UDK 512.546

N. M. Pyrch

FREE PRODUCTS OF TOPOLOGICAL GROUPS AND M-EQUIVALENCE

N. M. Pyrch. Free products of topological groups and M-equivalence, Mat. Stud. **64** (2025), 3–14.

In the paper we apply free products of topological groups for investigating the M-equivalence of Tychonoff spaces which are infinite disjoint sums of its subspaces. The main result is the following: Let $X = \bigoplus_{i=1}^{\infty} X_i$ and for every $i \in \mathbb{N}$ there exists a topological group G_i such that $F(X_{i+1})$ is topologically isomorphic to the free product $F(X_i)$ and G_i . Let $\{n_k\}_{k=1}^{\infty}$ be an increasing sequence of the natural numbers and let $\tilde{X} = \bigoplus_{k=1}^{\infty} X_{n_k}$. Then $X \stackrel{M}{\sim} \tilde{X}$. This theorem give us many examples of topological spaces with topologically isomorphic free topological groups.

We use obtained results for constructing M-equivalent pairs and M-equivalent bundles of such spaces.

- **1. Notations.** All the spaces in the paper are assumed to be Tychonoff. Let $\{G_i : i \in I\}$ be a family of topological groups. Then a topological group F is said to be a *free topological product* of $\{G_i : i \in I\}$, denoted by $\underset{i \in I}{*} G_i$ if
 - 1) for each $i \in I$ G_i is a subgroup in F;
 - 2) F is generated by $\bigcup_{i \in I} G_i$;
- 3) for every family $\{f_i: G_i \to H: i \in I\}$ of continuous homomorphisms to a topological group H there exists a unique continuous homomorphism $f: F \to H$ such that $f \upharpoonright_{G_i} = f_i$. In particular, for finite number of topological groups G_1, G_2, \ldots, G_n their free product is denoted by $G_1 * G_2 * \cdots * G_n$.

For a topological space X denote by F(X) the free topological group on X in Markov sense. For a topological space X we denote by X^+ the space obtained from X by adding one isolated point. A subspace Y of a topological space X is called a G-retract of the topological space X if any continuous mapping $f: Y \to H$ from a topological space Y into a topological group H admits a continuous extension on X.

Topological spaces X and Y are called

M-equivalent $(X \stackrel{M}{\sim} Y)$ if their free topological groups F(X) and F(Y) are topologically isomorphic;

r-equal, if the space X contains a retract homeomorphic to Y and the space Y contains a retract homeomorphic to X;

²⁰²⁰ Mathematics Subject Classification: 22A05.

 $[\]label{lem:keywords:matter} \textit{Keywords:} \ \text{free topological groups;} \ \textit{M-equivalence;} \ \text{generalized retract.} \\ \text{doi:} 10.30970/\text{ms.} 64.1.3-14$

 r_G -equal, if the space X contains a G-retract homeomorphic to Y and space Y contains a G-retract homeomorphic to X.

A pair of topological spaces (X,Y) is a space X and its subspace Y. We denote by $\langle Y \rangle$ the subgroup in F(X), generated by the set Y. A pair of topological spaces (X,X_1) is called M-equivalent to a pair (Y,Y_1) , if there exists a topological isomorphism $f\colon F(X)\to F(Y)$ such that $f(\langle X_1\rangle)=\langle Y_1\rangle$. A bundle $(X,\{X_i\colon i\in I\})$ of topological spaces consists of the topological space X and the family of its subspaces $\{X_i\colon i\in I\}$. We say that the bundle $(X,\{X_i\colon i\in I\})$ is M-equivalent to a bundle $(Y,\{Y_i\colon i\in I\})$, if there exists a topological isomorphism $h\colon F(X)\to F(Y)$ such that $h(\langle X_i\rangle)=\langle Y_i\rangle$ for all $i\in I$.

A bundle $(X, \{X_s : s \in S\})$, where $X = \bigcup_{s \in S} X_s$, forms a Δ -system, if for all different $i, j \in S$ we have that $X_i \cap X_j = K$, where $K = \bigcap_{s \in S} X_s$. The bouquet $\bigvee_{s \in S} (X_s, x_s)$ of topological spaces X_s with the distinguished points $x_s \in X_s$ can be defined as quotient space $(\bigoplus_{s \in S} X_s)/(\bigoplus_{s \in S} \{x_s\})$. It was proved in [9] that the bouquet of topological spaces does not depend up to M-equivalence on the distinguished points, so we will write shortly $\bigvee_{s \in S} X_s$. We will write $X \sim Y$ for homeomorphic topological spaces X and Y, and $G \simeq H$ for topologically isomorphic topological groups G and H.

For a topological space X with a distinguished point a we denote by FG(X,a) the Graev free topological group on X with the identity a. Since FG(X,a) does not depend up to topological isomorphism on a we will write shortly FG(X) ([6]). For every topological space X we have that $F(X) \simeq FG(X^+)$. We refer to [2] for basic topological properties of the free topological groups.

2. Infinite unions of topological spaces and M-equivalence. From the definition of a free product of topological groups and a free topological group it follows that for every family $\{X_i : i \in I\}$ of disjoint topological spaces

$$F(\underset{i \in I}{\oplus} X_i) \simeq \underset{i \in I}{*} F(X_i) \text{ and } FG(\underset{i \in I}{\vee} (X_i, a_i)) \simeq \underset{i \in I}{*} FG(X_i, a_i)$$

for every family $\{(X_i, a_i) : i \in I\}$ of topological spaces with the distinguished points a_i .

In particular $F(X \vee Y) \simeq FG((X \vee Y)^+) \simeq FG(X) * FG(Y^+) \simeq FG(X) * F(Y)$, and similarly $F(X \vee Y) \simeq F(X) * FG(Y)$.

Lemma 1. The free product of topological groups is associative, i.e. if topological group H_j is isomorphic to the free product $\underset{i \in I_j}{*} G_i$ of the family of topological groups $\{G_i : i \in I_j\}$, where $I_s \cap I_k = \emptyset$ for $s \neq k$, then $\underset{j \in J}{*} H_j$ is topologically isomorphic to $\underset{i \in I}{*} G_i$, where $I = \underset{j \in J}{\cup} I_j$.

