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The paper presents some sufficient conditions for the commutativity of transvections with

elements of linear groups over division ring in the language of residual and fixed submodules.
The residual and fixed submodules of the element σ of the linear group are defined as the
image and nucleus of the element σ − 1 and are denoted by R (σ) and P (σ), respectively. It
is proved that transvection σ1 over an arbitrary body commutes with an element σ2 for which
dimR (σ2) = dimR (σ2)∩P (σ2) + l, l ≤ 1, if and only if the inclusion system R (σ1) ⊆ P (σ2),
R (σ2) ⊆ P (σ1). It is shown that for l > 1 this statement is not always true.

Introduction. The condition of switching elements of linear groups of modules over associ-
ative rings in the language of residual and fixed modules play an important role in the theory
of linear groups over rings. The residual and fixed submodules of the element Σ of the li-
near group are defined as the image and nucleus of the element Σ−1 and are denoted by
R (Σ) and P (Σ) respectively. From the system of simultaneous inclusions R (Σ1)⊆P (Σ2)
and R (Σ2)⊆P (Σ1), it follows that the elements Σ1 and Σ2 are commutative. The reverse
is not always true. This paper is devoted to finding sufficient conditions under which the
commutativity of the elements Σ1 and Σ2 follows the system of the above-mentioned inclusi-
ons. It is proved that if transvection Σ1 over an arbitrary body commutes with an element
Σ2 for which dimR (Σ2) = dimR (Σ2)∩P (Σ2) +l, l≤1, then the above system of inclusions
holds. It is shown that for l > 1 this statement is not always true.

Let R be an associative ring of 1, E (n,R) be a subgroup of GL (n,R), generated by all
elementary transvections tij (R) = 1 + reij, r∈R, 1 ≤ i 6= j ≤ n , eij is the standard matrix
unit in which (i, j) stands at 1, and at other places there are zeros.

Let V be an arbitrary left R-module, GL (V ) be a group of automorphisms of module V .
If V is a left free module of finite size n, then we denote GL (V ) by GL (n, V ). In the fixed
base of module V , the group GL (n, V ) is identified with the group GL (n,R).

The residual and fixed submodules of module V of the endomorphism Σ are called
submodules R (Σ) = (Σ−1)V and P (Σ) = ker (Σ−1) in accordance. It is clear that
R (σ) = {(σ − 1) v | v ∈ V } and P (σ) = {v ∈ V | σv = v}, as well as R (1− σ) = σV and
P (1− σ) = kerσ.

It is easy to see that if Σ is an automorphism of module V , then σ−1−1 = (σ − 1) (−σ−1)
and R (σ−1) = R (σ), P (σ−1) = P (σ).

If W is the R-submodule of module V , then

σW = (σ − 1 + 1)W ⊆ R (σ) +W.
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Similarly, σ−1W = (σ−1 − 1 + 1)W ⊆ R (σ−1) + W = R (σ) + W , if σ – is an automor-
phism of module V . In particular, if R (σ) ⊆ W , then σ±1W ⊆ W and, as a consequence,
σW = W . This equality holds when W ⊆ P (σ).

Note that if g is an arbitrary endomorphism of module V such that one of the equations
gσ = σ±1g holds, then g (σ − 1) = (σ±1 − 1) g and (σ − 1) g = g (σ±1 − 1).

This means that gR (σ) ⊆ R (σ±1) = R (σ) and gP (σ) ⊆ P (σ±1) = P (σ).
In particular, if g is an automorphism of module V and one of the equations gσg−1 = σ±1

holds, then gR (σ) = R (σ) and gP (σ) = P (σ). This statement also follows from the general
formulas

R
(
gσg−1

)
= gR (σ) , P

(
gσg−1

)
= gP (σ) ,

where g is the automorphism of module V and σ is the endomorphism of module V .
If g is an automorphism of the module V , then gV = V and gσg−1 − 1 = g (σ − 1) g−1.
Since σ1σ2 − 1 = (σ1 − 1)σ2 + σ2 − 1 = σ1 (σ2 − 1) + σ1 − 1, then

R (σ1σ2) ⊆ R (σ1) +R (σ2) , P (σ1σ2)⊇P (σ1) ∩ P (σ2) .

