O. V. Lopotko

EVENLY POSITIVE DEFINITE FUNCTION OF HILBERT SPACE AND SOME ALGEBRAIC RELATIONSHIP

Abstract

O. V. Lopotko. Evenly positive definite function of Hilbert space and some algebraic relationship, Mat. Stud. 55 (2021), 85-93.

A generalization of P. A. Minlos, V. V. Sazonov's theorem is proved in the case of bounded evenly positive definite function given in a Hilbert space. The integral representation is obtained for a family of bounded commutative self-adjoint operators which are connected by algebraic relationship.

This scientific work is devoted to 95-th anniversary of Professor Yu. M. Berezansky

For the first time theorem about integral representation for positive definite (p.d.) functions $k(x)\left(x \in \mathbb{R}^{1}\right)$ was obtained in papers of Krein M. G. and Berezansky Yu. M. [1, 5]. Then Berezansky Yu. M. obtained the integral representation for functions $k(x)\left(x \in \mathbb{R}^{n}\right)$ [2]. In the next investigations Berezansky Yu. M. used methods of the spectral theory of operators. These methods play an important role in infinite-dimensional analysis. Using these methods Berezansky Yu. M. obtained the integral representation for p.d. functions in the space $(-2 l ; 2 l) \times \mathbb{R}^{1} \times \mathbb{R}^{1} \times \ldots$ and in the Hilbert space $H_{2 l}$ [4]. In particular, for every p.d. continuous in j-topology function $k(x)\left(x \in H_{2 l} ; l \leq \infty\right)$ the following integral representation is valid

$$
\begin{equation*}
k(x)=\int_{H} e^{i(\lambda, x)} d \rho(\lambda), \quad\left(x \in H_{2 l}\right) . \tag{1}
\end{equation*}
$$

Here $d \rho(\lambda)$ is a non-negative finite measure on some σ-algebra of Borel sets from H. Conversely, every integral of form (1) is a p.d. function in H which is continuous at O in j-topology. In the case of $l=\infty$, the measure $d \rho(\lambda)$ is uniquely determined by $k(x)$; in the case of $l<\infty$, there is no uniqueness.

The article presents a modification of this theory to the case of bounded evenly p.d. functions $k(x)(x \in H)$.

Let H be a real valued separable Hilbert space. A real convex bounded even function $k(x)(x \in H)$ is called positive definite (e.p.d.), if for $x^{(1)}, \ldots, x^{(N)} \in H$ and $\xi_{1}, \ldots, \xi_{N} \in \mathbb{C}^{1}$ ($n=N$) the inequality

$$
\begin{equation*}
\sum_{j, \kappa=1}^{N} \frac{1}{2}\left[k\left(x^{(j)}+x^{(\kappa)}\right)+k\left(x^{(j)}-x^{(\kappa)}\right)\right] \xi_{j} \overline{\xi_{\kappa}} \geq 0 \tag{2}
\end{equation*}
$$

2010 Mathematics Subject Classification: 46E20, 47G10.
Keywords: integral representation; bounded evenly positive definite functions; bounded self-adjoint operators. doi:10.30970/ms.55.1.85-93
holds.
Let \mathcal{A} be a nonnegative nuclear operator. A topology given by neighborhoods of the origin of the form $\left\{x \in H \mid(\mathcal{A} x, x)_{H}<\varepsilon\right\}(\varepsilon>0)$ is called the j-topology in H. A function $k(x)(x \in H)$ is said to be continuous at the origin in the j-topology if it is continuous at O in the topology inducted by the j-topology on H.

Theorem 1. Let $k(x)(x \in H)$ be any bounded e.p.d. function which is continuous at O in the j-topology. Then the function admits the representation

$$
\begin{equation*}
k(x)=\int_{H} \cos (\lambda, x) d \rho(\lambda) \quad(x \in H), \tag{3}
\end{equation*}
$$

where $d \rho(\lambda)$ is a non-negative finite measure defined on the σ-algebra $\mathfrak{B}(H)$ of Borel subsets of H. Conversely, each integral of the form (3) is a bounded e.p.d. function in H which is continuous at the origin in the j-topology. The measure $d \rho(\lambda)$ is uniquely defined for a given k.

We will prove that (2) implies the following inequality:

1) If $\sup |k(x)|=C<+\infty$ then $|k(x)| \leq|k(0)|$, i.e. $C=|k(0)|$.