Proof. Consider the topological group $G = \underset{j \in J}{*} H_j$. For each $i \in I$ G_i is a subgroup in some H_j and hence is a subgroup in G. The set $\underset{i \in I_j}{\cup} G_i$ generates H_j , the set $\underset{j \in J}{\cup} H_j$ generates G, hence the set $\underset{i \in I}{\cup} G_i$ generates G. Every family of continuous homomorphisms $\{f_i \colon G_i \to H \colon i \in I\}$ to a topological group H admits extension to the family of continuous homomorphisms $\{h_j \colon H_j \to H \colon j \in J\}$, which admits extension to continuous homomorphism $h \colon G \to H$. From the uniqueness of the free product of topological groups the group $\underset{j \in J}{*} H_j$ is isomorphic to the free product $\underset{i \in I}{*} G_i$.

Lemma 2. A free product of topological groups is commutative, i.e. if I is an ordered set, $\{G_i : i \in I\}$ is a family of topological groups, $\sigma : I \to I$ is permutation defined on I, then $\underset{i \in I}{*} G_i$ is topologically isomorphic to $\underset{i \in I}{*} G_{\sigma(i)}$.

Proof. Consider the topological group $G = \underset{i \in I}{*} G_{\sigma(i)}$. For each $i \in I$ G_i is a subgroup in G. The set $\underset{i \in I}{\cup} G_i \simeq \underset{i \in I}{\cup} G_{\sigma(i)}$ generates G. Every family of continuous homomorphisms $\{f_i \colon G_i \to H \colon i \in I\}$ to a topological group H generates a family $\{h_i \colon G_{\sigma(i)} \to H \colon i \in I\}$ of continuous homomorphisms and hence admits extension to continuous homomorphism $h \colon G \to H$. From the uniqueness of the free product of topological groups we conclude that the group G is topologically isomorphic to the free product $\underset{i \in I}{*} G_i$.

Proposition 1. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and K be an arbitrary topological space. If for every $i \in \mathbb{N}$ there exists a topological group G_i such that $F(X_i) \simeq F(K) * G_i$, then $X \stackrel{M}{\sim} X \oplus K$.

Proof.

$$F\left(\underset{i=1}{\overset{\infty}{\oplus}} X_i \right) \simeq \underset{i=1}{\overset{\infty}{*}} F(X_i) \simeq \underset{i=1}{\overset{\infty}{*}} (G_i * F(K)) \simeq \left(\underset{i=1}{\overset{\infty}{*}} G_i \right) * \left(\underset{i=1}{\overset{\infty}{*}} F(K) \right) \simeq$$

$$\simeq \left(\underset{i=1}{\overset{\infty}{*}} G_i \right) * \left(\underset{i=1}{\overset{\infty}{*}} F(K) \right) * F(K) \simeq \left(\underset{i=1}{\overset{\infty}{*}} (G_i * F(K)) \right) * F(K) \simeq \left(\underset{i=1}{\overset{\infty}{*}} F(X_i) \right) * F(K) \simeq$$

$$\simeq F(X) * F(K) \simeq F(X \oplus K).$$

Theorem 1. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and for every $i \in \mathbb{N}$ there exists a topological group G_i such that $F(X_{i+1}) \simeq F(X_i) * G_i$. Let $\{n_k\}_{k=1}^{\infty}$ be an increasing sequence of the natural numbers and let $\tilde{X} = \bigoplus_{k=1}^{\infty} X_{n_k}$. Then $X \stackrel{M}{\sim} \tilde{X}$.

Proof. Obviously if j > i then there exists a topological group G such that $F(X_j) \simeq F(X_i) * G$. Denote $P = \{n_k : k \in \mathbb{N}\}, S = \mathbb{N} \setminus P$. The set S as a subset of the ordered set \mathbb{N} is ordered, so we denote its elements s_1, s_2, \ldots , with the order inherited from \mathbb{N} . Put $Y = \bigoplus_{i \in S} X_i$ and $Y_m = X_{s_m}$. Then $Y = X \setminus \tilde{X}$. For every natural number $i \in S$ define the natural number k(i) and the set K_i by the induction

$$K_0 = \emptyset, \quad k(i) = \min_{\substack{n_l > i, \\ l \in \mathbb{N} \setminus K_{i-1}}} l, \quad K_i = \{k_1, k_2, \dots, k_i\}.$$

So for every $i \in \mathbb{N}$ there exists $k(i) \in \mathbb{N}$ such that $n_{k_i} > i$ and from the fact i > j it follows that k(i) > k(j). Hence, for every element Y_i , for every $j \geq i$ there exists a topological group G_j such that $F(X_{n_{k(j)}}) \simeq F(Y_i) * G_j$. Put $K = \{k_i : i \in \mathbb{N}\}$. Denote by $W = \bigoplus_{i \in K} X_i$. If we denote $W_i = X_{n_{k(i)}}$, then $W = \bigoplus_{i \in \mathbb{N}} W_i$. Denote by $V = \tilde{X} \setminus W$. We match to each element

from Y the sequence from W in the following way:

$$Y_1: Z_1 = W_1 \oplus W_3 \oplus W_5 \oplus W_7 \oplus \dots$$

 $Y_2: Z_2 = W_2 \oplus W_6 \oplus W_{10} \oplus W_{14} \oplus \dots$

$$Y_3: Z_3 = W_4 \oplus W_{14} \oplus W_{20} \oplus W_{28} \oplus \dots$$

$$Y_n: Z_n = W_{2^{n-1}} \oplus W_{2^{n-1}+2^{n+1}} \oplus W_{2^{n-1}+2\times 2^{n+1}} \oplus W_{2^{n-1}+3\times 2^{n+1}} \oplus \dots$$

In these sums every W_i meets exactly one time. If $i = 2^m \cdot l$, where l is odd then W_i is in (m+1)-th row.

Obviously, $W = \bigoplus_{i=1}^{\infty} Z_i$. From Proposition 1 it follows that $Z_n \stackrel{M}{\sim} Z_n \oplus Y_n$. So,

$$X = \tilde{X} \oplus Y = V \oplus W \oplus Y = V \oplus \left(\bigoplus_{n=1}^{\infty} Z_n \right) \oplus \left(\bigoplus_{n=1}^{\infty} Y_n \right) = V \oplus \left(\bigoplus_{n=1}^{\infty} (Z_n \oplus Y_n) \right) \stackrel{M}{\sim}$$

$$\stackrel{M}{\sim} V \oplus \left(\bigoplus_{n=1}^{\infty} Z_n \right) = V \oplus W = \bar{X}.$$

Subsets K_1 and K_2 of topological spaces X are called *parallel G-retracts* of X if there exist continuous homomorphisms $R_1 \colon F(X) \to \langle K_1 \rangle$ and $R_2 \colon F(X) \to \langle K_2 \rangle$ such that

- 1) $R_1(x) = x$ for all $x \in K_1$;
- 2) $R_2(x) = x \text{ for all } x \in K_2;$
- 3) $R_1 \circ R_2 = R_1$, $R_2 \circ R_1 = R_2$.

