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As it is known, conformal mappings are locally Lipschitz at inner points of a domain, and
quasiconformal (quasiregular) mappings are locally Hölder continuous. As for estimates of the
distortion of mappings at boundary points of the domain, this problem has not been studied
sufficiently even for these classes. We partially fill this gap by considering in this manuscript
not even local behavior at the boundary points, but global behavior in the domain of one class
of mappings. The paper is devoted to studying mappings with finite distortion. The goal of our
investigation is obtaining the distance distortion for mappings at inner and boundary points.
Here we study mappings satisfying Poletsky’s inequality in the inverse direction. We obtain
conditions under which these mappings are either logarithmic Hölder continuous or Hölder
continuous in the closure of a domain. We consider several important cases in the manuscri-
pt, studying separately bounded convex domains and domains with locally quasiconformal
boundaries, as well as domains of more complex structure in which the corresponding distorti-
on estimates must be understood in terms of prime ends. In all the above situations we show
that the maps are logarithmically Hölder continuous, which is somewhat weaker than the usual
Hölder continuity. However, in the last section we consider the case where the maps are still
Hölder continuous in the usual sense. The research technique is associated with the use of the
method of moduli and the method of paths liftings. A key role is also played by the lower bounds
of the Loewner type for the modulus of families of paths, which are valid only in domains with
a special geometry, in particular, bounded convex domains. Another important fact which is
also valid for domains of the indicated type, is the possibility of joining pairs of different points
in a domain by paths lying (up to a constant) at a distance no closer than a distance between
above points.

1. Introduction. The manuscript is devoted to the study of mappings with finite distortion,
more precisely, classes of mappings satisfying inverse Poletsky-type moduli inequalities. Such
estimates are important because they are part of the definition of quasiconformality by
Väisälä (see [1]), and more general classes of maps may also be studied in the context of
modulus distortion (see e.g. [2]). In several of our recent papers we have obtained results
on the distortion of mappings with controlled upper and lower distortion of the modulus
of families of paths. Such estimates have been obtained in various situations, including on
the plane, when the mappings are solutions of the Beltrami equation, and in space, when
these mappings satisfy the generalized Poletskу inequality in one of two versions, see, for
example, [3], [4], [5], [6], [7] and [8]; see also Remark 1 on this occasion. In particular, the
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most common growth estimate that is performed for the mappings in the cited publications
is the logarithmic estimate, although in some individual situations the mapping is Hölder
continuous, or even Lipschitz continuous, see, for example, [3].

Let us move on to definitions. A Borel function ρ : Rn → [0,∞] is called admissible for a
family Γ of paths γ in Rn if the relation∫

γ

ρ(x)|dx| ⩾ 1 (1)

holds for any locally rectifiable path γ ∈ Γ. Given p ⩾ 1, p-modulus of Γ is defined as

Mp(Γ) = inf
ρ∈admΓ

∫
Rn

ρp(x)dm(x). (2)

Let M(Γ) := Mn(Γ). Let Q : Rn → [0,∞] be a Lebesgue measurable function. Given
a domain D ⊂ Rn, we say that f : D → Rn satisfies the inverse Poletsky inequality with
respect to p-modulus if the relation

Mp(Γ) ⩽
∫

f(D)

Q(y) · ρp∗(y)dm(y) (3)

holds for any family of paths Γ in D and any ρ∗ ∈ adm f(Γ). Regarding the use of inequa-
lity (3) for p = n, we may point, for example, to [11, Theorem 3.2], [12, Theorem 6.7.II] and
[2, Theorem 8.5]). At the same time, regarding the use of similar inequalities for p ̸= n we
may point to [9] and [10].

Some upper estimates for |f(x)−f(y)| were proved in [7], where f is defined in a domain D
and satisfies (3) for p = n, besides that, f denotes the boundary extension of f onto D, and
the points x, y belong to U ∩D while U is some neighborhood of a (fixed) point x0 ∈ ∂D.
The purpose of this paper is to obtain similar results for p ⩾ n and any points x, y ∈ D, not
only x, y ∈ U ∩D.

Note that the distortion estimates under non-conformal modulus are useful in the study
of composition operators in the Sobolev spaces, see Remark 2. Observe that, the boundary
continuous extension of mappings satisfying inequality (3) for p ⩾ n, as well as their equi-
continuity in the closure of the domain were established in [9] and [10]. However, explicit
estimates of the distortion at the boundary points for mappings in (3) have not been obtai-
ned. In addition, we show that mappings with the inverse Poletsky inequality are Hölder
continuous for p > n whenever the majorant Q in (3) is integrable. This circumstance si-
gnificantly distinguishes this case from p = n, since in this case the mapping is logarithmic
Hölder continuous, which is weaker than the usual Hölder continuity.

Let us give some more necessary definitions. A mapping f : D → Rn is called discrete if
{f−1 (y)} consists of isolated points for any y ∈ Rn, and open if the image of any open set
U ⊂ D is an open set in Rn. A mapping f between domains D and D′ is said to be closed if
f(E) is closed in D′ for any closed set E ⊂ D (see, e.g., [13, Section 3]).

Given sets E, F ⊂ Rn and a domain D ⊂ Rn we denote by Γ(E,F,D) the family of all
paths γ : [a, b] → Rn such that γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for t ∈ (a, b). Due to [14], a
domain D in Rn is called quasiextremal distance domain (QED-domain for short) if

M(Γ(E,F,Rn)) ⩽ A0 ·M(Γ(E,F,D)) (4)
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for some finite number A0 ⩾ 1 and all continua E and F in D. Observe that a half-space or
a ball are examples of quasiextremal distance domains, see [15, Lemma 4.3].