Indeed, put in (2) $N=2, \xi_{1}=-1, \xi_{2}=1, x^{(1)}=x, x^{(2)}=0$. Then $3 k(0)+k(2 x)-$ $4 k(x) \geq 0$. It follows that $k(2 x)+3 k(0) \geq 4 k(x)$ and

$$
|k(x)| \leq \frac{|k(2 x)|+3|k(0)|}{4} \leq \frac{3|k(0)|+C}{4}, \quad C=\sup |k(x)| \leq \frac{3|k(0)|+C}{4} .
$$

It means that $C \leq|k(0)|$, and therefore

$$
\begin{equation*}
|k(x)| \leq|k(0)| . \tag{4}
\end{equation*}
$$

2) For an arbitrary convex bounded e.p.d. function the following inequality holds

$$
\left|k\left(x^{(1)}\right)-k\left(x^{(2)}\right)\right|^{2} \leq 2 k(0)\left\{k(0)-k\left(x^{(1)}-x^{(2)}\right)\right\} .
$$

Note that for an arbitrary p.d. kernel $K(x ; y)$ we have (see [4, p. 469, Lemma 4.1])

$$
|K(x ; z)-K(y ; z)|^{2} \leq K(z ; z)[K(x ; x)-2 \operatorname{Re} K(x ; y)+K(y ; y)] .
$$

Put in this inequality $K(x ; y)=\frac{1}{2}\left[k\left(x^{(1)}-x^{(2)}\right)+k\left(x^{(1)}+x^{(2)}\right)\right](z=0)$. We obtain

$$
\begin{aligned}
& \left|k\left(x^{(1)}\right)-k\left(x^{(2)}\right)\right|^{2} \leq k(0)\left[k(0)+\frac{1}{2} k\left(2 x^{(1)}\right)+\right. \\
& \left.+\frac{1}{2} k\left(2 x^{(1)}\right)-k\left(x^{(1)}-x^{(2)}\right)-k\left(x^{(1)}+x^{(2)}\right)\right] .
\end{aligned}
$$

But

$$
\frac{1}{2}\left(k\left(2 x^{(1)}\right)+k\left(2 x^{(2)}\right)\right)-k\left(x^{(1)}+x^{(2)}\right) \leq 0
$$

because the function $k(x)$ is convex. Therefore the previous inequality can be rewritten in the form

$$
\begin{equation*}
\left|k\left(x^{(1)}\right)-k\left(x^{(2)}\right)\right|^{2} \leq k(0)\left\{k(0)-k\left(x^{(1)}-x^{(2)}\right)\right\} . \tag{5}
\end{equation*}
$$

Proof of Theorem 1. Using (4), (5) (see [4, p.467-469]) we can prove that there exists a nonnegative nuclear operator \mathcal{A} in H with kernel of zero such that $k(x)(x \in H)$ is uniformly continuous in the following sense: for any $\varepsilon>0$ there exists $\delta>0$ such that for $x^{(1)}, x^{(2)} \in H$ satisfying $\left(\mathcal{A}\left(x^{(1)}-x^{(2)}\right), x^{(1)}-x^{(2)}\right)<\delta$ and $x^{(1)}-x^{(2)} \in H$ one has $\left|k\left(x^{(1)}\right)-k\left(x^{(2)}\right)\right|<\varepsilon$.

We introduce a dot product in $H:(x, y)_{\mathcal{A}}=(\mathcal{A} x, y)_{H}$. Let $H_{\mathcal{A}}$ be a completion of H with respect to $(\cdot, \cdot)_{\mathcal{A}}$. Let us describe $H_{\mathcal{A}}$ by coordinates. For this purpose we choose an orthonormal basis in H consisting of the eigen vectors of the operator \mathcal{A} realizing H as a space $l_{2}=l_{2}\left(\mathbb{R}^{1}\right)$ with respect to a decomposition in this basic. Then space $H_{\mathcal{A}}$ is realized as a Hilbert space $l_{2}(\mathcal{A})=\left\{x \in \mathbb{R}^{\infty}=\mathbb{R}^{1} \times \mathbb{R}^{1} \times \ldots \mid \sum_{n=1}^{\infty} a_{n} x_{n}^{2}<\infty\right\}$ with the scalar product $(x, y)_{\mathcal{A}}=\sum_{n=1}^{\infty} a_{n} x_{n} y_{n} \in l_{2}(\mathcal{A})\left(\left(a_{n} \delta_{n m}\right)_{n, m=1}^{\infty}\right.$ is a matrix of the operator \mathcal{A} in the considering basis; $\left.a_{n}>0\right)$. Let us consider now the standard Gaussian measure $\gamma_{1}=\sqrt{\frac{1}{\pi}} e^{-x^{2}}$, it is essential that $\gamma_{1}\left(l_{2}(\mathcal{A})\right)=1$, (see [8]).

Since $k(x)(x \in H)$ is uniformly continuous with respect to the norm $\|\cdot\|_{H_{\mathcal{A}}}=(\cdot, \cdot)_{H}^{\frac{1}{2}}$ it can be extended by continuity to a uniformly continuous function $k_{1}(x)$ on the whole space $H_{\mathcal{A}}$. Passing to the coordinate from of $H_{\mathcal{A}}$, we find that $k_{1}(x)$ is defined on a set $l_{2}(\mathcal{A}) \subset \mathbb{R}^{\infty}$ of a full Gaussian measure.

