Maremaruuni Crymii. 64, Ne2 Matematychni Studii. V.64, No.2

UDC 517.5

C. D. SREEDEEP, I. K. ARGYROS, K. C. GOPIKA DINESH,
N. SHRESTHA, M. ARGYROS

CONVERGENCE ANALYSIS OF A POWER SERIES BASED ITERATIVE
METHOD HAVING SEVENTH ORDER OF CONVERGENCE

C. D. Sreedeep, I. K. Argyros, K. C. Gopika Dinesh, N. Shrestha, M. Argyros. Convergence
analysis of a power series based iterative method having seventh order of convergence, Mat.
Stud. 64 (2025), 179-193.

In this paper, we propose a new three-point iterative scheme for solving nonlinear equa-
tions, which achieves seventh-order convergence. The method begins with a standard Newton
iteration, followed by two weighted-Newton steps constructed using power series expansions.
The present manuscript enhances the order of convergence by integrating divided difference
techniques with power series approaches, leading to an efficient and reliable iterative process.
The order of convergence has been established rigorously as seven, and the corresponding
error equations are derived to validate the theoretical results. A comprehensive convergence
analysis is carried out, encompassing both local and semilocal convergence aspects. The local
convergence results are obtained under assumptions involving only the first derivative of the
operator, and a computable radius of convergence is derived. Moreover, the uniqueness of the
solution within this radius is also discussed in detail. For the semilocal analysis, we employ
the majorizing sequence technique, which ensures convergence from a wider range of initial
approximations. Extensive numerical experiments are performed to demonstrate the validi-
ty and accuracy of the proposed method. The calculated results show excellent agreement
with the theoretical predictions, confirming the robustness and efficiency of the new algori-
thm, particularly when compared in terms of the number of iterations and the approximated
computational order of convergence.

1. Introduction. The task of solving nonlinear equations (NLEs), typically expressed as
F(u)=0 (ueR or ueC). (1)

is a central and challenging aspect of scientific computing, engineering analysis, and applied
mathematical modelling. Such equations frequently appear in diverse practical applications
and often require specialised numerical approaches for effective resolution. This difficulty
arises because researchers across various disciplines often model real-world phenomena using
NLEs to gain deeper insight into their behaviour. Numerous examples of real-life situations
modelled as nonlinear equations can be found throughout the literature [3,4,17,18,23|.
Finding exact solutions to these nonlinear equations is generally challenging. Consequen-
tly, iterative methods are frequently employed to approximate solutions. Among the various
iterative methods, Newton’s iterative method (NIM, [4,5,11,13,19-22|) is widely favoured
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due to its quadratic convergence, making it a popular choice for solving equation (1). In
recent years, significant progress has been made in science and mathematics, leading to the
development and application of several advanced iterative techniques for solving nonlinear
equations [2,5,15,19-21|. These methods rely on recursion formulas that iteratively refine
the solution v* improving its accuracy with each iteration until the exact or desired solution
is reached.

Recent advancements have further led to the discovery and utilisation of various sophisti-
cated iterative techniques for solving nonlinear equations. For example, Chun [10] introduced
a power series like expression into the second step of a modified NIM to develop a family
of two-point iterative methods (TPIM) with convergence order four. Similarly, Khattri and
Abbasbandy ([14]) used a different power series function in the second step of the modified
NIM to propose a new class of TPIM. The dynamic behaviour of the generalised methods
presented by Khattri and Abbasbandy ([14]) was later studied by Babajee and Khattri ([7]).
Further developments include the paper of Ahmad [1], Babajee [8], and Madhu [16], where
power series of varying forms were utilised as weight functions in modifying the NIM to
construct iterative methods.

Building upon these foundational works, the present manuscript enhances the order of
convergence by integrating divided difference techniques with power series approaches. In
this study, we propose and analyse a specific three-step iterative method, defined as follows:

1+ Y8 a <pn>i1]
L+ [0 bilpa)] ]

: (2)

Uy = Uy — N(up), w, =u, — N(uy)

F(w,)
[umwn;F] + [Unawn;F] - [Umun;F]

Unp41 = Wy —

where N(u,) = %, Dn = IF?EZ:’L% and a; and b; are real constants which we will give value
later (see Theorem 1) and [u, v; F] is the first order divided difference defined by [u, v; F](u—
v) & F(u) — F(v) [4]. It is important to note that the first step of this iteration corresponds
to the classical NIM, which serves as the foundation for the subsequent improvements.