In the extended Euclidean space Rn = Rn ∪ {∞} we use the spherical (chordal) metric
h(x, y) = |π(x)−π(y)|, where π is a stereographic projection of Rn onto the sphere Sn( en+1

2
, 1
2
)

in Rn+1, and

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x− y|√
1 + |x|2

√
1 + |y|2

, x ̸= ∞, y ̸= ∞ (5)

(see e.g. [1, Definition 12.1]). Given A,B ⊂ Rn we define
h(A,B) = inf

x∈A,y∈B
h(x, y), h(A) = sup

x,y∈A
h(x, y),

where h is a chordal metric in (5). Similarly, put
d(A,B) = inf

x∈A,y∈B
|x− y|, d(A) = sup

x,y∈A
|x− y|.

Set
B(x0, r) = {x ∈ Rn : |x− x0| < r}, Bn = B(0, 1), S(x0, r) = {x ∈ Rn : |x− x0| = r}.

A continuum is a connected compactum in Rn. The continuum is called non-degenerate, if
it is not a single point. Given δ > 0, p ⩾ 1, domains D,D′ ⊂ Rn, n ⩾ 2, a non-degenerate
continuum A ⊂ D′ and a Lebesgue measurable function Q : D′ → [0,∞] we denote by
Sp

δ,A,Q(D,D′) a family of all open discrete and closed mappings f of D onto D′ satisfying
the relation (3) such that h(f−1(A), ∂D) ⩾ δ. The following result was formulated and
proved for the case p = n in [7] in the “local version”, i.e., at the neighborhood of the fixed
point.

Theorem 1. Let n ⩾ 2, p ⩾ n, and let Q ∈ L1(D′), let D be a bounded quasiextremal
distance domain, and let D′ be a convex bounded domain. Then any f ∈ Sp

δ,A,Q(D,D′) has
a continuous extension f : D → D′ and there exists C = C(n, p, A,D,D′) > 0 such that

|f(x)− f(y)| ⩽ C · (∥Q∥1)1/plog−1/n
(
1 +

δ

|x− y|

)
(6)

for all x, y ∈ D and f ∈ Sp
δ,A,Q(D,D′), where ∥Q∥1 is a norm of the function Q in L1(D′).

The following definition in a slightly modified form was proposed in [16], cf. [17]. The
boundary of a domain D is called locally quasiconformal, if every point x0 ∈ ∂D has a
neighborhood U, for which there exists a quasiconformal mapping φ of U onto the unit ball
Bn ⊂ Rn such that φ(∂D ∩ U) is the intersection of the unit sphere Bn with a coordinate
hyperplane xn = 0, where x = (x1, . . . , xn). Note that, with slight differences in the definition,
domains with such boundaries are also called collared domains (see [16]). Let us say a few
words about the mapping of φ. Observe that, quasiconformal mappings are locally Hölder
continuous (see [12, Theorem 1.11.III]). By the above-mentioned definition, there is C̃ > 0
and some exponent 0 < α ⩽ 1 such that(

C̃
)− 1

α |x− y|
1
α ⩽ |φ−1(x)− φ−1(y)| ⩽ C̃ · |x− y|α ∀x, y ∈ Bn. (7)

Given 0 < α ⩽ 1, we say that, the boundary of a domain D is α-locally quasiconformal,
if ∂D is locally quasiconformal and the mappings φ may be chosen such that (7) holds for
some C̃ > 0. The following result holds.
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Theorem 2. Let n ⩾ 2, p ⩾ n, 0 < α ⩽ 1, let Q ∈ L1(D′), let D be a bounded domain
with a α-locally quasiconformal boundary, and let D′ be a bounded convex domain. Then
any f ∈ Sp

δ,A,Q(D,D′) has a continuous extension f : D → D′, besides that, there is C > 0
such that

|f(x)− f(y)| ⩽ C · (∥Q∥1)1/plog−1/n
(
1 +

δ

|x− y|α
)

(8)

for any x, y ∈ D and f ∈ Sp
δ,A,Q(D,D′), where ∥Q∥1 is a norm of Q in L1(D′).

We will separately consider the case of domains with complex geometry. In this case, di-
stortion estimates should be understood in the terminology of the so-called prime ends. The
definitions and notations used below are fully consistent with our previous publication [6],
cf. [17]. In particular, a bounded domain D in Rn is called regular, if D can be quasi-
conformally mapped to a domain with a locally quasiconformal boundary whose closure
is a compact in Rn, and, besides that, every prime end in D is regular. Note that the
space DP = D ∪ ED is metric, which can be demonstrated as follows. If g : D0 → D is
a quasiconformal mapping of a domain D0 with a locally quasiconformal boundary onto
some domain D, then for x, y ∈ DP we put

ρ(x, y) := |g−1(x)− g−1(y)|, (9)

where the element g−1(x), x ∈ ED, is to be understood as some (single) boundary point
of the domain D0. The specified boundary point is unique and well-defined, see e.g. [18,
Theorem 2.1, Remark 2.1], cf. [16, Theorem 4.1]. Given C̃ > 0 and 0 < α ⩽ 1, we say that,
the boundary of a domain D is α-regular, if D can be quasiconformally mapped to a domain
with a locally α-quasiconformal boundary whose closure is a compact in Rn, and, besides
that, every prime end in D is regular.

The following statement holds.

Theorem 3. Let n ⩾ 2, p ⩾ n, C̃ > 0, 0 < α ⩽ 1, let Q ∈ L1(D′), let D be α-regular domain,
and let D′ be a bounded convex domain. Then any f ∈ Sp

δ,A,Q(D,D′) has a continuous
extension f : DP → D′; in addition, there exists a neighborhood C = C(n,A,D,D′, P0) > 0
such that

|f(P1)− f(P2)| ⩽ C · (∥Q∥1)1/plog−1/n
(
1 +

δ

ρα(P1, P2)

)
(10)

for any P1, P2 ∈ DP and f ∈ Sp
δ,A,Q(D,D′), where ∥Q∥1 is a norm of Q in L1(D′).