Using $k_{1}(x)$ we introduce a quasi-scalar product

$$
\begin{equation*}
\langle\varphi, \psi\rangle=\int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} \frac{1}{2}\left[k_{1}(x+y)+k_{1}(x-y)\right] \varphi(y) \overline{\psi(x)} d \gamma_{1}(x) d \gamma_{1}(y), \quad\left(\varphi, \psi \in C_{b, c y l}\left(\mathbb{R}^{\infty}\right)\right) \tag{6}
\end{equation*}
$$

Then, H_{κ} be a Hilbert space obtained as a result of a completion $(\cdot, \cdot)_{H_{\kappa}}=\langle\cdot, \cdot\rangle$. Since the kernel $\frac{1}{2}\left[k_{1}(x+y)+k_{1}(x-y)\right]$ is even on x, y, we consider (6) on even functions. Now we will construct a family of unitary operators, acting in H_{κ}. For this goal we will construct a rigging (chain)

$$
H_{0} \supset H_{+} \supset \mathcal{D}
$$

The role of the space H_{0} will be played just by H_{κ}, namely $H_{0}=H_{\kappa}$ and $H_{+}=L_{2}\left(l_{2}(\mathcal{A}), \mathfrak{B}\left(l_{2}(\mathcal{A}) ; \gamma_{1}\right)\right)$ and \mathcal{D}, which consists of the restrictions of functions from the space $\mathcal{A}\left(\mathbb{R}^{\infty}\right)=\bigcup_{n=1}^{\infty} \mathcal{A}\left(\mathbb{R}^{n}\right)$, where $\mathcal{A}\left(\mathbb{R}^{n}\right)=\mathcal{A}\left(\mathbb{R}^{1}\right) \otimes \ldots \otimes \mathcal{A}\left(\mathbb{R}^{1}\right)(n$ times $)$ and $\mathcal{A}\left(\mathbb{R}^{1}\right)=l_{2}\left(\mathbb{R}^{1}, \gamma_{1}\right)$ on the cylindrical functions. For details of the space $\mathcal{A}\left(\mathbb{R}^{\infty}\right)$ see $[3$, p. 110-113]. The properties of the space $\mathcal{A}\left(\mathbb{R}^{\infty}\right)$ imply the properties of the space \mathcal{D} and the embedding $\mathcal{D} \subset L_{2}=H_{+}$. This embedding is quasi-nuclear. Indeed, the scalar product (6) has the form $(\varphi, \psi)_{H_{\kappa}}=(K \varphi, \psi)_{L_{2}}$, where K is an integral operator in L_{2} generated by the continuous kernel $K(x, y)=\frac{1}{2}[k(x+y)+k(x-y)]$. Since

$$
\int_{l_{2}(\mathcal{A})} K(x, x) d \gamma_{1}(x) \leq k(0)<\infty
$$

this operator is nuclear. On the other hand, for the chain $H_{-} \supset H_{0} \supset H_{+}$, we have $(\varphi, \psi)_{H_{0}}=(\mathrm{I} \varphi, \psi)_{H_{+}}\left(\varphi, \psi \in H_{+}\right)$; therefore $K=O\left(\mathrm{I} \upharpoonright H_{+}\right)$, and the nuclearity of K yields the quasinuclearity of the embedding $H_{+} \rightarrow H_{0}$. Hence, we have constructed the chain

$$
\begin{equation*}
H_{\kappa}=H_{0} \supset H_{+}=L_{2} \supset \mathcal{D}=\mathcal{A}\left(\mathbb{R}^{\infty}\right) . \tag{7}
\end{equation*}
$$

Let us construct a family of unitary operators $\mathcal{A}_{x}\left(x \in L_{2}=H\right)$ acting in the space H_{κ}. They are the shift operators of functions by t with a certain factor. The factor appears because the Gaussian measure γ_{1} is not invariant under such shifts. Let us first define the operator \mathcal{A}_{t} on the function $\varphi \in C_{b, c y l}^{\infty}\left(\mathbb{R}^{\infty}\right)=\bigcup_{n=1}^{\infty} C_{b}^{\infty}\left(\mathbb{R}^{n}\right)$ by the equality

$$
\begin{equation*}
\left(\mathcal{A}_{x} t\right)(x)=\frac{1}{2}\left[\varphi(x-t)\left(\frac{d \gamma_{1,-t}}{d \gamma_{1}}\right)(x)+\varphi(x+t)\left(\frac{d \gamma_{1, t}}{d \gamma_{1}}\right)(x)\right],\left(t \in L_{2} ; x \in l_{2}(\mathcal{A})\right) \tag{8}
\end{equation*}
$$

where derivative is

$$
\left(\frac{d \gamma_{1, t}}{d \gamma_{1}}\right)(\cdot)=\rho_{\gamma_{1}}(t, \cdot)=\exp \left(-\|t\|_{L_{2}}^{2}-2(t, \cdot)_{L_{2}}\right)
$$