Recall that a continuous surjective mapping $p: X \to Y$ is called R-quotient if a real-valued function ϕ on Y is continuous iff the composition $\phi \circ p: X \to \mathbb{R}$ is continuous. If $p: X \to Y$ is mapping of a space X onto a set Y, then there exists and unique completely regular topology on Y, called the R-quotient topology, which makes the mapping p q quotient. This topology can be described as the finest completely regular topology on Y making the mapping p continuous. If q is a subspace of Tychonoff space q, then q-quotient space q is Tychonoff ([9]). Obviously, if quotient space q is a closed subspace of Tychonoff space q under q in the q is a closed subspace of Tychonoff space q under q is a closed subspace of Tychonoff space q under q is a closed subspace of Tychonoff space q under q is a closed subspace of Tychonoff space q under q is a quotient space. If q is a closed subspace of Tychonoff space q under q is q in q i

Proposition 2. If K is a G-retract of a topological space X, then X is M-equivalent to $(X/K) \vee K$.

Proof. If K is a G-retract in X, then there exists a continuous homomorphism $R \colon F(X) \to F(K)$ such that R(a) = a for all $a \in K$ [10]. Let $b \in K$, $h \colon K \to K_1$ be some homeomorphism, $H \colon F(K) \to F(K_1)$ continuous homomorphic extension of the mapping h, $b_1 = h(b)$. Consider the bouquet $Y = (X, b) \lor (K_1, b_1)$. Define the mapping $r_1 \colon Y \to F(K)$ in the following way: $r_1(x) = R(x)$ if $x \in X$ and $r_1(x) = h^{-1}(x)$ if $x \in K_1$. Denote by $R_1 \colon F(Y) \to F(K)$ the homomorphic extension of the mapping r_1 . Put $R_2 = H \circ R_1 \colon F(Y) \to F(K_1)$. Then $R_1 \circ R_2 = H^{-1} \circ R_2 \circ R_2 = H^{-1} \circ R_2 = R_1$, $R_2 \circ R_1 = H \circ R_1 \circ R_1 = R_2$. So, $R_1(Y)$ and $R_2(Y)$ are parallel G-retracts and hence $Y/K \overset{M}{\sim} Y/K_1$, i.e., $X \overset{M}{\sim} (X/K) \lor K$.

Proposition 3. If a topological space X contains a G-retract K, M-equivalent to Y, then there exists a topological group G such that $F(X) \simeq F(Y) * G$.

Proof. Let K be an G-retract of a topological space X. From the fact that $X \stackrel{M}{\sim} (X/K) \vee K$, so $F(X) \simeq F(K) * FG(X/K)$. Since F(K) and F(Y) are topologically isomorphic then $F(X) \simeq F(Y) * FG(X/K)$.

Proposition 4. If a topological space X contains a G-retract K such that R-quotient space X/K is M-equivalent to Y, then there exists a topological group G such that

$$F(X) \simeq F(Y) * G.$$

Proof. Let K be an G-retract of topological space X. From the fact that $X \stackrel{M}{\sim} (X/K) \vee K$ it follows that $F(X) \simeq F(X/K) * FG(K)$. Since F(X/K) and F(Y) are topologically isomorphic then $F(X) \simeq F(Y) * FG(K)$.

Retractions r_1 and r_2 of a space X are called *orthogonal* if the mappings $r_1 \circ r_2$ and $r_2 \circ r_1$ are constant. The images of the space X under orthogonal retractions K_1 and K_2 are called *orthogonal* retracts of the space X.

Proposition 5. If a topological space X contains orthogonal G-retracts K_1 and K_2 ([10]) such that $X/\{K_1, K_2\}$ is M-equivalent to Y, then there exists a topological group G such that $F(X) \simeq F(Y) * G$.

Proof. By Proposition 2 $F(X) \simeq FG(K_1) * F(X/K_1)$. Let $p: X \to X/K_1$ be a R-quotient mapping. By Proposition 2 from [10] $p(K_2)$ is homeomorphic to K_2 and is G-retract in X/K_1 . Hence, $F(X/K_1) \simeq F(X/\{K_1, K_2\}) * FG(p(K_2))$. Thus, $F(X) \simeq FG(K_1) * F(X/\{K_1, K_2\}) * FG(p(K_2)) \simeq F(Y) * FG(K_1) * FG(p(K_2))$.

Topological space X is called an absolute G-retract if X is G-retract of every topological space Y that contains X as closed subspace. Similarly to proposition 5 we can prove

Proposition 6. If a topological space X contains disjoint absolute G-retracts K_1, K_2, \ldots, K_n such that $X/\{K_1, K_2, \ldots, K_n\}$ is M-equivalent to Y, then there exists a topological group H such that $F(X) \simeq F(Y) * H$.

From Theorem 1 and Proposition 3 it follows

Theorem 2. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and every X_{i+1} contains G-retract (retract) homeomorphic to X_i . Let $\{n_k\}_{k=1}^{\infty}$ be an increasing sequence of the natural numbers and let $\tilde{X} = \bigoplus_{k=1}^{\infty} X_{n_k}$. Then $X \stackrel{M}{\sim} \tilde{X}$.

From the fact that every closed subspace of a zero-dimensionally metrizable space is a retract in this space we obtain

Corollary 1. Let $X = \bigoplus_{i=1}^{\infty} X_i$, where every space X_{i+1} is zero-dimensionally metrizable and contains a closed subspace homeomorphic to X_i . Let $\{n_k\}_{k=1}^{\infty}$ be an increasing sequence of the natural numbers and let $\tilde{X} = \bigoplus_{k=1}^{\infty} X_{n_k}$. Then $X \stackrel{M}{\sim} \tilde{X}$.

Denote by I = [0, 1] the closed unit interval with the topology generated by the standard euclidian metric. Since I is an absolute retract we obtain

Corollary 2. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and for every $i \in \mathbb{N}$ the space X_i is nontrivial path connected. Then $X \stackrel{M}{\sim} X \oplus I$.