Remark 1. Along with inequality (3), we have often considered the inequality

Mp(Γf (y0, r1, r2)) ⩽
∫

A(y0,r1,r2)∩f(D)

Q(y) · ηp(|y − y0|)dm(y), (11)

where η is arbitrary Lebesgue measurable function η : (r1, r2) → [0,∞] such that

r2∫
r1

η(r)dr ⩾ 1. (12)

Observe that inequality (3) is stronger than (11). Indeed, let (3) holds. Now, we put ρ′(y) :=
η(|y − y0|) for y ∈ A(y0, r1, r2) ∩ f(D), and ρ′(y) = 0 otherwise. By the Luzin theorem, we



ON DISTORTION UNDER MAPPINGS... 35

may assume that the function ρ′ is Borel measurable (see, e.g., [19, Section 2.3.6]). Then,
by [1, Theorem 5.7] we have that∫

γ∗

ρ′(y)|dy| ⩾
r2∫

r1

η(r)dr ⩾ 1

for any (locally rectifiable) path γ∗ ∈ Γ(S(y0, r1), S(y0, r2), A(y0, r1, r2)). Substituting the
function ρ′ in (3), we obtain the desired ratio (11).

Note that for mappings satisfying inequality (11), which is weaker than (3), the problems
studied in this manuscript have not yet been investigated.

Remark 2. The condenser in the domain D ⊂ Rn is the pair (E,F ) of connected closed
relatively to D sets E,F ⊂ D. Recall that a continuous function u ∈ L1

p(D) is called an
admissible function for the condenser (E,F ), denoted u ∈ W0(E,F ), if the set E ∩ D is
contained in some connected component of the set Int{x : u(x) = 0}, the set F ∩ D is
contained in some to the connected component of the set Int{x : u(x) = 1}. Then we call as
a p-capacity of the condenser (E,F ) relatively to a domain D the value

capp(E,F ; Ω) = inf ∥u|L1
p(D)∥p,

where the greatest lower bond is taken over all admissible for the condenser (E,F ) ⊂ D
functions. If the condenser have no admissible functions we put the capacity is equal to
infinity.

Given a Lebesgue measurable function Q : Rn → [0,∞], q < ∞ and any disjoint nondege-
nerate compact sets E,F ⊂ D, we set

capq,Q(E,F,D) = inf
u∈W0(E,F )

∫
D

Q(x) · |∇u|qdm(x). (13)

Observe that, the classes of homeomorphisms f between domains D and D′ generating
bounded composition operators on Sobolev spaces can be characterized by the inverse capaci-
ty (moduli) Poletsky inequality ([20], [21])

cap1/q
q (f−1(E), f−1(F );D) ⩽ Kp,q(f ; Ω)cap

1/p
p (E,F ;D′), 1 < q ⩽ p < ∞, (14)

for some 0 < Kp,q < ∞. On the other hand, let f be a homeomorphism that satisfies the
relation

capq(E,F,D) ⩽ capq,Q(f(E), f(F ), f(D)) (15)

for arbitrary compacts (continua) E,F ⊂ D, and

capq,Q(f(E), f(F ), f(D)) = Mq,Q(Γ(f(E), f(F ), f(D))), (16)

where Mq,Q(Γ(f(E), f(F ), f(D))) = inf
ρ∗∈admΓ(f(E),f(F ),f(D))

∫
f(D)

ρq∗(y) · Q(y)dm(y). Then f

satisfies the condition

Mq(Γ(E,F,D)) ⩽ capq,Q(f(E), f(F ), f(D)) ⩽
∫

f(D)

Q(y) · ρq∗(y)dm(y) (17)

for any function ρ∗ ∈ adm f(Γ(E,F,D)) = admΓ(f(E), f(F ), f(D)) (see [9, Theorem 7.2]
and relation (7.5) here. By Hesse equality (see [22, Theorem 5.5]),
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capq(E,F,D) = Mq(Γ(E,F,D)),

therefore (16) holds, for example, for bounded Q. The general case is unknown.
Then the homeomorphisms f generating bounded composition operators satisfy (14), and,

in turn, (14) implies (17) at least for p = q whenever Q satisfies (15) and (16). The general
case, when the mappings f are not homeomorphic, p and q are different, and relations (15)–
(16) may not hold has not been studied sufficiently.

2. Auxiliary lemmas. Let D,D′ be domains in Rn. For given numbers n ⩽ p < ∞, δ > 0,
a continuum A ⊂ D′ and an arbitrary Lebesgue measurable function Q : D′ → [0,∞], we
denote by Pp

δ,A,Q(D,D′) a family of all open discrete and closed mappings f of D onto D′

satisfying the condition

Mp(Γ(E,F,D)) ⩽
∫

A(y0,r1,r2)∩f(D)

Q(y) · ηp(|y − y0|)dm(y) (18)

for any y0 ∈ D′, any compacts
E ⊂ f−1(B(y0, r1)), F ⊂ f−1(D′ \B(y0, r2)), 0 < r1 < r2 < r0 = sup

y∈D′
|y − y0|,

and any Lebesgue measurable function η : (r1, r2) → [0,∞] with the condition

r2∫
r1

η(r)dr ⩾ 1, (19)

such that h(f−1(A), ∂D) ⩾ δ.
Let ∂D be a boundary of the domain D ⊂ Rn. Then the boundary ∂D is called weakly

flat at the point x0 ∈ ∂D, if for each P > 0 and for any neighborhood U of this point there is
a neighborhood V ⊂ U of the same point such that M(Γ(E,F,D)) > P for any continua E,
F ⊂ D that intersect ∂U and ∂V . The boundary of a domain D is called weakly flat if
the corresponding property holds at any point of ∂D. The following statement holds (see
Theorem 1.2 in [9].

Proposition 1. Let D ⊂ Rn be a bounded domain with a weakly flat boundary. Suppose
that, Q ∈ L1(D′). If D′ is locally connected on its boundary, then any f ∈ Pp

δ,A,Q(D,D′) has
a continuous extension f : D → D′, f(D) = D′, and the family Pp

δ,A,Q(D,D′), which consists
of all extended mappings f : D → D′, is equicontinuous in D.