Since for an even kernel $K(x, y)$ and even φ, ψ expression (6) has the form

$$
\begin{gathered}
\int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} \frac{1}{2}[k(x+y)+k(x-y)] \varphi(y) \overline{\psi(x)} d \gamma_{1}(x) d \gamma_{1}(y)= \\
=\int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(y-x) \varphi(y) \overline{\psi(x)} d \gamma_{1}(x) d \gamma_{1}(y)=\iint_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(x+y) \varphi(y) \overline{\psi(x)} d \gamma_{1}(x) d \gamma_{1}(y),
\end{gathered}
$$

by a simple change of variables we get for any $t \in L_{2}$

$$
\left(\mathcal{A}_{t} \varphi, \mathcal{A}_{t} \psi\right)_{H_{\kappa}}=(\varphi, \psi)_{H_{\kappa}} \quad\left(\varphi, \psi \in C_{b, c y b}^{\infty}\left(\mathbb{R}^{\infty}\right)\right)
$$

Indeed,

$$
\begin{gather*}
\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(y-x) \varphi(x-t) \frac{d \gamma_{1,-t}}{d \gamma_{1}}(x) \overline{\psi(y-t)} \frac{d \gamma_{1, t}}{d \gamma_{1}}(y) d \gamma_{1}(x) d \gamma_{1}(y)=\left[\begin{array}{l}
x=x^{\prime}+t ; \\
y=y^{\prime}+t
\end{array}\right]= \\
=\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(y^{\prime}-x^{\prime}\right) \varphi\left(x^{\prime}\right) \frac{d \gamma_{1}}{d \gamma_{1, t}}\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}\right)} \frac{d \gamma_{1}}{d \gamma_{1, t}}\left(y^{\prime}\right) d \gamma_{1, t}\left(x^{\prime}\right) d \gamma_{1, t}\left(y^{\prime}\right)= \\
=\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(y^{\prime}-x^{\prime}\right) \varphi\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}\right)} d \gamma_{1}\left(x^{\prime}\right) d \gamma_{1}\left(y^{\prime}\right), \tag{9}\\
\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(y-x)\left[\varphi(x-t) \frac{d \gamma_{1, t}}{d \gamma_{1}}(x) \overline{\psi(y+t)} \frac{d \gamma_{1, t}}{d \gamma_{1}}(y)+\right. \\
\left.\left.\quad+\varphi(x+t) \frac{d \gamma_{1, t}}{d \gamma_{1}}(x) \overline{\psi(y-t)} \frac{d \gamma_{1,-t}}{d \gamma_{1}}(y)\right]\right) d \gamma_{1}(x) d \gamma_{1}(y)= \\
=\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(x+y) \varphi(x-t) \frac{d \gamma_{1,-t}}{d \gamma_{1}}(x) \overline{\psi(y+t)} \frac{d \gamma_{1, t}}{d \gamma_{1}}(y) d \gamma_{1}(x) d \gamma_{1}(y)+ \\
+\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(x+y) \varphi(x+t) \frac{d \gamma_{1, t}}{d \gamma_{1}}(x) \overline{\psi(y-t) \frac{d \gamma_{1,-t}}{d \gamma_{1}}(y) d \gamma_{1}(x) d \gamma_{1}(y) .}
\end{gather*}
$$

But

$$
\begin{align*}
& \frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(x+y) \varphi(x-t) \frac{d \gamma_{1,-t}}{d \gamma_{1}}(x) \overline{\psi(y+t)} \frac{d \gamma_{1, t}}{d \gamma_{1}}(y) d \gamma_{1}(x) d \gamma_{1}(y)=\left[\begin{array}{c}
x=x^{\prime}-t ; \\
y=y^{\prime}+t
\end{array}\right]= \\
& =\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(x^{\prime}+y^{\prime}\right) \varphi\left(x^{\prime}\right) \frac{d \gamma_{1}}{d \gamma_{1,-t}}\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}\right)} \frac{d \gamma_{1}}{d \gamma_{1, t}}\left(y^{\prime}\right) d \gamma_{1,-t}\left(x^{\prime}\right) d \gamma_{1, t}\left(y^{\prime}\right)= \\
& =\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(x^{\prime}+y^{\prime}\right) \varphi\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}\right)} d \gamma_{1}\left(x^{\prime}\right) d \gamma_{1}\left(y^{\prime}\right), \tag{10}
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(x^{\prime}+y^{\prime}\right) \varphi\left(x^{\prime}\right) \frac{d \gamma_{1}}{d \gamma_{1, t}}\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}\right)} \frac{d \gamma_{1}}{d \gamma_{1,-t}}\left(y^{\prime}\right) d \gamma_{1, t}\left(x^{\prime}\right) d \gamma_{1,-t}\left(y^{\prime}\right)= \\
& =\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(x^{\prime}+y^{\prime}\right) \varphi\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}\right)} d \gamma_{1}\left(x^{\prime}\right) d \gamma_{1}\left(y^{\prime}\right), \tag{11}\\
& \frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(y-x) \varphi(x+t) \frac{d \gamma_{1, t}}{d \gamma_{1}}(x) \overline{\psi(y+t)} \frac{d \gamma_{1, t}}{d \gamma_{1}}(y) d \gamma_{1}(x) d \gamma_{1}(y)=\left[\begin{array}{c}
x=x^{\prime}-t ; \\
y=y^{\prime}-t
\end{array}\right]= \\
& =\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(y^{\prime}-x^{\prime}\right) \varphi\left(x^{\prime}\right) \frac{d \gamma_{1}}{d \gamma_{1,-t}}\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}\right)} \frac{d \gamma_{1}}{d \gamma_{1,-t}}\left(y^{\prime}\right) d \gamma_{1,-t}\left(x^{\prime}\right) d \gamma_{1,-t}\left(y^{\prime}\right)= \\
& =\frac{1}{4} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(y^{\prime}-x^{\prime}\right) \varphi\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}\right)} d \gamma_{1}\left(x^{\prime}\right) d \gamma_{1}\left(y^{\prime}\right) . \tag{12}
\end{align*}
$$