The structure of this paper is as follows: Section 2 delves into the method (2) and its
convergence analysis. Section 3 gives the some challenges associated with our convergence
analysis on Section 2 and tries to overcome these challenges by providing Local and Semi-
local Convergence without using Taylor series expansion. We have included some numerical
examples for validating our results in Section 2 and Section 3 and finally Section 4 concludes

with key findings and remarks.

2. Convergence analysis. We begin this section by proving the convergence of the method
described in equation (2) through the formal Theorem 1.

Theorem 1. Suppose F: D C R — R is a real valued function that is be sufficiently
differentiable in the domain D, such that u* € D and |F'(-)| # 0 in D where u* is a simple
root of F. If ug is close to u* and k = 3 then the sequence (u;);>o of approximations in
R, generated by class of iterative method (2) converges to u* with convergence order seven
when the free parameters a; and b; follows the condition a; —b; —1 =0, as —2—b; — by = 0,
b2+5—a3+2b1+6320.

Proof. Let u* be a simple zero of F' and u,, be the n'* approximation of u*, defined by (2).
Expanding F'(u,) and F’(u,) with the help of Taylor’s series,

F(u,) = F'(u*) (dn + cod? 4 c3d? 4 cyd? + c5d® + cdS + crd! + %di), (3)
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F'(uy) = F'(u*) (142¢ad,+3c3d>+4cads +5esdy +6c6ds + Terdl +-8csdy +9cods +O[dD]), (4)
where d,, = u, —u*,¢; = % and F(u*) = 0.
From equation (3) and (4) we get v,, as
Up = U+ Cod? + (=263 + 2¢3)d3 + ... 4 (64ch — 304¢) + ¢34+ 176¢5¢q + THCE s+
+¢3(408¢2 — 92¢5) — 3leyes + 6cg + . .. + Teg)dS + O[d,]°.
Taylor series expansion of F'(v,,) is obtained as
F(v,) = cod? + (=263 + 2¢3)d® + ... + (144c¢5 — 552c5c3 + . ...
oo (14763 + 134c3c5 — 19¢7) + Teg)dS + Old,,)°.
Substituting F'(v,,), F(u,), F'(u,) in (2)
Wy, = u* + (cg — arcg + b1eo)d2 + (—(2 4 ag + 4by + 02 — ay (4 + by) — by)c3—
—2(=1+a; —by)es)d® + ...
.+ (—(—64 + 1289a3 — 688b; + 590asby + - - - + Tcg — Taycs + Thics))ds + O[d,)°.
Now substituting above expansion of w,, in (2) and we will obtain
Upir = u* + (1 —ay + by)?c3di—
—(=1+4a; —by)c3(—2(2 4 ag + 4by + b3 — a1(4 + by) — ba)c2 + (4 — Bay + 5by)c3)d> + ...
o+ (—2(10 — 12a3 + 64by — 15a3b; + ... — a; (17 + 18by))cs))d!, + O|d,]®.
From the above expansion in order to achieve maximum possible order of convergence the

coefficients of d}, d> and d® must vanish. To achieve this, the following system of equations

must be satisfied
ar=14+by, ay=2+0b+0by, ag =75+ bs+ 2b; + by. (5)
Substituting (5) in u,4; we will obtain
Upy1 = u* + caeadl + O[d,]®. (6)
Thus the iterative scheme defined in (2) is of order seven. ]

3. Local and semilocal convergence without Taylor series expansion. The Taylor
expansion series approach of iterative methods are frequently employed to show the conver-
gence of iterative methods and consequently of (2) has certain drawbacks which limit their
applicability. We begin by listing each problem individually, followed by our corresponding
solutions for each.