Remark 3. Observe that, Sp
δ,A,Q(D,D′) ⊂ Pp

δ,A,Q(D,D′), because the relation (3) obviously
implies

Mp(Γ(E,F,D)) ⩽
∫

f(D)

Q(y) · ρp∗(y)dm(y) ∀ ρ∗ ∈ adm(f(Γ(E,F,D))). (20)

In addition, (20) implies (18) for the corresponding E and F by Theorem 7.1 in [9].

The following lemma was proved in several different situations in [23] and [7]. In parti-
cular, in [23] we considered the case when the family Sp

δ,A,Q consists of mappings of the unit
ball onto itself and satisfies condition (3) for p = n. Besides that, [7] deals for the case p = n
while the conditions on D and D′ a similar to the mentioned below.
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Lemma 1. Let D and D′ be domains satisfying the conditions of Theorem 1, and let E
be a continuum in D′, Q ∈ L1(D′). Then there exists δ1 > 0 such that Sp

δ,A,Q ⊂ Sp
δ1,E,Q.

In other words, if f is an open discrete and closed mapping of D onto D′ satisfying the
condition (3) such that h(f−1(A), ∂D) ⩾ δ, then there exists δ1 > 0, which does not depend
on f, such that h(f−1(E), ∂D) ⩾ δ1.

Proof. Let us prove Lemma 1 from the opposite. Suppose that its conclusion is not true.
Then, there are sequences ym ∈ E, fm ∈ Sp

δ,A,Q and xm ∈ D such that fm(xm) = ym and
h(xm, ∂D) → 0 as m → ∞. Without loss of generality, we may assume that xm → x0 as
m → ∞, where x0 may be equal to ∞ if D is unbounded. Observe that the quasiextremal
distance domains have weakly flat boundaries (see Lemma 2(ii) in [24]). In addition, convex
domains are locally connected on the boundary, which follows directly from the definition of
a convex domain. Now, by Proposition 1 and Remark 3 the family {fm}∞m=1 is equicontinuous
at x0. Then, for any ε > 0 there is m0 ∈ N such that h(fm(xm), fm(x0)) < ε for m ⩾ m0. On
the other hand, since fm is closed, fm(x0) ∈ ∂D′. Due to the compactness of the space Rn

and the closure of ∂D′, we may assume that fm(x0) converges to some B ∈ ∂D′ as m → ∞.
Therefore, by the triangle inequality,

h(fm(xm), fm(x0)) ⩾ h(fm(xm), B)− h(B, fm(x0)) ⩾
1

2
· h(E, ∂D′)

for sufficiently large m ∈ N. Finally, we have a contradiction: h(fm(xm), fm(x0)) ⩾ δ0,
δ0 :=

1
2
· h(E, ∂D′) and, at the same time, h(fm(xm), fm(x0)) < ε for m ⩾ m0. The resulting

contradiction refutes the original assumption.

The following lemma was proved in [25], cf. the proof of Theorem 1.1 in [23].

Lemma 2. Let D′ be a bounded convex domain in Rn, n ⩾ 2, and let B(y∗, δ∗/2) be a ball
centered at the point y∗ ∈ D′, where δ∗ := d(y∗, ∂D

′). Let z0 ∈ ∂D′. Then for any points
A,B ∈ B(z0, δ∗/8) ∩ D′ there are points C,D ∈ B(y∗, δ∗/2), for which the segments [A,C]
and [B,D] are such that

d([A,C], [B,D]) ⩾ C0 · |A− C|, (21)

where C0 > 0 is some constant that depends only on δ∗ and d(D′).

3. Proof of Theorem 1. A path α : [a, b) → D is called a total f -lifting of β starting at
x, if (1) α(a) = x; (2) (f ◦ α)(t) = β(t) for any t ∈ [a, b). We have the following, see [13,
Lemma 3.7].

Proposition 2. Let f : D → Rn be a discrete open and closed (boundary preserving)
mapping, β : [a, b) → f(D) be a path, and x inf−1 (β(a)) . Then β has a total f -lifting
starting at x.

Before proceeding to the proof of Theorem 1, let us first prove its local version, cf. [7,
Theorem 1].

Lemma 3. Let n ⩾ 2, p ⩾ n, and let Q ∈ L1(D′), let D be a bounded quasiextremal
distance domain, and let D′ be a convex bounded domain. Then any f ∈ Sp

δ,A,Q(D,D′) has
a continuous extension f : D → D′ and for any x0 ∈ ∂D, x0 ̸= ∞, there exists a neighborhood
U and C = C(n, p, A,D,D′) > 0 such that

|f(x)− f(y)| ⩽ C · (∥Q∥1)1/plog−1/n
(
1 +

δ

|x− y|

)
(22)
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for every x, y ∈ U ∩ D and f ∈ Sp
δ,A,Q(D,D′), where ∥Q∥1 is a norm of the function Q in

L1(D′).

Proof. We will mainly use the scheme of proof of [7, Theorem 1]. The possibility of a conti-
nuous extension of the mapping f to the boundary of the domain D follows by Theorems 1.2
and 7.1 in [9] due to the comments made after the formulation of Lemma 1.

Let us prove the relation (22). Fix x0 ∈ ∂D, and let y∗ ∈ D′. Let δ∗ := d(y∗, ∂D
′) and let

E = B(y∗, δ∗/2) ⊂ D′. By Lemma 1 we may find δ1 > 0 such that h(f−1(E), ∂D) ⩾ δ1 for
every f ∈ Sp

δ,A,Q. By Theorems 1.2 and 7.1 in [9] the family Sp
δ,A,Q is equicontinuous in D.

Thus, for δ∗/8 there exists a neighborhood U ⊂ B(x0, δ1/2) of x0 such that |f(x)− f(x0)| <
δ∗/8 for every x ∈ U ∩D and all f ∈ Sp

δ,A,Q. Let x, y ∈ U ∩D and let
ε0 := |f(x)− f(y)| < δ0 := δ∗/4.