Summing up (9)-(12), we obtain that $\left(\mathcal{A}_{t} \varphi, \mathcal{A}_{t} \psi\right)_{H_{\kappa}}=(\varphi, \psi)_{H_{\kappa}}\left(\varphi, \psi \in C_{b, c y l}\left(\mathbb{R}^{\infty}\right)\right)$. Thus, each operator \mathcal{A}_{t} is isometric and therefore it may be extended to an isometric operator on the whole of H_{κ} by continuity; we preserve the notation \mathcal{A}_{t} for the latter.

Now, we can verify the equality

$$
\begin{equation*}
\left(\mathcal{A}_{t} \varphi, \psi\right)_{H_{\kappa}}=\left(\varphi, \mathcal{A}_{t} \psi\right)_{H_{k}},\left(\varphi, \psi \in C_{b, c y l}\left(\mathbb{R}^{\infty}\right)\right) \tag{13}
\end{equation*}
$$

Indeed,

$$
\begin{gathered}
\left(\mathcal{A}_{t} \varphi, \psi\right)_{H_{\kappa}}=\frac{1}{2} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(y-x) \varphi(x-t)\left(\frac{d \gamma_{1,-t}}{d \gamma_{1}}\right)(x) \overline{\psi(y)} d \gamma_{1}(x) d \gamma_{1}(y)+ \\
+\frac{1}{2} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k(y-x) \varphi(x+t)\left(\frac{d \gamma_{1, t}}{d \gamma_{1}}\right)(x) \overline{\psi(y)} d \gamma_{1}(x) d \gamma_{1}(y)=\left[\begin{array}{l}
x=x^{\prime}+t ; \\
y=y^{\prime}+t
\end{array}\right]= \\
=\frac{1}{2} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(y^{\prime}-x^{\prime}\right) \varphi\left(x^{\prime}\right) \frac{d \gamma_{1}}{d \gamma_{1, t}}\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}+t\right)} d \gamma_{1, t}\left(x^{\prime}\right) d \gamma_{1, t}\left(y^{\prime}\right)+\left[\begin{array}{c}
x=x^{\prime}-t ; \\
y=y^{\prime}-t
\end{array}\right]+ \\
\quad+\frac{1}{2} \int_{l_{2}(\mathcal{A})}^{\int} \int_{l_{2}(\mathcal{A})} k\left(y^{\prime}-x^{\prime}\right) \varphi\left(x^{\prime}\right) \frac{d \gamma_{1}}{d \gamma_{1,-t}}\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}-t\right)} d \gamma_{1,-t}\left(x^{\prime}\right) d \gamma_{1,-t}\left(y^{\prime}\right)=
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{2} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(y^{\prime}-x^{\prime}\right) \varphi\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}+t\right)} \frac{d \gamma_{1, t}}{d \gamma_{1}}\left(y^{\prime}\right) d \gamma_{1}\left(x^{\prime}\right) d \gamma_{1}\left(y^{\prime}\right)+ \\
+\frac{1}{2} \int_{l_{2}(\mathcal{A})} \int_{l_{2}(\mathcal{A})} k\left(y^{\prime}-x^{\prime}\right) \varphi\left(x^{\prime}\right) \overline{\psi\left(y^{\prime}-t\right)} \frac{d \gamma_{1,-t}}{d \gamma_{1}}\left(y^{\prime}\right) d \gamma_{1}\left(x^{\prime}\right) d \gamma_{1}\left(y^{\prime}\right)=\left(\varphi, \mathcal{A}_{-t} \psi\right)_{H_{\kappa}} .
\end{gathered}
$$

Similarly, we can verify the equality

$$
\begin{equation*}
\left(\mathcal{A}_{t} \varphi, \mathcal{A}_{s} \psi\right)_{H_{\kappa}}=\frac{1}{2}\left[\left(\mathcal{A}_{t-s} \varphi, \psi\right)_{H_{\kappa}}+\left(\mathcal{A}_{t+s} \varphi, \psi\right)_{H_{\kappa}}\right] \tag{14}
\end{equation*}
$$