From Theorem 1 and Proposition 4 it follows

Theorem 3. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and every X_{i+1} contains G-retract (retract) K_i such that quotient space X_{i+1}/K_i is homeomorphic to X_i . Let $\{n_k\}_{k=1}^{\infty}$ be an increasing sequence of the natural numbers and let $\tilde{X} = \bigoplus_{k=1}^{\infty} X_{n_k}$. Then $X \stackrel{M}{\sim} \tilde{X}$.

Lemma 3. If for all k = 1, ..., n there exists a topological group G_k , such that $F(X_k) \simeq F(Y_k * G_k)$. The there exists a topological group G such that $F(X_1 \oplus X_2 \oplus \cdots \oplus X_n) \simeq F(Y_1 \oplus Y_2 \oplus \cdots \oplus Y_n) * G$.

Proof.
$$F(X_1 \oplus X_2 \oplus \cdots \oplus X_n) \simeq F(X_1) * F(X_2) * \cdots * F(X_n) \simeq$$

 $\simeq F(Y_1) * G_1 * F(Y_2) * G_2 * \cdots * F(Y_n) * G_n \simeq$
 $\simeq (F(Y_1) * F(Y_2) * \cdots * F(Y_n)) * (G_1 * G_2 * \cdots * G_n) \simeq F(Y_1 \oplus Y_2 \oplus \cdots \oplus Y_n) * G,$
where $G = G_1 * G_2 * \cdots * G_n$.

Denote by \mathbb{N} the set of natural numbers with the discrete topology.

Proposition 7. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and for every $i \in \mathbb{N}$ there exists a topological group G_i such that $F(X_{i+1}) \simeq F(X_i) * G_i$. Then $X \stackrel{M}{\sim} \mathbb{N} \times X$.

Proof. Apply Theorem 1 for the disjoint sum of the topological spaces $Z = A_1 \oplus A_2 \oplus A_3 \oplus \dots$ defined as

$$Z = (X_1) \oplus (X_1) \oplus (X_2) \oplus (X_1 \oplus X_2) \oplus (X_3 \oplus X_3) \oplus (X_1 \oplus X_2 \oplus X_3 \oplus X_3) \oplus (X_4 \oplus X_4 \oplus X_4 \oplus X_4) \oplus (X_1 \oplus X_2 \oplus X_3 \oplus X_4 \oplus X_4 \oplus X_4 \oplus X_4) \oplus \dots$$

Denote by D_i a discrete space containing i elements. Here $A_{2k} = D_{a_k} \times X_k$, $A_{2k-1} = X_1 \oplus X_2 \oplus \cdots \oplus X_k \oplus D_{a_{k-1}} \times X_k$, where a_k is a sequence satisfying recurrence relation $a_k = a_{k-1} + k - 2$, $a_1 = 1$. Solving this relation we obtain that $a_k = \frac{1}{2}k^2 - \frac{3}{2}k + 1$ ([1, chapter 11.2]).

Note that
$$Z \sim \mathbb{N} \times X$$
. By Theorem 1 $Z \stackrel{M}{\sim} \bigoplus_{i=1}^{\infty} A_{2i} = \bigoplus_{i=1}^{\infty} D_{a_i} \times X_i$.

Denote
$$Z_1 = \bigoplus_{i=1}^{\infty} A_{2i}$$
.

Apply Theorem 1 for the disjoint sum of the topological spaces

$$Z_1 = X_1 \oplus X_2 \oplus X_3 \oplus X_3 \oplus X_4 \oplus X_4 \oplus X_4 \oplus X_4 \oplus \dots$$

(here X_i meet a_i times).

This sequence contains a subsequence $\{X_i\}$, so $Z_1 \overset{M}{\sim} \underset{i=1}{\overset{\infty}{\ominus}} X_i$. Hence, $\mathbb{N} \times X \sim Z \overset{M}{\sim} Z_1 \overset{M}{\sim} X_i$.

Corollary 3. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and for every $i \in \mathbb{N}$ there exists a topological group G_i such that $F(X_{i+1}) \simeq F(X_i) * G_i$. Let D be a finite discrete topological space. Then $X \stackrel{M}{\sim} D \times X$.

Proposition 8. Let Y be a G-retract of the space X. Then $\mathbb{N} \times (X \oplus Y) \stackrel{M}{\sim} \mathbb{N} \times X$.

Proof. By Proposition 1 we have that $Y \oplus \mathbb{N} \times X \stackrel{M}{\sim} \mathbb{N} \times X$. Since the relation of M-equivalence is additive, then from the fact $X_1 \stackrel{M}{\sim} X_2$ it follows $\mathbb{N} \times X_1 \stackrel{M}{\sim} \mathbb{N} \times X_2$.

So,
$$\mathbb{N} \times (Y \oplus \mathbb{N} \times X) \stackrel{M}{\sim} \mathbb{N} \times \mathbb{N} \times X$$
, i.e., $\mathbb{N} \times (X \oplus Y) \stackrel{M}{\sim} \mathbb{N} \times X$.

Corollary 4. For every nonempty space X we have that $\mathbb{N} \times X \stackrel{M}{\sim} \mathbb{N} \times X \oplus \mathbb{N}$.

Proposition 9. If Y is a G-retract of the space X. Then $\mathbb{N} \times (X \oplus X/Y) \stackrel{M}{\sim} \mathbb{N} \times X$.

Proof. By Corollary 1 from [11] we have that $Y \oplus X/Y \stackrel{M}{\sim} X^+$. From Corollary 4 it follows that $\mathbb{N} \times X \sim \mathbb{N} \times X \oplus \mathbb{N} \times X \stackrel{M}{\sim} \mathbb{N} \times X \oplus \mathbb{N} \times X \oplus$

From Proposition 8 it follows

Proposition 10. Let X and Y be r_G -equal spaces. Then $\mathbb{N} \times X \stackrel{M}{\sim} \mathbb{N} \times Y$.

In [3] Borsuk study r-equal spaces, in particular, r-invariants. Since many topological properties, in particular, cardinal invariants, for a topological spaces X and $\mathbb{N} \times X$ coincide, we can conclude that the long list of M-invariants ([2, chapter 7.10]), are also r-invariants.