The problems (P;) — (Ps) are addressed as follows:

(P1) According to Theorem 1 the function must be at least nine times differentiable and u*
must be a simple solution of the equation F'(u) = 0.

Let us consider the toy example given for say D = [—2,2] and function F: D —
(—00,00) defined by

Fu) = {glum log(u) + agu' + azu'?, u # 8;
Y u = )

where a; # 0 and as + ag = 0. It follows by the definition that «* = 1 € D solves
the equation F'(u) = 0. But the ninth derivative of the function F' is not continuous
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at w = 0 € D. So, the results of Theorem 1 cannot assure the convergence of {u,} to
u*=1. However, the sequence {u,} converges to u* = 1 if for example vy = 0.9 € D,
a; = ay = 1 and az3 = —1. It is concluded by this observation that the conditions of
Theorem 1 can be weakened.

(P2) The selection of ug is a «shot in the dark» since the radius of convergence for the
method w, is not given in Theorem 1.

(P3) Let € > 0 denote the desired error tolerance. Then the minimum number K of iterations
to be carried out such that ||u, —u*|| < € for each n > K is not available in Theorem 1
due to the lack of computable priori estimates on |Jug — u*||.

(P4) The isolation of u* in a neighbourhood containing is not discussed.
(Ps) The results are restricted to hold on the real line.
(Ps) The most challenging and important semilocal convergence analysis is not provided.

We next present the solutions corresponding to each of the problems outlined above. However,
first let S = R or S = C. Consider solving the equation F'(u) = 0 in the more general setting
where F': D C S — S, where D is an open and convex subset of S. Then, the method (2)
can be defined as

Vp = Uy — F'(u,) " F(uy), wp =up — B YA () F(uy), tng = w, — C F (wy), (7)

where P, = 20l 4, =14+ 3% 4P B, =1+ biPlay—b =1, a5 — by = by +2,

F(un)
as _b3 == 2bl +62+5 and Cn = [umwn;F] + [Unawn;F] - [Umun;F]'

(S1) The local convergence is shown using only the functions on the method (7) F, F’ and

(S2) A computable radius of convergence becomes available. So ug is picked from a certain
ball about wu*.

(S3) A priori computable error bounds on ||u* — u, || are provided, so K is known in advance
(see Theorem 2).

(S4) The uniqueness of u* in a certain domain is discussed.
(S5) The results are provided on the more general setting of the complex plane S.
(Sg) The semilocal convergence analysis of the sequence w,, is presented using majorizing

sequence ([3,5,6,17,22|).

The items (S;)—(Ss) constitute the novelty of this section.

3.1. Local convergence. Let us introduce some functions which play a vital role in showing
the local convergence of method (7). Let L(D,S) denote set of all linear operators from D
to S and E(u,«) denote the open ball centered at w € D and a > 0. Let T=|0,+00).

The following assumptions are used for local convergence analysis:

(H1) There exists a continuous and nondecreasing function fo: 7" — T such that the function
1 — fo(t) has a smallest positive zero in the interval 7" which is denoted by s¢. Set
T() == [0, So).
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(Hz2) There exists a continuous and nondecreasing function f: Ty — T such that for ¢, : Ty —

T defined by
(1 —=0)t)db
g1 (t) fo ’
1= fo(t)
the function 1 — g;(¢) has a smallest positive zero in the interval T which is denoted
by 1.

(Hs) For functions hV: Ty — T, h®: Ty — T, P: Ty — T and ¢V Ty — T defined by

(1) / fO Qt P(t) _ (1 + fo f01<9_91}5(tl))t)d9)91(t)’ h(2)(t) _ Z |bZ|P(t)

and
¢ (t) = (1 + |by + 2|P(t) + |2by + by + 5| P2(t)) P(t)

the functions 1 — h()(¢) and 1 — h®(t) have smallest positive zeros in the interval T
which are denoted by s1, so respectively . Set § = min{sy, s2} and T} = [0, 3).

(H4) Define go: Ty — T defined by
Jo F(L=0)t)do oV (B)(1+ [y fo(6t)d0)
1= fo(t) (1= fo(®)(X = h®(2))°

such that the function 1 — go() has a smallest positive zero in the interval 77 which is
denoted by ps.