It implies that $\mathcal{A}_{t}=\mathcal{A}_{t}^{*}=\mathcal{A}_{-t}$, and $\mathcal{A}_{t} \cdot \mathcal{A}_{s}=\frac{1}{2}\left[\mathcal{A}_{t+s}+\mathcal{A}_{t-s}\right]\left(t, s \in l_{2}\right)$. Hence, we have constructed the group of unitary operators $\left(\mathcal{A}_{t}\right)_{t \in l_{2}}$. These operators and the chain (6) are connected by the conditions 1,2 of Theorem 1.2 [4, Ch. 4]. Therefore, we can write the representation

$$
\mathcal{A}_{x}=\int_{X} e^{i(\lambda, x)} d E(\lambda), \quad(x \in X)
$$

for the introduced operators \mathcal{A}_{x} in the space H_{κ}. Here, E is a decomposition of unity on $\mathfrak{B}(X)$.

But so as $\mathcal{A}_{x}=\mathcal{A}_{-x}$, we can write such representation

$$
\begin{equation*}
\mathcal{A}_{x}=\int_{H} \cos (\lambda, x) d E(\lambda), \quad(x \in H) \tag{15}
\end{equation*}
$$

For any $x \in X_{\mathcal{A}}$, the space H_{κ} includes δ-function δ_{x}, concentrated at the point x, and $\left(\delta_{x}, \delta_{y}\right)_{H_{\kappa}}=\frac{1}{2}\left[k_{1}(x-y)+k_{1}(x+y)\right]\left(x, y \in X_{\mathcal{A}}\right)$. More precisely, for a given negative space H_{κ} and zero space L_{2}, we can construct a chain $H_{\kappa} \supset L_{2} \supset H_{+}$. As a result, we obtain the space H_{+}consisting of continuous bounded functions on $X_{\mathcal{A}}$. The space H_{κ} includes vectors δ_{x} such that $\left(\delta_{x}, \varphi\right)_{L_{2}}=\overline{\varphi(x)}\left(x \in X_{\mathcal{A}}, \varphi \in H_{+}\right)$and the indicated equality holds.

It is easy to understand that $\mathcal{A}_{t} \delta_{0}=\delta_{t}$ for any $t \in X$. Indeed, let $\left(\chi_{n}(\cdot)\right)_{n=1}^{\infty}$ be a sequence of functions from L_{2} which converges to δ_{0} in H_{κ}, and let each of these functions be equal to the characteristic function of the ball centered at O in $X_{\mathcal{A}}$ with radius n^{-1} divided by the measure γ_{1} of this ball. Clearly, the action of the operator \mathcal{A}_{t} on χ_{n} is given by (7).

For $\varphi \in H_{+}$we have

$$
\begin{gathered}
\left(\mathcal{A}_{t} \delta_{0}, \varphi\right)_{L_{2}}=\lim _{n \rightarrow \infty}\left(\mathcal{A}_{t} \chi_{n}, \varphi\right)_{L_{2}}=\lim _{n \rightarrow \infty}\left[\int_{H_{\mathcal{A}}} \frac{1}{2} \chi_{n}(x-t) \frac{d \gamma_{1,-t}}{d \gamma_{1}}(x) \overline{\varphi(x)} d \gamma_{1}(x)+\right. \\
\left.+\int_{H_{\mathcal{A}}} \frac{1}{2} \chi_{n}(x+t) \frac{d \gamma_{1, t}}{d \gamma_{1}}(x) \overline{\varphi(x)} d \gamma_{1}(x)\right]= \\
=\lim _{n \rightarrow \infty}\left[\int_{H_{\mathcal{A}}} \frac{1}{2} \chi_{n}(x-t) \overline{\varphi(x)} d \gamma_{1,-t}(x)+\int_{H_{\mathcal{A}}} \frac{1}{2} \chi_{n}(x+t) \overline{\varphi(x)} d \gamma_{1, t}(x)\right]= \\
=\lim _{n \rightarrow \infty}\left[\int_{H_{\mathcal{A}}} \frac{1}{2} \chi_{n}(x) \overline{\varphi(x+t)} d \gamma_{1}(x)+\int_{H_{\mathcal{A}}} \frac{1}{2} \chi_{n}(x) \overline{\varphi(x-t)} d \gamma_{1}(x)\right]=\overline{\varphi(t)}=\left(\delta_{t}, \varphi\right)_{L_{2}}
\end{gathered}
$$

and this yields the equality $\mathcal{A}_{t} \delta_{0}=\delta_{t}$.
After these remarks, representation (3) immediately follows from (15). One should apply the last equality to δ_{0} and multiply by a scalar δ_{0} in H_{κ}. Here $\sigma(\alpha)=\left(E(\alpha) \delta_{0}, \delta_{0}\right)_{H_{\kappa}}$ $(\alpha \in \mathfrak{B}(X))$. Theorem 1 is proved.