Corollary 5. Let X and Y be a zero-dimensional metrizable spaces such that

- 1) X contains closed subspace homeomorphic to Y,
- 2) Y contains closed subspace homeomorphic to X.

Then $\mathbb{N} \times X \stackrel{M}{\sim} \mathbb{N} \times Y$.

Proposition 11. Let X and Y be a spaces such that X contains G-retract K_X such that X/K_X is homeomorphic to Y and Y contains G-retract K_Y such that Y/K_Y is homeomorphic to X. Then $\mathbb{N} \times X \stackrel{M}{\sim} \mathbb{N} \times Y$.

Proof. From Proposition 9 it follows that $\mathbb{N} \times X \stackrel{M}{\sim} \mathbb{N} \times (X \oplus X/K_X) \stackrel{M}{\sim} \mathbb{N} \times (X \oplus Y)$ and $\mathbb{N} \times Y \stackrel{M}{\sim} \mathbb{N} \times (Y \oplus Y/K_Y) \stackrel{M}{\sim} \mathbb{N} \times (Y \oplus X)$. Hence, $\mathbb{N} \times X \stackrel{M}{\sim} \mathbb{N} \times Y$.

Denote by \mathbb{Z} the group of integers with the discrete topology. We say that the isomorphism $i \colon F(X) \to F(Y)$ is special if the mapping $e_Y^* \circ i$ is constant mapping, where $e_Y^* \colon F(Y) \to \mathbb{Z}$ is homomorphism extending function $e_Y \colon Y \to \mathbb{Z}$, equal 1 on Y.

Proposition 12. For every Tychonof X and its G-retract Y we have that $F(X) \stackrel{M}{\sim} F(X) \oplus Y$. In particular, $F(X) \stackrel{M}{\sim} F(X) \oplus X$ for every space.

Proof. Let $e: X \to \mathbb{Z}$ be a continuous mapping defined as $e \upharpoonright_X = 1$, $E: F(X) \to \mathbb{Z}$ is homomorphism, extending the mapping e. Put $G_i(X) = E^{-1}(i)$. For every $n, m \in \mathbb{N}$ subspaces $G_m(X)$ and $G_n(X)$ are homeomorphic (homeomorphisms we can define by the formula $h(x) = x \cdot a^{n-m}$, where $a \in X$). Since $X \subset G_1(X)$, and X is a G-retract of the space F(X), then X is a G-retract in the space $G_1(X)$. Subspace Y is G-retract in X, and space X is a G-retract of the space $G_1(X)$, so Y is G-retract in the space $G_1(X)$. Since $F(X) = \bigoplus_{i \in \mathbb{Z}} G_i(X)$, and every space $G_i(X)$ contains G-retract homeomorphic to Y, so by

Proposition 1 we have that $F(X) \stackrel{M}{\sim} F(X) \oplus Y$.

Proposition 13. For every space X and its G-retract Y we have that $F(X) \stackrel{M}{\sim} F(X) \oplus F(Y)$.

Proof. By Proposition 3 from [10] we obtain that there exists a special topological homomorphism $h: F(X) \to F(Y)$ such that h(x) = x for all $x \in F(Y)$. Since h is special, then $h(G_1(X)) = G_1(Y)$, and subspace $G_1(Y)$ is retract of the space $G_1(X)$. From Proposition 7 it follows that $F(X) \sim \mathbb{N} \times G_1(X) \stackrel{M}{\sim} \mathbb{N} \times (G_1(X) \oplus G_1(Y)) \sim F(X) \oplus F(Y)$.

Proposition 14. Let X and Y be r_G -equal spaces. Then $F(X) \stackrel{M}{\sim} F(Y)$.

Proof. From Proposition 13 it follows that $F(X) \stackrel{M}{\sim} F(X) \oplus F(Y)$ and $F(Y) \stackrel{M}{\sim} F(X) \oplus F(Y)$. Hence, $F(X) \stackrel{M}{\sim} F(Y)$.

For a topological space X denote by $F_p(X)$ the free paratopological group on X ([5]), by $F_q(X)$ the free quasitopological group on X ([4]).

Proposition 15. For every topological space X and its G-retract Y we have that

$$F_p(X) \stackrel{M}{\sim} F_p(X) \oplus Y, \quad F_q(X) \stackrel{M}{\sim} F_q(X) \oplus Y.$$

In particular, $F_p(X) \stackrel{M}{\sim} F_p(X) \oplus X$ and $F_q(X) \stackrel{M}{\sim} F_q(X) \oplus X$ for every space X.

Proof. Since every continuous mapping from Tychonoff space X into topological group H admits continuous extension into $F_p(X)$, we make the conclusion that subspace X is G-retract of the space $F_p(X)$. The rest proof is similar to the proof of Proposition 12.

Denote by $S(X) = \bigoplus_{n=1}^{\infty} X^n$ the free topological semigroup on X. Taking in this sum the powers of X divisible by some natural number k, we obtain subspace in S(X) homeomorphic to $S(X^k)$.

Proposition 16. Let X be a Tychonof space, $n, m \in \mathbb{N}$. Then $S(X) \stackrel{M}{\sim} X^m \times S(X^n)$.

Proof. Apply Theorem 1 for the sequence $Y_i = X^i$ and its subsequence $Z_j = X^m \cdot X^{nj}$. \square

From Proposition 7 it follows

Proposition 17. Let X be a space. Then $S(X) \stackrel{M}{\sim} \mathbb{N} \times S(X) \sim S(\mathbb{N} \times X) \sim S(S(X))$.

Proposition 18. For every space X and its retract Y we have that

$$S(X) \stackrel{M}{\sim} S(X) \oplus S(Y) \stackrel{M}{\sim} S(X) \oplus Y.$$

Proof. Let $k \in \mathbb{N}$. Then $S(X) = \bigoplus_{n=1}^{\infty} X^n = \left(\bigoplus_{n=1}^{k-1} X^n\right) \oplus \left(\bigoplus_{n=k}^{\infty} X^n\right)$. Since for $n \geq k$ X^n contains retract homeomorphic Y^k then by Proposition 1 we have $\bigoplus_{n=k}^{\infty} X^n \stackrel{M}{\sim} \left(\bigoplus_{n=k}^{\infty} X^n\right) \oplus Y^k$. So $S(X) \stackrel{M}{\sim} \left(\bigoplus_{n=1}^{k-1} X^n\right) \oplus \left(\bigoplus_{n=k}^{\infty} X^n\right) \oplus Y^k = S(X) \oplus Y^k$. By the additivity of the relation of Mequivalence we have $\mathbb{N} \times S(X) \stackrel{M}{\sim} \bigoplus_{k=1}^{\infty} (S(X) \oplus Y^k) = \mathbb{N} \times S(X) \oplus \left(\bigoplus_{k=1}^{\infty} Y^k\right) = S(X) \oplus S(Y)$. \square

Corollary 6. Let X and Y be an r-equal spaces. Then $S(X) \stackrel{M}{\sim} S(Y)$.