In particular, if [σ1, σ2] = σ1σ2σ
−1
1 σ−1

2 , then

R ([σ1, σ2]) ⊆ R (σ1) +R
(
σ2σ

−1
1 σ−1

2

)
= R (σ1) + σ2R (σ1) ⊆ R (σ1) +R (σ2) ,

P ([σ1, σ2])⊇P (σ1) ∩ P (σ2) .

Lemma 1. The inclusion of R (σ1) ⊆ P (σ2) holds if and only if (σ2 − 1) (σ1 − 1) = 0, that
is, when σ2σ1 = σ1 + σ2 − 1.

Proof. The proof is obvious.

It follows from Lemma 1 that the system{
R (σ1) ⊆ P (σ2)

R (σ2) ⊆ P (σ1)
(1)

occurs if and only if
(σ2 − 1) (σ1 − 1) = (σ1 − 1) (σ2 − 1) = 0 (2)

This means that system (1) holds if and only if

σ2σ1 = σ1 + σ2 − 1 = σ1σ2 (3)

Thus, conditions (1)–(3) are equivalent and from them follows the commutativity of the
endomorphisms Σ1 and Σ2. On the contrary, it is not always true. Finding the conditions
under which the commutativity of endomorphisms Σ1 and Σ2 implies system (1) is the main
purpose of this article.

Obviously, if endomorphisms σ1 and σ2 are commuting and at least one inclusion of
system (1) takes place, then according to (3) there is also a second inclusion of system (1).

Lemma 2. Let σ1 and σ2 commute, R (σ1)∩R (σ2) = 0 or (σ1) +P (σ2) = V . Then system
(1) takes place.
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Proof. Since inclusion
(σ1 − 1) (σ2 − 1)V ⊆ R (σ1) ∩R (σ2)

follows the first assertion of Lemma 2, and from equality

(σ1 − 1) (σ2 − 1) (P (σ1) + P (σ2)) = (σ2 − 1) (σ1 − 1) (P (σ1) + P (σ2)) = 0

the second assertion of Lemma 2 follows.

It is easy to see that Σ is an involution, that is, Σ2= 1, if and only if Σ
∣∣
R(Σ)

= −1.
If e2 = eεGL (V ), then V = eV⊕ (1− e)V , R (e) = (1− e)V , P (e) = eV .

In particular, if mεK∗ and σm = 1, then e =
1 + · · ·+ σm−1

m
is an idempotent and

R (σ) = R (e) , P (σ) = P (e) , V = R (σ)⊕P (σ) .

Properties of excess and fixed submodules are widely used. In particular, they are applied
to describe the homomorphisms of matrix groups over associative rings with units [1–3].

In [2, 3] the authors proved

Theorem 1. Let R,K be associative rings of 1, V be a left (not necessarily free) K-module,

E (n,R) ⊆ G ⊆ GL (n,R) , E (n,R) = 〈tij (r)| 1 ≤ i 6= j ≤ n, rεR〉 ,

Λ : G → GL (V ) is a homomorphism with condition (*), that is, for an arbitrary nonzero
nilpotent element mεEndV , m2 = 0 there are natural numbers s1 and s2 that are reversible
in K and AεG such that ΛA = 1 + s1m and from the equality ΛA • ΛB = ΛB • ΛA, BεG
implies that As2B = BAs2 .

Then, at n ≥ 4, there is an isomorphism g : V → Vg = L⊕ · · ·⊕L︸ ︷︷ ︸⊕P such that

Λ (x) = g−1
[
δ (x) e+ v

(
x−1
)

(1− e) + e1

]
g, xεE (n,R)

where L occurs n times, e is the central idempotent of the EndL, ring, e1 is the unit of the
EndP , δ : R→ EndL is the ring homomorphism, v : R→ EndL is the ring antihomomorphi-
sm, δ and v are the annular matrix homomorphism and antihomomorphism induced δ and
V , respectively.