Applying Theorem 1 we can prove the following theorem.
Theorem 2. In order that a family $\left(\mathcal{A}_{t}\right)(t \in H)$ of self-adjoint bounded operators in the Hilbert space H admits a representation

$$
\begin{equation*}
\mathcal{A}_{t}=\int_{H} \cos (\lambda, t) d E(\lambda), \quad(\lambda \in H) \tag{16}
\end{equation*}
$$

where E is some decomposition of identity of $\mathfrak{B}(H)$, it is necessary and sufficient that the operators satisfy the following conditions:

1) $\frac{1}{2}\left[\mathcal{A}_{t+s}+\mathcal{A}_{t-s}\right]=\mathcal{A}_{t} \mathcal{A}_{s}, \quad \mathcal{A}_{\left(t_{1}, \ldots, t_{n}, \ldots\right)}=\mathcal{A}_{\left(t_{1}, \ldots,-t_{n}, \ldots\right)} ; \quad \mathcal{A}_{0}=\mathrm{I} ;$
2) \mathcal{A}_{t} strongly continuously depends on t;
3) $\left\|\mathcal{A}_{t}\right\| \leq b<\infty$.

Proof. Sufficiency. Let operators \mathcal{A}_{t} commute accordingly to 1) and have a common simple spectrum. Then there exists a cycle vector Ω such that a closed linear hull $\left\{\mathcal{A}_{t}, \Omega\right\}=H$. Put $\left(\mathcal{A}_{t} \Omega, \Omega\right)=k(t)$. Then $k(t)$ is continuous and even in every variable and e.p.d., bounded function on H. Indeed, the function $k(t)$ is e.p.d.

$$
\begin{gathered}
\sum_{i, j=1}^{n} \frac{1}{2}\left[k\left(x^{(i)}+x^{(j)}\right)+k\left(x^{(i)}-x^{(j)}\right)\right] \xi_{i} \overline{\xi_{j}}=\sum_{i, j=1}^{n} \frac{1}{2}\left[\left(\mathcal{A}_{t^{(i)}+t^{(j)}} \Omega, \Omega\right)+\left(\mathcal{A}_{t^{(i)}-t^{(j)}} \Omega, \Omega\right)\right] \xi_{i} \overline{\xi_{j}}= \\
=\sum_{i, j=1}^{n} \frac{1}{2}\left[\left(\mathcal{A}_{t^{(i)}} \mathcal{A}_{t^{(j)}} \Omega, \Omega\right)+\left(\mathcal{A}_{t^{(j)}} \Omega, \mathcal{A}_{t^{(i)}} \Omega\right)\right] \xi_{i} \overline{\xi_{j}}=\left\|\sum_{i=1}^{n} \xi_{i} \mathcal{A}_{t^{(i)}} \Omega\right\|_{H}^{2} \geq 0 .
\end{gathered}
$$

The continuity, evenness in every variable and boundedness of the function $k(t)$ follow from assumptions of Theorem 2. Therefore by Theorem 1, we obtain an integral representation for the function $k(t)$

$$
k(t)=\int_{H} \cos (\lambda, t) d \rho(\lambda), \quad(t \in H)
$$

where $d \rho(\lambda)$ is an even non-negative finite measure, which is defined on some σ-algebra $\mathfrak{B}(H)$ of Borel sets from H. We construct a correspondence: every vector $\sum_{\kappa=1}^{n} c_{\kappa} \mathcal{A}_{t^{(k)}} \Omega \in H$ is paired with the function

$$
\sum_{\kappa=1}^{n} c_{\kappa} \cos \left(\lambda, t^{(\kappa)}\right) \in l_{2}(H, d \rho(\lambda)), \quad(n=1,2, \ldots)
$$

This correspondence is isometric because

$$
\left\|\sum_{\kappa=1}^{n} c_{\kappa} \mathcal{A}_{t_{\kappa}} \Omega\right\|_{H}^{2}=\sum_{i, j=1}^{n} c_{i} \overline{c_{j}}\left(\mathcal{A}_{t_{i}} \Omega, \mathcal{A}_{t_{j}} \Omega\right)_{H}=\sum_{i, j=1}^{n} c_{i} \overline{c_{j}} \frac{1}{2}\left[\left(\mathcal{A}_{t_{i}+t_{j}} \Omega, \Omega\right)_{H}+\left(\mathcal{A}_{t_{i}-t_{j}} \Omega, \Omega\right)_{H}\right]=
$$

$$
\begin{gathered}
=\sum_{i, j=1}^{n} c_{i} \overline{c_{j}} \int_{H} \frac{1}{2}\left[\cos \left(\lambda, t^{(i)}+t^{(j)}\right)+\cos \left(\lambda, t^{(i)}-t^{(j)}\right)\right] d \rho(\lambda)= \\
=\left\|\sum_{\kappa=1}^{n} c_{\kappa} \cos \left(\lambda, t^{(\kappa)}\right)\right\|_{l_{2}(H, d \rho(\lambda))}^{2}
\end{gathered}
$$

Then it can be extended to the unitary map $U: H \rightarrow l_{2}(H, d \rho(\lambda))$. Furthermore, the operator \mathcal{A}_{t} corresponds to the operator of multiplication in $l_{2}(H, d \rho(\lambda))$ on the function $\cos (\lambda, t)$.