Proposition 19. For every space X and its retract Y we have that $S(X) \stackrel{M}{\sim} S(X \times Y)$.

Proof. Apply Theorem 2 for disjoint sum of the sequence

$$S(X) = X \oplus X^2 \oplus X^3 \oplus \dots$$

By this theorem S(X) is M-equivalent to the space $Z_1 = \bigoplus_{n=1}^{\infty} X^{2^n}$.

Similarly the space $S(X \times Y)$ is M-equivalent to the space $Z_2 = \bigoplus_{n=1}^{\infty} (X \times Y)^{2^n}$. Apply Theorem 2 for sequence

$$Z = X \oplus X \times Y \oplus X^2 \oplus X^2 \times Y^2 \oplus X^4 \oplus X^4 \times Y^4 \oplus \dots$$

By this theorem the space Z is M-equivalent to the space $Z_1 = \bigoplus_{n=1}^{\infty} X^{2^n}$ and to the space $Z_2 = \bigoplus_{n=1}^{\infty} (X \times Y)^{2^n}$. The space Z_1 is M-equivalent to S(X), space Z_2 is M-equivalent to $S(X \times Y)$, so

$$S(X) \stackrel{M}{\sim} Z_1 \stackrel{M}{\sim} Z \stackrel{M}{\sim} Z_2 \stackrel{M}{\sim} S(X \times Y).$$

Proposition 20. Let $X_1, X_2, ..., X_n$ be such topological spaces, that there exist a topological groups $G_1, G_2, ..., G_n$ with

$$F(X_2) \simeq F(X_1) * G_1, \quad F(X_3) \simeq F(X_2) * G_2, \dots, F(X_1) \simeq F(X_n) * G_n.$$

Then $\mathbb{N} \times X_1 \stackrel{M}{\sim} \mathbb{N} \times X_2 \stackrel{M}{\sim} \dots, \stackrel{M}{\sim} \mathbb{N} \times X_n$.

Proof. Consider the space

$$Z = X_1 \oplus X_2 \oplus \cdots \oplus X_n \oplus X_1 \oplus X_2 \oplus \cdots \oplus X_n \oplus X_1 \oplus X_2 \oplus \cdots \oplus X_n \oplus \cdots$$

By Theorem 1
$$Z \stackrel{M}{\sim} \mathbb{N} \times X_1, Z \stackrel{M}{\sim} \mathbb{N} \times X_2, \dots, Z \stackrel{M}{\sim} \mathbb{N} \times X_n.$$

3. Equivalence of the bundles and infinite unions.

Proposition 21. If a topological space X is the disjoint infinite sum $X = \underset{i \in I}{\oplus} X_i$ of its nonempty subspaces X_i , then $FG(X) \simeq F(X)$.

Proof. Let $a_i \in X_i$ be an arbitrary points. Then the space $K = \{a_i : i \in I\}$ is infinite discrete and is retract in X. Applying Proposition 2 for Graev free topological groups we obtain

$$FG(X) \simeq FG((X/K) \vee K) \simeq FG((X/K) \vee K \oplus \{a_0\}) \simeq FG(X \oplus \{a_0\}) \simeq F(X).$$

From Proposition 21 it follows that for spaces being disjoint infinite sum of its nonempty subspaces the relations M-equivalence and M^* -equivalence ([12]) coincide. So, we make a conclusion that the spaces X and \tilde{X} are M^* -equivalent.

From Theorem 1 and Corollary 5 from [12] for one-element system S we obtain

Proposition 22. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and each X_{i+1} contains G-retract homeomorphic X_i , I_1 , I_2 be infinite subsets of the set of natural numbers with infinite complements. $K_1 = \bigoplus_{i \in I_1} X_i$, $K_2 = \bigoplus_{i \in I_2} X_i$. Then the pairs (X, K_1) and (X, K_2) are M-equivalent.

Proof. Denote $J_1 = \mathbb{N} \setminus I_1$, $J_2 = \mathbb{N} \setminus I_2$, $T_1 = \bigoplus_{i \in J_1} X_i$, $T_2 = \bigoplus_{i \in J_2} X_i$. Then $X \sim K_1 \oplus T_1 \sim K_2 \oplus T_2$.

By Theorem 1 $T_1 \stackrel{M}{\sim} T_2 \stackrel{M}{\sim} K_1 \stackrel{M}{\sim} K_2 \stackrel{M}{\sim} X$. Let $s_1 \colon F(K_1) \to F(K_2), s_2 \colon F(T_1) \to F(T_2)$ be a topological isomorphisms. Define the mapping $s \colon K_1 \oplus T_1 \to F(K_2 \oplus T_2)$ by putting $s(x) = s_1(x)$ if $x \in K_1$ and $s(x) = s_2(x)$ if $x \in T_1$. The extension $s^* : F(K_1 \oplus T_1) \to F(K_2 \oplus T_2)$ of the mapping s to the homomorphism of the free topological groups is an isomorphism ([7,Exercise 8.8). By construction $s(\langle K_1 \rangle) = \langle K_2 \rangle$.