92(t) =

(Hs) There exists continuous and nondecreasing symmetric functions qo: 77 x T} — T,
qi: Ty x Ty — T and gy: Ty x Ty x Ty — T such that functions 1 — fo(ga(t)t), 1 —hO)(t),
where h®) () = qo(t, ga(t)t) + qa(t, g1 (t)t), go(t)t) have smallest positive zeros in the
interval T}, which are denoted by s3, s4 respectively. Set s = min{ss, s4} and T, = [0, ).

Define the function

¢(2) (t) = Q1 (tv gQ(t)t) + QQ(tv gl(t)tu gQ(t)t>

and

Jo J((1=0)g2(t)1)d8 9P (1)(1+ [ folBga(t)1)dB)
olt) = ( T~ ol (00 +<1—fo<g2<t>t>><1—h<3><t>>)9’2(’”'

(Hg) The function 1 — g3(t) has a smallest positive zero in the interval T; which is denoted
by ps.
Define the parameter p and interval T by

p=min{p,}t, m=1,2,3 and T" =0, p). (8)

The parameter p is shown to be a radius of convergence for the method (7) in Theorem 2.
It follows by these definition that for each t € T™

0< fo(t) <1, (9)
0<hP() <1 (10)
0<h?(t) <1, (11)
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0<h¥() <1, (12)
0 < folga(t)t) <1 (13)

and
0 <gm(t) <1 (14)

Let us relate the functions fo, f, g0, ¢1 and g2 to the ones on the method (7).

(H7) There exists a solution u* € D and a linear operator M € L(S,S) which is invertible
such that for each w € D

[MHF (w) = M) < folllw = u7]]).

Set DO = E(U*, 80) NnD.
(Hs)

IMH(F (v) = F'(w)|| < f(llv —wl)), w,v € Dy,
1M~ ([u, w; F] = M) < qo(lu — ], [[lw — w[]), u,w € Do,
1M ([u, w; F] = F'(w))]| < qu([Ju — ], [lw — ")),
1M (v, w; F] = [o,us )| < go((fu = w|], [Jo = u?[|, [lhw = w*]]), w, v,w € Dy

(H9) E(U*»H) cD.

Remark 1. Possible choices for M = I or M = F'(u), where u € D is an auxiliary point
other than u* or M = F’(u*). Under the last case it follows that u* is a simple solution of
the equation F'(x) = 0. But notice however that such assumption is not made or implied by
the conditions (Hq)—(Ho).

The main results follows for the local convergence analysis of method (7) based on the

conditions (H1)—(Hg). Set Ey = E(u*, ) — {u*}.

Theorem 2. Suppose that the conditions (H1)—(Ho) hold and the initial point uy € Ej.
Then, the following assertions hold for sequence {u,} generated by the method (7)

{un} C E(u’, p),
[[on = u*|| < ga([Jun — w[un — u[] < flun — ™[] <,
[wn = w*| < ga(llun — w[)[un — ™| < Jlun — "],

[unsr = w*] < gs(flun — w[)un — @[ < flun — w7
and the sequence {u,} is convergent to u* so that
[ — [ < e*[lug — w7, (19)
where ¢ = g3(||ug — u*|]) € [0,1).

Proof. Assertions (15)—(18) are established using induction on j. Assertion (15) holds if
7 = 0, since by hypothesis uyg € Ey C E. Let w € Ejy be an arbitrary number. Then, it
follows by conditions (#1), (Hz), (8) and (9) that

IMHF (w) = M) < folllw —u'l]) < folp) < 1. (20)
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By (20) and Banach lemma on invertible functions (|3,4,17]) we conclude that F”(w)™*
exists and

1F" (w) M| <

1
(L 21

In particular, estimate (21) holds if w = wg. So, the first iterate vy exists by the first substep
of the method (8) and we can write in turn

vg — ut =g — u* — F'(uo) " F(ug) =
= (F'(up)™' M) (M_l/o [F'(ug) — F'(u* + 0(ug — u*))] d@) (ug — u*).