Since

$$
\begin{gathered}
\mathcal{A}_{t}\left(\sum_{\kappa=1}^{n} c_{\kappa} \mathcal{A}_{t^{(\kappa)}} \Omega\right)=\sum_{\kappa=1}^{n} c_{\kappa}\left(\frac{\mathcal{A}_{t+t^{(\kappa)}}+\mathcal{A}_{t-t^{(\kappa)}}}{2}\right) \Omega= \\
=U^{*}\left(\sum_{\kappa=1}^{n} c_{\kappa} \frac{\cos \left(\lambda, t+t^{(\kappa)}\right)+\cos \left(\lambda, t-t^{(\kappa)}\right)}{2}\right)= \\
=U^{*} \cos (\lambda, t) U\left(\sum_{\kappa=1}^{n} c_{\kappa} \cos \left(\lambda, t^{(\kappa)}\right)\right)=U^{*} \cos (\lambda, t) U\left(\sum_{\kappa=1}^{n} c_{\kappa} \mathcal{A}_{t^{(\kappa)}} \Omega\right),
\end{gathered}
$$

that is $\mathcal{A}_{t}=U^{*} Q_{\cos (\lambda, t)} U\left(Q_{\cos (\lambda, t)}\right.$ denotes the operator of multiplication on $\cos (\lambda, t)$ in $\left.l_{2}(H, d \rho(\lambda))\right)$.

Since for a family $Q_{\cos (\lambda, t)}$ the integral representation is true

$$
Q_{\cos (\lambda, t)}=\int_{H} \cos (\lambda, t) d Q_{\chi \Delta(\cdot)}
$$

we have $\mathcal{A}_{t}=\int_{H} \cos (\lambda, t) d E(\lambda)$, where $E(\Delta)=U^{*} Q_{\chi_{\Delta}(\cdot)} U . \quad \chi_{\Delta}(\cdot)$ is the characteristic function of an interval $\Delta \in H$. So the integral representation (16) is proved.

The uniqueness of decomposition of identity follows from the uniqueness of the measure $d \rho(\lambda)$. If the cyclic vector Ω is missed then for the family of commuted self-adjoint operators $\mathcal{A}_{t}(t \in H)$ in H there exists a sequence of measures on σ-algebra of cylindric sets in H with a Borel basis $\rho_{1}, \ldots, \rho_{\kappa}, \ldots$ and a unitary operator

$$
U: H \rightarrow \oplus \sum_{\kappa=1}^{\infty} l_{2}\left(H, d \rho_{\kappa}(\lambda)\right)
$$

such that in every space $l_{2}\left(H, d \rho_{\kappa}(\lambda)\right)$ one has $\mathcal{A}_{t}=U^{*} Q_{\cos (\lambda, t)} U$, where $Q_{\cos (\lambda, t)}$ denotes the operator of multiplication on $\cos (\lambda, t)$ in $l_{2}\left(H, d \rho_{\kappa}(\lambda)\right)$.

The necessity of the conditions 1), 2), 3) follows from integral representation (16).

An integral representation for the family of bounded self-adjoint operators in one-dimensional case, which are connected by an algebraic relationship, was proved in [6].

REFERENCES

1. Berezansky Yu.M. Generalization of Bochner theorem on expansions in eigenfunctions of partial differential operators// Dokl. AN SSSR. - 1956. - V.110, no.6. - P. 893-896.
2. Berezansky Yu.M. Expansions in eigenfunctions of self-adjoint operators. (Translations of Mathematical Monographs V.17), Providence, R.I.: Am. Math. Soc., 1968, 809 p.
3. Berezansky Yu.M. Self-adjoint operators in space of functions of infinitely many varibles. - Kyiv: Naukova dumka, 1978. - 360 p.
4. Berezansky Yu.M., Kondratiev Yu.G. Spectral methods in infinite-dimensional analysis. - Kyiv: Naukova dumka, 1988. - 679 p. Engl.transl.: Springer, Dordrecht. 1995, doi: 10.1007/978-94-011-0509-5
5. Krein M.G. On a general method on decomposition of Hermite positive definite nuclei into elementary products// Dokl. AN SSSR. - 1946. - V.53(1). - P. 3-6.
6. Kurepa S.A. A cosine functional equation in Hilbert space // Canadian J. Math. - 1960. - V.12. - P. 45-50.
7. Minlos R.A. Generalized random processes and their extension in measure// Trudy Moskov. Mat. Obsc. - 1959. - V.8. - 497-518. (in Russian)
8. Shilov G.E., Fan Dyk Tin. Integral, measure and derivative on linear spaces. - M.: Science, 1967. - 192 p.
9. Sazonov V.V. Remark on characteristic functionals// Theory of Probability and its Applications. - 1958. - V.3, no.2. - P. 188-192. doi: 10.1137/1103018

National Forestry and Wood Technology University of Ukraine Lviv, Ukraine
Lopotko1304@gmail.com