Theorem 1 implies a description of the isomorphisms of the groups GL (n,R) and
GL (m,K) at n,m ≥ 4 over the associative rings R and K of 1, which, by developing the
technique associated with idempotents, was carried out by I.Z. Golubchik ([4]). It turned
out that they allow a standard description on the group E (n,R).

The method of excess and fixed submodules was initiated by O’Meara ([5]).
O’Meara first proposed the use of residual and fixed subspaces to describe isomorphisms

of matrix groups rich in projective transvections in dimensions ≥5, and Yu. V. Sosnowski
([6]) extended this description to dimensions ≥3.

A shorter version of the proof O’Meara-Sosnovsky’s theorem has proposed by V. M. Pete-
chuk ([7]).

It turned out that all the isomorphisms are standard.
The theory of residual and fixed modules is most systematically presented in [8]. The

statement in [8] on p. 122 is not true.



122 V. M. PETECHUK, Yu. V. PETECHUK

An endomorphism σ ∈ GL (V ) is unipotent if (σ − 1)k = 0 for some k ≥ 0. It is clear
that the unipotent element is reversible. If (σ − 1)k−1 6= 0, and (σ − 1)k = 0, then K is called
the degree (height) of nilpotency of the element σ− 1 and, accordingly, the level (height) of
unipotency of the element σ. The level of 1 is 1. Any matrix in the group of upper triangular
matrices of the group UT (n,R) with units on the diagonal satisfies the equality (σ − 1)n = 0.
Therefore, the level of unipotency of any matrix of the group UT (n,R) does not exceed n.

Obviously, σ = 1 if and only if R (σ) = 0 or P (σ) = V .

Lemma 3. The element σ ∈ GL (V ) is unipotent of level 2 if and only if 0 ⊂ R (σ) ⊆ P (σ).

Proof. If σ is a unipotent element of level 2, then σ − 1 6= 0, but (σ − 1)2 = 0 and 0 ⊂
R (σ) = (σ − 1)V ⊆ ker (σ − 1) = P (σ).

If 0 ⊂ R (σ) ⊆ P (σ), then (σ − 1)V ⊆ P (σ). Therefore (σ − 1)2 = 0, but σ− 1 6= 0.

Definition 1. A submodule W of module V is called a hyperplane if there is an element
v ∈ V , v 6= 0 such that module V is a direct sum of V = W⊕〈v〉, where 〈v〉 is a submodule
of module V generated by the element v.

Definition 2. The endomorphism σ of module V is called transvection if P (σ) is a hyper-
plane of module V and R (σ) ⊆ P (σ).

Lemma 4. Transvection Σ is a unipotent element of level 2.

Proof. By definition, V = P (σ)⊕〈v〉. Therefore, v 6= 0, σ 6= 1, R (σ) 6= 0, 0 ⊂ R (σ) ⊆
P (σ). According to Lemma 3, Σ is a unipotent element of level 2.

It is clear that not every unipotent element of level 2 is transvection.
Let R be a division ring, V be a finite-dimensional vector space over R. As is known

from linear algebra dimV = dimR (σ) + dimP (σ). In particular, if σ is transvection, then
R (σ) = 〈v〉, dimR (σ) = 1, dimP (σ) = n− 1.

Based on e1, . . . , en of module V , where R (σ) = 〈e1〉, P (σ) = 〈e1, . . . , en−1〉 transvection
σ has the form t1n(r), where r ∈ R.

Lemma 5. Let R be a division ring, V be a finite-dimensional vector space over R, dimV =
n ≥ 2, σ1 be a transvection, and σ2 be an element of the group GL (n, V ) such that σ1σ2 =
σ2σ1. Then system (1) or R (σ1) ⊆ R (σ2) takes place.

Proof. Let e1, . . . , en be the base of a vector space V . We assume that R (σ1) = 〈e1〉,
P (σ1) = 〈e1, . . . , en−1〉.