We can use the conditions (Hs), (8), (14) for m = 3, (20) for w = ug in the identity (21) to
obtain

_ur| < Jo (1= 0)Juo — w*|)db]juo — w”|

1= follluo — w*])
< luo — 'l < g (22)

v < g1(lluo = w*[fuo — w™]| <

Thus, the iterate vy € E and the assertion (17) holds if j = 0.
We suppose 1y # u*, since otherwise we have found the solution. Then, by (8), (9) and
(H7) we have

Hwﬂm—uSVWFww—me—Aﬂm—uWHS[:hWWm—uwmez%”<1,@@
where we also used the estimates
F(ug) = F(up) — F(u*) = / F'(u* + 0(ug — u*))df(ug — u*).
0

Hence, by (23) and since F'(ug) # 0,

1
o — u]|(1 — h$")

1 (o)~ M| <

and By is well defined. Moreover, we can write by (8) and (11)

3 3
1By — Il = | 0| < > b PP = b < 1. (24)
=1 =1
So,
1Boll 7 < — (25)

where, we have used

1

Flvg) = Fluo) — F(u*) = /0 F/(u* + 6(vp — u*))dB(vo — u°)
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and
ML (v)|| = HMl /01 (F'(u* + 0(vo — u*)) — M + M) df(vy — u*)|| <
< (1 + ’ /01 MY F'(u* + 0(vy — u*)) — M)d@H) lvg — u*]| <
< (14 [ JolOlon =0 ) o= 1, (2)
to obtain by (25). Also we have used
iy = PF@ (L fo JoCOllvo —wlDdb)llvo —u'l|
[M=F (uo) | lug — u*||(1 — hS)
L0+ Jo o(691(lluo — w*|)luo — u*[[)d8)gu (lluo — w*||)uo — w*|| _ B, (27)

luo = wll(1 = hg”)
Furthermore, by the definition of Ag and By, we have in turn

3
By—Ag =Y (bj—a;)Py = —Py— (b1 +2)P5 — (2b1 + by + 5) P},

i=1

so by (27)
1By — Ao|| < (1+ [by + 2| Py + |2by + by + 5P ) Py = V.

It follows by (21) (for w = ug), (24) and (25) that iterate wy is well defined by the second
substep of the method (8) and we can write in turn

wo — u* = uy — u* — F(ug) ' Fug) + (I — Byt Ag)F (ug) " F(ug) =
= Uy — U* — F,(Uo)_lF(UO) =+ B0_1<B0 — Ao)F,(Uo)_lF(Uo). (28)

In view of (8), (14) (for m = 2), (21) (for w = uy), (22) and (24)—(28) identity (28) can give

Jo (1= 6)juo = w8 o (14 Ji Fo(0lluo — ]} o)
L= follluo =) (1= G7)(1 = fo(lluo — w]])

lwo — w*| < luo — w|] <

< ga(lluo = u*|)lluo — w[} < fluo — u"]|.

Thus, the iterate wy € Ey and the assertion (18) holds if j = 0.
Next, we need to show that Cy* exists. It follows by (8), (12), (Hg) and the definition of
CO that

[M~H(Co = M)|| < ||M ™ ([uo, wo; F] — M| + [|M ™ ([vo, wo; F] — [vo, uo; F])|| <

< qo([|uo — u*|], lwo — w*||) + aa([Juo — w*||, Jlvo — u*|], lwo — u*||) < AEY < 1.

So, Cy! exists and

ICe M| < —-
1—h

(29)
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Consequently, the iterate u; exists by the third substep of the method (2) and we can
write in turn that

up —u* = wy — u* — F'(wo) F(wg) + (F'(we) ™ — Co’l)F(wO) =
= wo — u" — F'(wo) " F(wo) + F'(wo) ™ (Co — F'(wo))Cy ' F(wp). (30)