Now we apply Lemma 2 for A = f(x), B = f(y) and z0 = f(x0). Due to this lemma, there
are segments I ∋ A and J ∋ B in D′ such that I ∩ E ̸= ∅ ̸= J ∩ E, and

d(I, J) ⩾ C0 · |f(x)− f(y)|, (23)

where C0 is some constant depending only on E and D′.
Let α1 and β1 be total f -liftings of paths I and J starting at the points x and y, respecti-

vely (they exist by Proposition 2).
By definition, |α1| ∩ f−1(E) ̸= ∅ ̸= |β1| ∩ f−1(E). Since h(f−1(E), ∂D) ⩾ δ1 and x, y ∈

B(x0, δ1/2), then
d(α1) ⩾ δ1/2, d(β1) ⩾ δ1/2. (24)

Let Γ := Γ(α1, β1, D). Then, by (4),

M(Γ) ⩾ (1/A0) ·M(Γ(α1, β1,Rn)), (25)

and on the other hand, by [26, Lemma 7.38],

M(Γ(α1, β1,Rn)) ⩾ cn · log
(
1 +

1

m

)
, (26)

where cn > 0 is some constant depending only on n, and

m =
d(α1, β1)

min{d(α1), d(β1)}
.

By Hölder inequality, for any function ρ ∈ admΓ,

M(Γ) ⩽
∫
D

ρn(x)dm(x) ⩽

∫
D

ρp(x)dm(x)

n
p

·m
p−n
n (D). (27)

Letting (27) to inf over all ρ ∈ admΓ, we obtain that

M(Γ) ⩽
∫
D

ρn(x)dm(x) ⩽ (Mp(Γ))
n
p ·m

p−n
n (D). (28)

Here we take into account that D is bounded, so that m
p−n
n (D) < ∞. Now, by (27) and (28)

we obtain that
Mp(Γ(α1, β1,Rn)) ⩾ c

p
n
nm

−n−p
n (D) · log

p
n

(
1 +

1

m

)
. (29)
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Now, we put ρ(y) =

{
1

C0ε0
, y ∈ D′;

0, y ̸∈ D′.
Observe that ρ satisfies (1) for f(Γ), see (21). By the

definition of Sp
δ,A,Q, we obtain that

Mp(Γ) ⩽
1

Cp
0ε

p
0

∫
D′

Q(y)dm(y) = C−p
0 · ∥Q∥1

|f(x)− f(y)|p
. (30)

By (29) and (30), it follows that

c
p
n
nm

−n−p
n (D) · log

p
n

(
1 +

δ1
2|x− y|

)
⩽ C−p

0 · ∥Q∥1
|f(x)− f(y)|p

.

The desired inequality (22) follows from the last relation, where C := C−1
0 · c̃n−1/nm

n−p
np (D),

taking into account that, according to L’Hospital’s rule, log
(
1 + 1

nt

)
∼ log

(
1 + 1

kt

)
as t → +0

for any different k, n > 0.

We have proved Lemma 3 for the inner points x, y ∈ U ∩D. For the points x, y ∈ U ∩D,
this statement follows by passing to the limit x → x and y → y, x, y ∈ D.

Proof of Theorem 1. The possibility of a continuous extension f : D → D′ for f ∈ Sp
δ,A,Q(D,D′)

was established in Lemma 3. It remains to prove the relation (6) for any x, y ∈ D. Let us
prove by contradiction. Assume that the conclusion of Theorem 1 does not hold. Now, for
any m ∈ N there exists fm : D → D′, fm ∈ Sp

δ,A,Q(D,D′), and xm, ym ∈ D such that

|fm(xm)− fm(ym)| ⩾ m · (∥Q∥1)1/plog−1/n
(
1 +

δ

|xm − ym|

)
. (31)

Since fm has a continuous extension to ∂D, we may assume that xm, ym ∈ D. Since D
is bounded, we may find subsequences xmk

, ymk
, k ∈ {1, 2, . . .}, and points x0, y0 ∈ D such

that xmk
→ x0 and ymk

→ y0 as k → ∞. There are two cases: 1) x0 ̸= y0, 2) x0 = y0. In the
first case, when x0 ̸= y0, observe that, there exists M ∈ N such that |fm(xm)−fm(ym)| ⩽ M
for any m ∈ N. Indeed, by the assumption D′ is bounded, so that by the triangle inequality
|fm(xm) − fm(ym)| ⩽ |fm(xm)| + |fm(ym)| ⩽ 2 sup

x∈D
|fm(x)| ⩽ 2 · d(D′). In this case, we may

set M := 2 · d(D′). In turn,

(∥Q∥1)1/plog−1/n
(
1 +

δ

|xm − ym|

)
→ (∥Q∥1)1/plog−1/n

(
1 +

δ

|x0 − y0|

)
:= C1

as m → ∞. Thus, for sufficiently large m ∈ N,

|fm(xm)− fm(ym)| ⩽
2M

C1

· (∥Q∥1)1/plog−1/n
(
1 +

δ

|xm − ym|

)
.

The latter contradicts with (31).
In the second case, when x0 = y0, the relation contradicts with (22) whenever x0 ∈ ∂D,

and with Theorems 1.1, 7.1 in [9] whenever x0 ∈ D.

4. Proof of Theorem 2. Just as in the previous section, we formulate a “local version” of
Theorem 2, cf. [7, Theorem 2].

Lemma 4. Let n ⩾ 2, p ⩾ n, and let Q ∈ L1(D′), let D be a bounded domain with
a locally quasiconformal boundary, and let D′ be a bounded convex domain. Then any
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f ∈ Sp
δ,A,Q(D,D′) has a continuous extension f : D → D′, while, for any x0 ∈ ∂D, x0 ̸= ∞,

there exists a neighborhood V of x0 and C = C(n, p, A,D,D′) > 0 such that

|f(x)− f(y)| ⩽ C · (∥Q∥1)1/plog−1/n
(
1 +

δ

|x− y|α
)

(32)

for any x, y ∈ V ∩ D and f ∈ Sp
δ,A,Q(D,D′), where α is a number from the definition of

quasiconformal boundary in (7) and ∥Q∥1 is a norm of Q in L1(D′).

