θ∥vj − uj∥) dθ∥vj − uj∥ ≤
∫ 1

0

f̃ (θ(βj − αj)) dθ(βj − αj) = λj

and

∥(M(vj − uj))
−1(F (uj)−M(vj − uj))∥ =

= ∥(M(vj − uj))
−1(F ′(uj)(vj − uj)−M(vj − uj))∥ ≤ f̃0(αj).

By Banach lemma on invertible operators

∥F (uj)−1M∥ ≤ 1

(1− f̃0(αj))(βj − αj)
.

So,

∥Pj∥ =
∥M−1F (vj)∥
∥M−1F (uj)∥

≤
∫ 1

0
f̃(θ(βj − αj)) dθ

1− f̃0(αj)
= P̃j,

ψj =
(
1 + |b1 + 2|P̃j + |2b1 + b2 + 5|P̃ 2

j

)
P̃j, h̃

(1)
j =

3∑
i=1

|bi|P̃ i
j < 1.
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Thus,

∥B−1
j M∥ ≤ 1

1− h̃
(1)
j

.

Using these estimates and by subtracting the first from the second substep of the method,
we obtain

wj − vj = (I −B−1
j Aj)F

′(uj)
−1F (uj) = B−1

j (Bj − Aj)F
′(uj)

−1F (uj),

which
∥wj − vj∥ ≤ ψj∥vj − uj∥

1− h̃
(1)
j

≤ ψj(βj − αj)

1− h̃
(1)
j

= γj − βj

and
∥wj − u0∥ ≤ ∥wj − vj∥+ ∥vj − u0∥ ≤ γj − βj + βj − α0 = γj < α∗.

Thus the iterate, wj ∈ E(u0, α
∗) and assertion (36) holds. We also need the estimate

F (wj) = F (wj)− F (uj)− F ′(uj)(vj − uj) =

= F (wj)− F (uj)− F ′(uj)(wj − uj) + F ′(uj)(wj − vj),

which gives

∥M−1F (wj)∥ ≤
∫ 1

0

f̃(θ∥wj − uj∥) dθ∥wj − uj∥ + (1 + f̃0(∥uj − u0∥))∥wj − vj∥ ≤

≤
∫ 1

0

f̃(θ(γj − αj)) dθ(γj − αj) + (1 + f̃0(αj))(γj − βj) = λj

and

∥M−1F ′(uj)∥ = ∥M−1(F ′(uj)−M +M)∥ ≤ 1 + ∥M−1(F ′(uj)−M)∥ ≤ 1 + f̃0(∥uj − u0∥).

Moreover, as in the local case,

∥M−1(Cj −M)∥ ≤ q̃0(∥uj − u0∥, ∥wj − u0∥) + q̃2(∥uj − u0∥, ∥vj − u0∥, ∥wj − u0∥) ≤
≤ q̃0(αj, γj) + q̃2(αj, βj, γj).

So, ∥C−1
j M∥ ≤ 1

1−h̃
(2)
j

, which implies

∥uj+1 − wj∥ ≤ ∥C−1
j M∥∥M−1F (wj)∥ ≤ λj

1− h̃
(2)
j

= αj+1 − γj

and ∥uj+1 − u0∥ ≤ ∥uj+1 − wj∥ + ∥wj − u0∥ ≤ αj+1 − γj + γj − α0 = αj+1 < α∗. Thus, the
iterate {uj+1} ∈ E(u0, α

∗) and the assertion (37) holds. Next, iterate vj+1 exits by the first
substep of the method (7). We need the Ostrowski type representation

F (uj+1) = F (uj+1)− F (uj)− F ′(uj)(vj − uj) =

= F (uj+1)− F (uj)− F ′(uj)(uj+1 − uj) + F ′(uj)(uj+1 − vj),

which implies

∥M−1F (uj+1)∥ ≤
∫ 1

0

f̃(θ∥uj+1 − uj∥) dθ∥uj+1 − uj∥+ (1 + f̃0(∥uj − u0∥))∥uj+1 − vj∥ ≤
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≤
∫ 1