Corollary 7. Let X be a space, $n_1, n_2, m_1, m_2 \in \mathbb{N}$, $n_1, n_2 \geq 2$. Then

$$(S(X), X^{m_1} \times S(X^{n_1})) \stackrel{M}{\sim} (S(X), X^{m_2} \times S(X^{n_2})).$$

Theorem 4. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and for every $i \in \mathbb{N}$ there exists a topological group G_i such that $F(X_{i+1}) \simeq F(X_i) * G_i$ and

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m \subseteq \mathbb{N}, \ J_1 \subseteq J_2 \subseteq \cdots \subseteq J_m \subseteq \mathbb{N}$$

are subsets of the set of natural numbers such that the sets I_1 , J_1 , $I_k \setminus I_{k-1}$, $J_k \setminus J_{k-1}$ $(k=2,\ldots,n), \ \mathbb{N}\setminus I_m, \ \mathbb{N}\setminus J_m \ \text{are infinite. Put } A_s=\bigoplus_{k\in I_s}X_k. \ B_s=\bigoplus_{k\in j_s}X_k. \ \text{Then}$

$$(X, A_1, A_2, \dots A_m) \stackrel{M}{\sim} (Y, B_1, B_2, \dots B_m).$$

Proof. The *R*-quotient space A_k/A_{k-1} is homeomorphic to $\left(\bigoplus_{i\in I_k\setminus I_{k-1}} X_i\right)^+$, similarly B_k/B_{k-1}

is homeomorphic to $\Big(\bigoplus_{i\in J_k\setminus J_{k-1}} X_i\Big)^+$. By Proposition 1,

$$\left(\bigoplus_{i\in I_k\setminus I_{k-1}}X_i\right)^+$$
 is *M*-equivalent to $\bigoplus_{i\in I_k\setminus I_{k-1}}X_i$

and

$$\left(\bigoplus_{i\in J_k\setminus J_{k-1}} X_i\right)^+$$
 is *M*-equivalent to $\bigoplus_{i\in J_k\setminus J_{k-1}} X_i$.

and $\left(\bigoplus_{i\in J_k\backslash J_{k-1}}X_i\right)^+ \text{ is } M\text{-equivalent to } \bigoplus_{i\in J_k\backslash J_{k-1}}X_i.$ Both the spaces are $\bigoplus_{i\in I_k\backslash I_{k-1}}X_i \text{ and } \bigoplus_{i\in J_k\backslash J_{k-1}}X_i \text{ are } M\text{-equivalent to } X, \text{ so the spaces}$ $\left(\bigoplus_{i\in I_k\backslash I_{k-1}}X_i\right)^+ \text{ and } \left(\bigoplus_{i\in J_k\backslash J_{k-1}}X_i\right)^+ \text{ are } M\text{-equivalent}$

$$\left(\bigoplus_{i\in I_k\setminus I_{k-1}}X_i\right)^+$$
 and $\left(\bigoplus_{i\in J_k\setminus J_{k-1}}X_i\right)^+$ are M -equivalent

and hence M^* -equivalent. Similarly $A_1 \stackrel{M^*}{\sim} B_1$ and $X/A_m \stackrel{M^*}{\sim} Y/B_m$.

Hence, by Theorem 4 from [12] we obtain $(X, A_1, A_2, \dots A_m) \stackrel{M}{\sim} (Y, B_1, B_2, \dots B_m)$.

Corollary 8. Let X be a space, $1 < n_1 < n_2 < \cdots < n_k$, $1 < m_1 < m_2 < \cdots < m_k$ be natural numbers such that $n_i|n_{i+1}, m_i|m_{i+1}$ for $i \in \{1, \ldots, k-1\}$. Then

$$(S(X), S(X^{n_1}), S(X^{n_2}), \dots S(X^{n_k})) \stackrel{M}{\sim} (S(X), S(X^{m_1}), S(X^{m_2}), \dots S(X^{m_k})).$$

Proposition 23. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and for every $i \in \mathbb{N}$ there exists a topological group G_i such that $F(X_{i+1}) \simeq F(X_i) * G_i$. Let $\{I_s : s \in S\}$, $\{J_s : s \in S\}$ be subsets of the set of natural numbers, which form Δ -system and satisfying following conditions:

- 1) the sets $I_s \setminus I_0$ and $J_s \setminus J_0$ are both infinite or equal;
- 2) the sets I_0 and J_0 are both infinite or equal, where $I_0 = \bigcap_{s \in S} I_s$, $J_0 = \bigcap_{s \in S} J_s$.

Put
$$A_s = \bigoplus_{i \in I_s} X_i$$
, $B_s = \bigoplus_{i \in I_s} X_i$, $A_0 = \bigoplus_{i \in I_0} X_i$, $B_0 = \bigoplus_{i \in J_0} X_i$

Put $A_s = \bigoplus_{i \in I_s} X_i$, $B_s = \bigoplus_{i \in J_s} X_i$, $A_0 = \bigoplus_{i \in I_0} X_i$, $B_0 = \bigoplus_{i \in J_0} X_i$. Then the bundles $(X, \{A_s : s \in S\})$ and $(X, \{B_s : s \in S\})$ are M-equivalent.

Proof. The R-quotient space A_s/A_0 is homeomorphic to $\left(\bigoplus_{i\in I_s\backslash I_0}X_i\right)^+$, similarly B_s/B_0 is homeomorphic to $\left(\bigoplus_{i\in J_s\backslash J_0}X_i\right)^+$. If the sets $I_s\backslash I_0$ and $J_s\backslash J_0$ are equal then A_s/A_0 and B_s/B_0 are homeomorphic. If the sets $I_s\backslash I_0$ and $J_s\backslash J_0$ are both infinite, then by Proposition 1 $\left(\bigoplus_{i\in I_s\backslash I_0}X_i\right)^+$ is M-equivalent to $\bigoplus_{i\in I_s\backslash I_0}X_i$ and $\left(\bigoplus_{i\in I_s\backslash I_0}X_i\right)^+$ is M-equivalent to $\bigoplus_{i\in I_s\backslash I_0}X_i$. Both the spaces are $\bigoplus_{i\in I_s\backslash I_0}X_i$ and $\bigoplus_{i\in I_s\backslash I_0}X_i$ are M-equivalent to X, so the spaces $\left(\bigoplus_{i\in I_s\backslash I_0}X_i\right)^+$ and $\left(\bigoplus_{i\in I_s\backslash I_0}X_i\right)^+$ are M-equivalent and hence M^* -equivalent. Similarly, the spaces A_0 and A_0 are A-equivalent. So, by Theorem 3 from [12] the bundles A_0 are A-equivalent. A_0 are A-equivalent.

Proposition 24. Let $X = \bigoplus_{i=1}^{\infty} X_i$ and for every $i \in \mathbb{N}$ there exists topological group G_i such that $F(X_{i+1}) \simeq F(X_i) * G_i$. Let I_1 , I_2 , I_3 , I_4 be a subsets of the set of natural numbers such that

- 1) sets $I_1 \cap I_2$ and $J_1 \cap J_2$ are both infinite or equal;
- 2) sets $I_1 \setminus I_2$ and $J_1 \setminus J_2$ are both infinite or equal;
- 3) sets $I_2 \setminus I_1$ and $J_2 \setminus J_1$ are both infinite or equal;
- 4) sets $\mathbb{N} \setminus (I_1 \cup I_2)$ and $\mathbb{N} \setminus (J_1 \cup J_2)$ are both infinite or equal.