Proof. Observe that the locally quasiconformal boundaries are weakly flat (see [27, Proposi-
tion 2.2], see also [1, Theorem 17.10]). Now, the possibility of a continuous extension of the
mapping f to the boundary of the domain D follows by Theorems 1.2 and 7.1 in [9] due to
the comments made after the formulation of Lemma 1.

The further proof comes down to modifying the scheme of the proof of Theorem 2 in [7].
Put x0 ∈ ∂D. Let y∗ ∈ D′ be an arbitrary point of D′, δ∗ := d(y∗, ∂D

′) and E = B(y∗, δ∗/2) ⊂
D′. By Lemma 1, there exists δ1 > 0 such that h(f−1(E), ∂D) ⩾ δ1 for all f ∈ Sp

δ,A,Q. Then
d(f−1(E), ∂D) ⩾ δ1 for any f ∈ Sp

δ,A,Q. In addition, since by Theorems 1.2 and 7.1 in
[9] the family Sp

δ,A,Q is equicontinuous at D, for the number δ∗/8 there is a neighborhood
U ⊂ B(x0, δ1/4) of x0 such that |f(x)−f(x0)| < δ∗/8 for any x, y ∈ U∩D and all f ∈ Sp

δ,A,Q.
By the definition of a locally quasiconformal boundary, there exist a neighborhood U∗ of

the point x0 and a quasiconformal mapping φ : U∗ → Bn, φ(U∗) = Bn, such that φ(D∩U∗) =
Bn

+, where Bn
+ = {x ∈ Bn : x = (x1, . . . , xn), xn > 0} is a half-ball.

We may assume that φ(x0) = 0 and U∗ ⊂ U (see the proof of Theorem 17.10 in [1]). Let V
be any neighborhood in U∗ such that V ⊂ U∗, and let

δ2 := d(∂V, ∂U∗). (33)

Consider the auxiliary mapping

F (w) := f(φ−1(w)), F : Bn
+ → U∗. (34)

Let x, y ∈ V ∩D and
ε0 := |f(x)− f(y)| < δ0 := δ∗/4. (35)

Now, we apply Lemma 2 for the points A = f(x), B = f(y) and z0 = f(x0). According to
this lemma, there exist segments I ∋ A and J ∋ B in D′ such that I ∩ E ̸= ∅ ̸= J ∩ E,
moreover

d(I, J) ⩾ C0 · |f(x)− f(y)|, (36)

where C0 depends only on E and d(D′).
By Proposition 2 there exist whole f -liftings α1 and β1 of the paths I and J starting

at the points x and y. Now, by the definition, |α1| ∩ f−1(E) ̸= ∅ ̸= |β1| ∩ f−1(E). Then
|α1| ∩U ̸= ∅ ̸= |α1| ∩ (Rn \U ) and |β1| ∩U ̸= ∅ ̸= |β1| ∩ (Rn \U ). By [28, Theorem 1.I.5.46]

|α1| ∩ ∂U ̸= ∅, |β1| ∩ ∂U ̸= ∅. (37)

Similarly,
|α1| ∩ ∂V ̸= ∅, |β1| ∩ ∂V ̸= ∅. (38)

Due to (37), α1 and β1 contain subpaths α∗
1 and β∗

1 with origins at the points x and y which
belong entirely in U∗ and have end points at ∂U∗. Due to (33), (37) and (38)

d(α∗
1) ⩾ δ2, d(β∗

1) ⩾ δ2. (39)
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Consider the paths φ(α∗
1) and φ(β∗

1). Let x, y ∈ U∗ be such that d(α∗
1) = |x − y|. We put

x∗ = φ(x) and y∗ = φ(y). Then by (7), C̃ · |x∗ − y∗|α ⩾ |x− y| = d(α∗
1) ⩾ δ2, or

|x∗ − y∗| ⩾
(
1

C̃
δ2

)1/α

. (40)

From (40), we obtain that d(φ(α∗
1)) ⩾

(
1

C̃
δ2

)1/α
. Similarly, d(φ(β∗

1)) ⩾
(

1

C̃
δ2

)1/α
. Let

Γ := Γ(φ(α∗
1), φ(β

∗
1),Bn

+).

Observe that, Bn
+ is also a QED-domain with some A∗

0 < ∞ in (4) (see [15, Lemma 4.3]).
Then, on the one hand, by (4)

M(Γ) ⩾ (1/A∗
0) ·M(Γ(φ(α∗

1), φ(β
∗
1),Rn)), (41)

and on the other hand, by [26, Lemma 7.38]

M(Γ(φ(α∗
1), φ(β

∗
1),Rn)) ⩾ cn · log

(
1 +

1

m

)
, (42)

where cn > 0 is some constant that depends only on n,

m =
d(φ(α∗

1), φ(β
∗
1))

min{d(φ(α∗
1)), d(φ(β

∗
1))}

.