We need some estimates for
Co — F'(wo) = ([uo, wo; F] = F'(wo)) + ([vo, wo; F] — [vo, uo; F]),
which can give
|1:7(Co = F'(wo)) | < ar(llo = u|l, [lwo —u*[}) + ga(lluo = |, [fvo — ||, lwo —w[[) = o4,

as well as
F(wg) = F(wg) — F(u*) = /0 F'(u* + 0(wo — u*))df(wo — u*),

implying, as in (26)(for vy = wy)
1
M (F (o))l < (1+ /0 fo(0llwo — u?[[)dO) ||wo — w”|]. (31)

It follows by (8), (14) (for m = 3), (21) (for w = wy), (22)(for vo = ug) (29) and (31) that
(30) can also give

fo ) lwo — u*])) o
vl < Follew =)

lus = lwo — w[|+

K (1 o fol®llwo - u*||)d9)
(1= folllwo — w*|))(1 = A

Hence, the iterate u; € F and the assertion (18) holds if j = 0. Furthermore, simply exchange
Ug, Vg, Wo, U1 DY Up, Uy, Wy, Upyq Tespectively in the preceding calculations to complete the
induction for the assertions (16)—(18). Then, assertion (18) also implies (19) from which it

follows that lim wu, = u*. O
n—o0

lwo — u*|| < gs([Juo — w*|)|Juo — u*|| < flug — u™].

A domain is established next that contains only u* as a solution of the equation F'(z) = 0.

Proposition 1. Suppose the condition (H;) holds in the ball E(u*,d,) for some d; > 0 and
there exists dy > dy such that

Define the domain Dy = E[u*, u)N D. Then, u* is the only solution of the equation F(z) =0
in the domain D;.

Proof. Suppose there exists w* € D solving the equation F'(u) = 0 such that w* # u*. Define
the linear function L = fol F'(u*+60(w* —u*))df. Then, the application of the condition (H7)
and (32) can give ||[M~Y(L - M)|| < fol fo(O]|w* —u*|)df < fol fo(0ds)dO < 1. Consequently,
L™} exists and from the identity w* — u* = L™} F(w*) — F(u*)) = L7*(0) = 0, we deduce
that w* = u*. ]
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Remark 2. 1) The radius p in (Hg) can be replaced by sg given in (H;).

2)

3.2.

Under all conditions (#;1)—-(Hy), we can set d = u in the Proposition 1.

Semi local convergence. The formulas and calculations are the same as in the local

analysis of the method (7). But the role of u*, fy, f,qo and ¢ is exchanged by wy, fo. £ do
and ¢, respectively. The following assumptions are used for semilocal convergence analysis

(C1)

(C2)

(Cs)

(Cs)

There exists a continuous and nondecreasing function fo: T — T such that the function
1— folt ) has a smallest positive zero in the interval 7" which is denoted by J. Set
Ty =1[0,).

There exists continuous and nondecreasing functions f 213 =T, qo: T3 x T3 — T and
Ga: Ty x T3 x T3 —T.

Define the sequences {a,},{f,} and {v,} for ag = 0, some Fy > 0 and each n €
{0,1,2,...} by

5 fo 0(Bn — an))do 7 (1) }3: =
P y hn - bl Pn7
(1= folaw)) Py g

Y = (1+ by + 2| By + |20y + by + 5|P2) By, Y = B+ M

}L(l)
M:wammewm—%Hﬂ+m%m%—m,

9

- ~ A,
h7(12) qo (ana P)/n) + Q2(04m Bna f}’n) Opy1 = Yn + 1_—iL7(12)7

Hn+1 = / f(w)(an—f—l — ap))di(ani1 — o) + (1 + fO(O‘n))(an—i—l — Bn)

0

and
Br1 = Qny1 + S
1 — fo(ans1)
It is shown in Theorem 3 that the sequence «,, is majorizing for {u, }. But first a general
convergence condition for the sequence {«,} is needed.