Therefore, without limitation of generality, with the accuracy of conjugation, we can
assume that σ1 = t1n(r). Then

σ2 =

 r ∗ ∗
0 ∗ ∗

r

, where r ∈ R∗ *.

If r = 1, then 〈e1〉 ∈ P (σ2), R (σ1) ⊆ P (σ2) and system (1) holds.
If r 6= 1, then from inclusion (r − 1) e1 = (σ2 − 1) e1 ∈ R (σ2) implies that e1 ∈ R (σ2).

Therefore R (σ1) ⊆ R (σ2).
Note that if in Lemma 5 the element Σ2 is unipotent or R = Z2, then r = 1.
This means that transvection Σ1 commutes with the unipotent element Σ2 if and only if

system (1) holds. In particular, two transvections commute if and only if system (1) takes
place.
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Theorem 2. Let R be a division ring, V be a finite-dimensional vector space over R, Σ1 be
a transvection, Σ1Σ2=Σ2Σ1, dimR (Σ2) = dimR (Σ2)∩P (Σ2) +l, where l≤1. Then system
(1) holds.

Proof. By Lemma 5, system (1) or R (σ1) ⊆ R (σ2) holds. Therefore, it is sufficient to consider
the case when R (σ1) ⊆ R (σ2).

If l = 0, then R (σ1) ⊆ R (σ2) ⊆ P (σ2) and system (1) holds.
Consider the case l = 1. Then R (σ2) ∩ P (σ2) is a hyperplane in R (σ2).
Of course, it is sufficient to consider the case when R (σ1) * P (σ2).
Since R (σ1) * R (σ2), we have R (σ2) = R (σ1)⊕R (σ2) ∩ P (σ2) .
We choose the base R (σ) = 〈e1〉, R (σ2)∩P (σ2) = 〈e1, . . . , ek〉 and supplement the base of

the subspace R (σ2) = 〈e1, . . . , ek〉 to the base of the whole space V = 〈e1, e2, . . . , ek, . . . , en〉.
In the base V , the matrices σ1 and σ2 have the form

σ1 =

 1 x y
0 E 0
0 0 E

, σ2 =

 r 0 ∗
0 E ∗
0 0 E

, where r 6= 1.

Since σ1 − 1 and σ2 − 1 switch, so are the matrices 0 x y
0 0 0
0 0 0

 and σ2 =

 r − 1 0 ∗
0 0 ∗
0 0


also commute.

Hence (r − 1)x = 0 and, as a consequence, x = 0. In this case, (r − 1) y = 0 and, as a
consequence, y = 0, σ1 = 1. But, this contradicts the fact that σ1 is transvection.

This proves that the case R (σ1) * P (σ2) is not possible. This means that at l = 1,
system (1) also holds.

For l > 1, Theorem 2 does not always true. This follows from the examples.

Example 1. Let R be a division ring, R 6= Z2,

σ1 =


E

t1l
E

E

 , σ1 =


E

αE
E

E
E


where α 6= 0, 1 is taken l times, l > 1. After all, σ1σ2 = σ2σ1, but R (σ1) * P (σ2). In this
case, P (σ1) ∩R (σ2) 6= 0.

Example 2. Let R be a division ring, R 6= Z2,

σ1 = diag(E, t1l (1) , E, E), σ1 = diag(E,αE,E,E)

where α 6= 0, 1 is taken l times, l > 1. After all, σ1σ2 = σ2σ1, R (σ1) * P (σ2) and P (σ1) ∩
R (σ2) = 0.

We note that the case when σ1 is a transvection commuting with σ2, where dimR (σ2) = 2
and R (σ2) ∩ P (σ2) 6= 0, which follows from [8], follows from Theorem 2. After all, in this
case

1 ≤ dimR (σ2) ∩ P (σ2) ≤ 2, 0 ≤ dimR (σ2)− dimR (σ2) ∩ P (σ2) = l ≤ 1.

Therefore, by Theorem 2, system (1) holds.
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