Then, combining (41) and (42) and taking into account that d(φ(α∗
1), φ(β

∗
1)) ⩽ |φ(x)−φ(y)|,

we obtain that

M(Γ) ⩾ c̃n · log
(
1 +

δ
1/α
2

(C̃)1/αd(φ(α∗
1), φ(β

∗
1))

)
⩾ c̃n · log

(
1 +

δ
1/α
2

(C̃)1/α|φ(x)− φ(y)|

)
, (43)

where c̃n > 0 is some constant that depends only on n and A∗
0 from the definition of QED-

domain.
By Hölder inequality, for any function ρ ∈ admΓ,

M(Γ) ⩽
∫
D

ρn(x)dm(x) ⩽

(∫
D

ρp(x)dm(x)

)n
p

·m
p−n
n (D). (44)

Letting (44) to inf over all ρ ∈ admΓ, we obtain that

M(Γ) ⩽
∫
D

ρn(x)dm(x) ⩽ (Mp(Γ))
n
p ·m

p−n
n (D). (45)

Here we take into account that D is bounded, so that m
p−n
n (D) < ∞. Now, by (43) and (45)

we obtain that

Mp(Γ(α1, β1,Rn)) ⩾ c̃n
p
nm−n−p

n (D) · log
p
n

(
1 +

δ
1/α
2

(C̃)1/α|φ(x)− φ(y)|

)
. (46)
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Let us now establish an upper bound for Mp(Γ). Note that, F in (34) satisfies the relati-
on (3) with the function Q̃(x) = K0 · Q(x) instead of Q, where K0 ⩾ 1 is the constant of a
quasiconformality of φ−1. Let us put

ρ(y) =

{
1

C0ε0
, y ∈ D′;

0, y ̸∈ D′,

where C0 is the universal constant in inequality (36) and ε0 is defined in (35). Note that ρ
satisfies the relation (1) for F (Γ) due to the relation (21). Then, by the definition of Sp

δ,A,Q,
due to the definition of F in (34), we obtain that

Mp(Γ) ⩽
1

Cp
0ε

p
0

∫
D′

K0Q(y)dm(y) = C−p
0 K0 ·

∥Q∥1
|f(x)− f(y)|p

. (47)

It follows by (43) and (47) that

c̃n
p
nm−n−p

n (D) · log
p
n

(
1 +

δ
1/α
2

(C̃)1/α|φ(x)− φ(y)|

)
⩽ C−p

0 K0 ·
∥Q∥1

|f(x)− f(y)|p
.

Now, from the latter relation, it follows that

|f(x)− f(y)| ⩽ C−1
0 c̃n

− 1
nK

1
p

0 · (∥Q∥1)
1
p log−

1
n

(
1 +

δ
1/α
2

(C̃)1/α|φ(x)− φ(y)|

)
⩽

⩽ C−1
0 c̃n

− 1
nK

1
p

0 · (∥Q∥1)
1
p log−

1
n

(
1 +

δ
1/α
2

(C̃)(1/α)+1|x− y|α
)
,

which is the desired inequality (8), where C := C−1
0 ·c̃n−1/n·K0 and r0 = δ

1/α
2 /(C̃)1/α+1 instead

of δ. However, we may replace r0 by δ here, because, by L’Hospital’s rule, log
(
1 + 1

nt

)
∼

log
(
1 + 1

kt

)
as t → +0 for any different k, n > 0.

We proved Lemma 4 for the inner points x, y ∈ V ∩D. For x, y ∈ V ∩D, this statement
follows by means of the transition to the limit x → x and y → y, x, y ∈ D.

Proof of Theorem 2. is similar to the proof of Theorem 1, however, we will carry it out
completely. The possibility of a continuous extension f : D → D′ for f ∈ Sp

δ,A,Q(D,D′) was
established in Lemma 4. It remains to prove the relation (6) for any x, y ∈ D. Let us prove
by contradiction. Assume that the conclusion of Theorem 2 does not hold. Now, for any
m ∈ N there exists fm : D → D′, fm ∈ Sp

δ,A,Q(D,D′), and xm, ym ∈ D such that

|fm(xm)− fm(ym)| ⩾ m · (∥Q∥1)1/plog−1/n
(
1 +

δ

|xm − ym|α
)
. (48)

Since fm has a continuous extension to ∂D, we may assume that xm, ym ∈ D. Since D is
bounded, we may find subsequences xmk

, ymk
, k ∈ {1, 2, . . .}, and points x0, y0 ∈ D such that

xmk
→ x0 and ymk

→ y0 as k → ∞. There are two cases: 1) x0 ̸= y0, 2) x0 = y0. In the first
case, when x0 ̸= y0, observe that, there exists M ∈ N such that |fm(xm)− fm(ym)| ⩽ M for
any m ∈ N. Indeed, by the assumption D′ is bounded, so that by the Triangle inequality
|fm(xm) − fm(ym)| ⩽ |fm(xm)| + |fm(ym)| ⩽ 2 sup

x∈D
|fm(x)| ⩽ 2 · d(D′). In this case, we may

set M := 2 · d(D′). In turn,

(∥Q∥1)1/plog−1/n
(
1 +

δ

|xm − ym|α
)

→ (∥Q∥1)1/plog−1/n
(
1 +

δ

|x0 − y0|α
)
:= C1

as m → ∞. Thus, for sufficiently large m ∈ N,
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|fm(xm)− fm(ym)| ⩽
2M

C1

· (∥Q∥1)1/plog−1/n
(
1 +

δ

|xm − ym|α
)
.

The latter contradicts with (48).
In the second case, when x0 = y0, the relation contradicts with (22) whenever x0 ∈ ∂D.

If x0 = y0 ∈ D, then by Theorems 1.1 and 4.1 in [9], since 0 < α ⩽ 1 and |xm − ym| < 1 for
sufficiently large m we obtain that

|fm(xm)− fm(x0)| ⩽
C · (∥Q∥1)1/p

log1/n
(
1 + δ

|xm−ym|

) ⩽
C · (∥Q∥1)1/p

log1/n
(
1 + δ

|xm−ym|α

) .
The latter contradicts with (48).