There exists § € [0,5) such that for each n = 0,1,2,.... A < 1, B < 1,f0(an) <1
and «,, < 4. This condition and the definition of the sequence {«a,,} imply by induction
that 0 < a,, < B < Y < apy1 < 0 and there exists a* € [0, 0] such that

lim o, = o*.
n—o0

It is known that a* is the unique least upper bound of the sequence {a,,}. As in the
local analysis fo, f ,Go and ¢ relate to the functions on the method (7).
There exists ug € D and an invertible linear function M such that for each u € D
MY (F'(u) — M)|| < fo(|lu — ugl]). It follows by this condition that if u = uo,
| MY (F'(u) — M)|| < fo(0) < 1. So, F'(ug)~" exists and we can take
Bo = || F" (uo) ™ F (uo) .
Define the domain Dy = E(ug,d) N D and for each w,v € Dy
[MTHE" (v) — F'(u))| < f(|lv = ul),
1M ([u, w; F] = M) < Go(llu — uol|, [lw — uol]),

M= (v, wi F] = [v,u; F)|| < @a([[u = woll, lv = uoll, [[w — uol|)

and
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(Cs) Elug,a*] C Dy.

Remark 3. As in the local analysis , one can choose M = I or M = F’(u) for some auxilary
point @ € D with @ # ug or M = F'(ugy) or M = [u,w; F] for u,a € D or some other choice.

The main semilocal analysis of this subsection follows for the method (7).

Theorem 3. Suppose that the conditions (Cy)—(Cs) hold. Then, the sequence {u,} generated
by the method (7) converges to a solution u* € E(ug, o) of the equation F'(x) = 0. Moreover,
the following assertion holds for each n = 0,1,2,. ..

|lu* —uy|| < o — a,. (33)

Proof. The following assertions are established using induction on j

{u;} C E(uo, "), (34)
v — wll < B85 — ay, (35)
|w; —vs]| <5 — B; (36)
and
ujs1 — wi| < ajp — ;. (37)

Assertion (34) holds for j = 0, since ug € E(ug, o). By the definition of the parameter
Bo in the condition Cy4, (8), and the first substep of the method (7), we have

o — wol| = || F"(uo) ™ F(uo)|| < Bo — ap = By < a™.

Thus, vy € E(ug, "), and assertion (35) holds for n = 0. We need some estimates
1
F(v;) = F(vj) = Flug) = F'(u;)(v; — uy) = / (" (uj + 0(v; — uy)) = F'(uy)) dO(v; — uy),
0

1 1
MWTwMS/f@m—wmwwﬂwé/fw%—%WW@—WZM
0 0
and

(M (v; — ;) (F(u;) — M(v; — u))|| =
= |(M (v — ;)" (F (uj) (05 — ;) — M(v; — u)|| < folay).

By Banach lemma on invertible operators

T V( — |
(1= fola))(Bj — ;)

So,

14

M E@)I _ Jo O —a)do

Pl = ~ j )
V= )l =™ )

3
Uy = (L b+ 21B 20+ b +51P2) B B = Sl B <L
=1
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Thus,

1
1— A

Using these estimates and by subtracting the first from the second substep of the method,
we obtain

1B; M| <

wj —v; = (I = B 'Aj)F'(u;) "' F(u;) = By Y(Bj — Aj) F'(uy) ' F(uy),

which billoy —wll ;08— a)
P
ij UJH < 1< o Y _ﬁj

o = M
— R 1A

and
[w;j — wol| < fJw; — vl + [Jv; —woll <75 — B+ B — o = < ™
Thus the iterate, w; € E(ug, a*) and assertion (36) holds. We also need the estimate
F(w;) = F(w;) — F(uy) — F'(uj)(v; — uj) =
= F(wy) — F(uj) — F'(u;)(w; — u;) + F'(u;)(w; — v;),

which gives
1
M F (wy)]] < /0 FOlw; = wujl) dOllw; — sl + (14 follluj — uol))[Jw; —v5ll <

1
SAfW%—%WWWﬂW+O+M%W%—@=
and
IM7UF ()| = | M7 EF () = M+ M)|| < 1+ || M7HF (w;) — M)|| < 1+ fol|luj — uol])-
Moreover, as in the local case,
IM~H(C; = M)|| < qo(lluy — uoll, [w; —uoll) + G(l|u; — uoll, [Jv; — uoll, lJw; — uoll) <
< qo(j, ;) + (g, Bj, v5)-