0

f̃(θ(αj+1 − αj)) dθ(αj+1 − αj) + (1 + f̃0(αj))(αj+1 − βj) = µj+1. (38)

In view of first substep of the (2) for j + 1 replacing j, we get in turn

∥vj+1 − uj+1∥ ≤ ∥F ′(uj+1)
−1M∥ ∥M−1F (uj+1)∥ ≤ µj+1

1− f̃0(∥uj+1 − u0∥)
≤ µj+1

1− f̃0(αj+1)
= βj+1 − αj+1

and

∥vj+1 − u0∥ ≤ ∥vj+1 − uj+1∥+ ∥uj+1 − u0∥ ≤ βj+1 − αj+1 + αj+1 − α0 = βj+1 < α∗.

Thus, the iterate vj+1 ∈ E(u0, α
∗) and the assertion (35) holds. It follows that the induction

for the assertions (34)–(37) is completed and all iterates wj, vj, uj ∈ E(u0, α
∗). Notice that

by the triangle inequality and (34)–(37) we also have ∥uj+1 − uj∥ ≤ αj+1 − αj and for
k = 1, 2, . . . .

∥uj+k − uj∥ ≤ αj+k − αj. (39)

The sequence {uj} is fundamental, since {αj} is convergent by the condition (C3) therefore,
there exists u∗ ∈ E[u0, α

∗] such that limn→∞ un = u∗. By letting n→ ∞ in (38) and using the
continuity of F, we get F (u∗) = 0. Finally, by k → ∞ in (39) we show the assertion (33).

A domain is established next, inside which there is only one solution of the equation
F (x) = 0.

Proposition 2. There exists a solution u∗ ∈ E(u0, δ1) of the equation F (x) = 0, the
condition C4 holds in the ball E(u0, δ1) and there exists δ2 ≥ δ1 such that∫ 1

0

f̃0((1− θ)δ1 + θδ2) dθ < 1. (40)

Define the domain D3 = E[u0, δ2]∩D. Then, u∗ is the only solution of the equation F (x) = 0
in the domain D3.

Proof. Suppose that there exists a solution v∗ ∈ D3 such that v∗ ̸= u∗ and F (v∗) = 0. Define
linear function L1 =

∫ 1

0
F ′(u∗+θ(v∗−u∗)) dθ, ∥M−1(L1−M)∥ ≤

∫ 1

0
f̃0((1−θ)δ1+θδ2) dθ < 1.

Hence, L−1
1 exists. Finally, from the identity

v∗ − u∗ = L−1
1 (F (v∗)− F (u∗)) = L−1

1 (0) = 0,

we conclude that v∗ = u∗.

Remark 4. 1) The limit point α∗ can be replaced by δ̃ in the condition (C3).
2) Under all the conditions (C1)–(C6) one can set u∗ = v∗ and δ1 = α∗ in the Proposition 2.

We have compared our method by numerical experiments with some other known existing
seventh order methods ([6, 9, 24]), and we have used b1 = 0, b2 = −2 and b3 = 0 in our
computations. For our comparison we have chosen following test functions f1(u) = cos(u)−u,
f2(u) = 10ue−u2 − 1, f3(u) = sin(u)− 1

3
u, f4(u) = e−u + cos(u), f5(u) = eu − 1.5− tan−1(u),

f6(u) = ln(u2 + u + 2) − u − 1. The calculated results are in excellent agreement with the
theoretical predictions, thereby confirming the robustness and efficiency of the proposed
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algorithm, if we compare the number of iteration and approximated computational order of
convergence.

5. Conclusion. In this paper, we have presented a seventh order iterative method for solving
systems of nonlinear equations. The proposed scheme comprises three steps: an initial Newton
iteration followed by two weighted Newton steps incorporating power series expansions.
Some of the challenges encountered during the convergence analysis are discussed, along
with potential solutions, by presenting a detailed local and semilocal convergence analysis.
The technique of Section 3 can be used to extend similarly the application of other methods
([12,16–24]).
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