Put
$$A_1 = \bigoplus_{i \in I_1} X_i$$
, $A_2 = \bigoplus_{i \in I_2} X_i$, $B_1 = \bigoplus_{i \in J_1} X_i$, $B_2 = \bigoplus_{i \in J_2} X_i$. Then $(X, A_1, A_2) \stackrel{M}{\sim} (X, B_1, B_2)$.

Proof. Similarly to Proposition 23 we check that from the condition 1 it follows that

$$A_1/A_2 \stackrel{M^*}{\sim} B_1/B_2,$$

from the condition 2 follows that $A_2/A_1 \stackrel{M^*}{\sim} B_2/B_1$, from the condition 3 follows that $A_1 \cap A_2 \stackrel{M^*}{\sim} B_1 \cap B_2$, from the condition 4 follows $X/(A_1 \cup A_2) \stackrel{M^*}{\sim} X/(B_1 \cup B_2)$. Applying Theorem 6 from [12] we obtain that $(X, A_1, A_2) \stackrel{M}{\sim} (X, B_1, B_2)$.

Corollary 9. Let X be a space. Then the following are equivalent:

- 1) $(S(X), S(X^{n_1}), S(X^{n_2})) \stackrel{M}{\sim} (S(X), S(X^{m_1}), S(X^{m_2}));$
- 2) $(n_1 = 1 \iff m_1 = 1) \land (n_2 = 1 \iff m_2 = 1) \land (n_1|n_2 \iff m_1|m_2) \land (n_2|n_1 \iff m_2|m_1).$

Proof. $(1 \Longrightarrow 2)$

$$n_{1} = 1 \iff S(X) = S(X^{n_{1}}) \iff S(X) = S(X^{m_{1}}) \iff m_{1} = 1;$$

$$n_{2} = 1 \iff S(X) = S(X^{n_{2}}) \iff S(X) = S(X^{m_{2}}) \iff m_{2} = 1;$$

$$n_{1}|n_{2} \iff S(X^{n_{1}}) \subseteq S(X^{n_{2}}) \iff S(X^{m_{1}}) \subseteq S(X^{m_{2}}) \iff m_{1}|m_{2};$$

$$n_{2}|n_{1} \iff S(X^{n_{2}}) \subseteq S(X^{n_{1}}) \iff S(X^{m_{2}}) \subseteq S(X^{m_{1}}) \iff m_{2}|m_{1}.$$

 $(2 \Longrightarrow 1)$ Let us check that conditions 1–4 from proposition 24 hold. Consider the sequence $X_n = X^n$ and the sets $I_1 = \{n_1k \colon k \in \mathbb{N}\}$, $I_2 = \{n_2k \colon k \in \mathbb{N}\}$, $J_1 = \{m_1k \colon k \in \mathbb{N}\}$, $J_2 = \{m_2k \colon k \in \mathbb{N}\}$.

Condition 1. The set $I_1 \cap I_2 = \{l_1k : k \in \mathbb{N}\}$, where l_1 is least common multiple of n_1 and n_2 , and the set $J_1 \cap J_2 = \{l_2k : k \in \mathbb{N}\}$, where l_2 is least common multiple of m_1 and m_2 are both nonempty. So, both the sets $I_1 \cap I_2$ and $J_1 \cap J_2$ are nonempty.

Condition 2. The set $I_1 \setminus I_2$ is empty if $n_2|n_1$ and infinite otherwise. The set $J_1 \setminus J_2$ is empty if $m_2|m_1$ and infinite otherwise. Condition 3 is checked similarly.

Condition 4. The set $\mathbb{N} \setminus (I_1 \cup I_2)$ is empty if $(n_1 = 1) \vee (n_2 = 1)$ and infinite otherwise, the set $\mathbb{N} \setminus (J_1 \cup J_2)$ is empty if $(m_1 = 1) \vee (m_2 = 1)$ and infinite otherwise.

REFERENCES

- 1. J.A. Anderson, Discrete Mathematics with Combinatorics, Prentice Hall, Upper Saddle River, New Jersey, 2001.
- 2. A.V. Arhangel'skii, M.G. Tkachenko, Topological Groups and Related Structures, Atlantis Press, Amsterdam-Paris, Holland, 2008.
- 3. K. Borsuk, Theory of retracts. Monogr. Matem., V.44, Panstwowe Wydawnictwo Naukowe, Warsaw, Poland, 1967.
- 4. J. Brazas, S. Emery, Free quasitopological groups, Topol. Appl., 236 (2023), 1–17.
- 5. Z. Cai, S. Lin, MP-equivalence of free paratopological groups, Topol. Appl., 215 (2017), 35–44.
- 6. M.I. Graev, Free topological groups, Amer. Math. Soc. Transl., 8 (1962), 305–364.
- 7. I.J. Guran, M.M. Zarichniy, Elements of the theory of topological groups, Kyiv, 1991. (in Ukrainian)
- 8. S.A. Morris, Free products of topological groups, Bull. Austral. Math. Soc., 4 (1971), 17–29, Corrigendum. Bull. Austral. Math. Soc., 12 (1975), 480.
- 9. O.G. Okunev, A method for constructing examples of M-equivalent spaces, Topol. Appl., **36** (1990), 157–171. Correction: Topol. Appl., **49** (1993), 191–192.
- 10. N.M. Pyrch, Generalized retracts concerned with topological groups, Visnyk NU Lviv. Politechn., fiz.-mat. series, **601** (2007), 54–58. (in Ukrainian)
- 11. N.M. Pyrch, Generalized retracts and isomorphisms of the free topological groups, Mat. Stud., 33 (2010), №1, 29–38. (in Ukrainian)
- 12. N.M. Pyrch, On Markov equivalence of the bundles of Tychonoff spaces 4: isomorphic classification, Visn. Lviv. Un-tu, Ser. Mekh.-Math., 88 (2019), №2, 38–46. (in Ukrainian)

Lviv Politechnic National University Lviv, Ukraine nazar.m.pyrch@lpnu.ua

> Received 12.02.2025 Revised 30.08.2025