So, |C; M| < — ~(2), which implies
-1 -1 /\j
[ujpr — wy|l < [[C5 M| M7 F(w;)| < @ T
J
and |[uj41 — uol| < [Jujr1 — wy|l + lw; — woll < aj1 — 95+ — @ = aj11 < a”. Thus, the
iterate {u;+1} € E(ugp,a*) and the assertion (37) holds. Next, iterate vy, exits by the first
substep of the method (7). We need the Ostrowski type representation

Fluja) = Fuj) — Fuy) — F'(ug)(v; — uy) =
= Fuj1) — Fuy) — F'(us)(ujer — uy) + F'(uj) (w1 — v5),

which implies

1
1M F (uj) || < /O FOlujer = will) dOfejia — ugll + (1 + follluy — woll))l[wjr —vs]l <
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< /0 FO(vji1 — ) dO(vj1 — o) + (1 + foloy)) (o1 — Bj) = py41- (38)

In view of first substep of the (2) for j 4 1 replacing j, we get in turn

- - Hj41
Vi1 — wjga]] < [ F (ujpr) "M |M T F (ujqq)|) < T
1 — fo([lujr1 — uoll)

Hj+1

< ——————=0j11 —ajn
1 — folaji1) ’ !

and
[vj41 = woll < [lvjrr = wjmall + ujer — uoll < Bj1 — jn + @y — a0 = Bjp1 < .

Thus, the iterate vj11 € E(ug, a*) and the assertion (35) holds. It follows that the induction
for the assertions (34)—(37) is completed and all iterates w;,v;,u; € E(ug, o). Notice that
by the triangle inequality and (34)-(37) we also have ||uj11 — uj|| < 41 — o and for
k=1,2,....

[tjn — 5] < iy — . (39)
The sequence {u;} is fundamental, since {a;} is convergent by the condition (Cs3) therefore,
there exists u* € Elug, a*] such that lim,,_, u,, = u*. By letting n — oo in (38) and using the
continuity of F, we get F'(u*) = 0. Finally, by £ — oo in (39) we show the assertion (33). [

A domain is established next, inside which there is only one solution of the equation
F(z) =0.

Proposition 2. There exists a solution u* € FE(ug,0,) of the equation F(x) = 0, the
condition C4 holds in the ball E(ug, 1) and there exists 63 > §; such that

/1 fol(1—60)0, 4 06,) do < 1. (40)

Define the domain D3 = Elug, 5] D. Then, u* is the only solution of the equation F'(z) = 0
in the domain Ds.

Proof. Suppose that there exists a solution v* € Dj such that v* # u* and F'(v*) = 0. Define
linear function L; = fol F'(u*+0(v*—u*)) do, | M~ (L1 —M)| < fol fo((1=0)d1+062) df < 1.
Hence, L' exists. Finally, from the identity

v —ut = L7 (F(v*) — F(u*)) = L71(0) = 0,
we conclude that v* = u*. O

Remark 4. 1) The limit point o* can be replaced by ¢ in the condition (Cs).
2) Under all the conditions (C;)—(Cs) one can set u* = v* and d; = o* in the Proposition 2.

We have compared our method by numerical experiments with some other known existing
seventh order methods ([6,9,24]), and we have used by = 0,b = —2 and b3 = 0 in our
computations. For our comparison we have chosen following test functions fi(u) = cos(u)—u,
fo(w) = 10ue™ — 1, fs(u) = sin(u) — u, fa(u) = e +cos(u), f5(u) = " — 1.5 — tan""(u),
fo(u) = In(u? + u + 2) — u — 1. The calculated results are in excellent agreement with the
theoretical predictions, thereby confirming the robustness and efficiency of the proposed
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algorithm, if we compare the number of iteration and approximated computational order of
convergence.

5. Conclusion. In this paper, we have presented a seventh order iterative method for solving
systems of nonlinear equations. The proposed scheme comprises three steps: an initial Newton
iteration followed by two weighted Newton steps incorporating power series expansions.
Some of the challenges encountered during the convergence analysis are discussed, along
with potential solutions, by presenting a detailed local and semilocal convergence analysis.

The technique of Section 3 can be used to extend similarly the application of other methods
([12,16-24)).
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