5. Proof of Theorem 3.

Proof. The proof of Theorem 3 almost completely coincides with the proof of a similar
statement for the conformal modulus (see Proof of Theorem 3 in [7]), let us demonstrate
this. Let f ∈ Sp

δ,A,Q(D,D′). Since D is a regular domain, there exists a quasiconformal
mapping g−1 of the domain D onto a domain D0 with a locally quasiconformal boundary,
and, by the definition of the metric ρ in the prime ends space, one has

ρ(P1, P2) := |g−1(P1)− g−1(P2)|. (49)

Consider the auxiliary mapping

F (x) = (f ◦ g)(x), x ∈ D0. (50)

Since g−1 is quasiconformal, there is a constant 1 ⩽ K1 < ∞ such that

1

K1

·M(Γ) ⩽ M(g(Γ)) ⩽ K1 ·M(Γ) (51)

for any family of paths Γ in D0. Considering inequalities (51) and taking into account
that f satisfies the relation (3), we obtain that also F satisfies the relation (3) with a
new function Q̃(x) := K1 · Q(x). In addition, since g is a fixed homeomorphism, then
h(F−1(A), ∂D0) ⩾ δ0 > 0, where δ0 > 0 is some fixed number. Then Theorem 2 may
be applied to the map F . Applying this theorem, we obtain that,

|F (x)− F (y)| ⩽ C∗K
1
p

1 · (∥Q∥1)1/plog−1/n
(
1 +

δ0
|x− y|α

)
(52)

for all x, y ∈ D0, where ∥Q∥1 is the norm of the function Q in L1(D′). If P1, P2 ∈ DP \ ED,
then P1 = g(x) and P2 = g(y) for some x, y ∈ D0. Taking into account the relation (52) and
using the relation |x− y| = |g−1(P1)− g−1(P2)| = ρ(P1, P2), we obtain that

|F (g−1(P1))− F (g−1(P2))| ⩽ C∗K
1
p

1 · (∥Q∥1)1/plog−1/n
(
1 +

δ0
ρα(P1, P2)

)
,

or, due to (50),

|f(P1)− f(P2)| ⩽ C∗K
1
p

1 · (∥Q∥1)1/plog−1/n
(
1 +

δ0
ρα(P1, P2)

)
.

The last ratio is desired if we put here C := C∗K
1
p

1 . Here we also take into account that, by
L’Hospital’s rule, log

(
1 + 1

nt

)
∼ log

(
1 + 1

kt

)
as t → +0 for any different k, n > 0. Thus, in

the last relation, we may write δ instead δ0.
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Observe that, every f ∈ Sp
δ,A,Q(D,D′) has a continuous extension to ED := DP \ D.

Indeed, g−1 is continuous in D, see the comments made after relation (9). Also, F has
a continuous extension to D0. Now, f(x) = (F ◦ g−1)(x) has a continuous extension to DP ,
as required. If P1, P2 ∈ ED, we obtain the desired inequality in (10) taking the limit in
|f(xm) − f(ym)| ⩽ C · (∥Q∥1)1/plog−1/n

(
1 + δ

ρα(xm,ym)

)
as m → ∞, where xm → P1 and

ym → P2 as m → ∞, xm, ym ∈ D, m ∈ {1, 2, . . .}.

6. The case p > n. A metric space (X, d, µ) is called Q̃-Ahlfors-regular for some Q̃ ⩾ 1 if,
for any x0 ∈ X and some constant C ⩾ 1,

1

C
RQ̃ ⩽ µ(B(x0, R)) ⩽ CRQ̃.

The Ahlfors α-regular spaces have Hausdorff dimension α (see [29, p. 61–62]). Let (X, d, µ)
be a metric measure space with metric d and a locally finite Borel measure µ. Following [29],
§7.22, a Borel function ρ : X → [0,∞] is said to be an upper gradient of a function u : X → R
if

|u(x)− u(y)| ⩽
∫
γ

ρds

for any rectifiable path γ connecting the points x and y ∈ X, where, as usual,
∫
γ
ρds denotes

the linear integral of the function ρ over the path γ. Such a space X will be said to admit
the (1; p)-Poincaré inequality if there exist constants C ⩾ 1 and τ > 0 such that

1

µ(B)

∫
B

|u− uB|dµ(x) ⩽ C(diamB)

(
1

µ(τB)

∫
τB

ρpdµ(x)

)1/p

for any ball B ⊂ X and arbitrary locally bounded continuous function u : X → R and any
upper gradient ρ of u, where

uB :=
1

µ(B)

∫
B

udµ(x).

For distinct points x, y ∈ X denote by Γxy the collection of all compact rectifiable paths in
X connecting x to y. The following result holds (see [30, Proposition 4.1]).

Proposition 3. Let X be a Q-Ahlfors regular metric measure space that (1; p)-Poincaré
inequality holds for some p > Q. Then Mp(Γxy) ⩾ C · (d(x, y))Q−p.

Let f : D → Rn, n ⩾ 2, and let Q : Rn → [0,∞] be a Lebesgue measurable function
such that Q(y) ≡ 0 for y ∈ Rn \ f(D). Let A = A(y0, r1, r2). Let Γf (y0, r1, r2) denotes the
family of all paths γ : [a, b] → D such that f(γ) ∈ Γ(S(y0, r1), S(y0, r2), A(y0, r1, r2)), i.e.,
f(γ(a)) ∈ S(y0, r1), f(γ(b)) ∈ S(y0, r2), and f(γ(t)) ∈ A(y0, r1, r2) for any a < t < b. Given
p ⩾ 1, we say that f satisfies the inverse Poletsky inequality at y0 ∈ f(D) with respect to
p-modulus, if the relation

Mp(Γf (y0, r1, r2)) ⩽
∫
A

Q(y) · ηp(|y − y0|)dm(y) (53)
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holds for any 0 < r1 < r2 < r0 := sup
y∈D′

|y − y0| and any Lebesgue measurable function

η : (r1, r2) → [0,∞] such that
∫ r2
r1

η(r)dr ⩾ 1.
Let f : D → D′ be a mapping satisfying the relation (53) for some p ⩾ n, n ⩾ 2, and

let Q is integrable in D′. Assume that D is n-Ahlfors regular domain (as a metric measure
space with the Euclidean metric d(x, y) = |x − y|) that (1; p)-Poincaré inequality holds for
some p > n. Also, let D′ be a domain in Rn. Let f(x) ̸= f(y). Set

ε0 := |f(x)− f(y)|. (54)

Now, by Proposition 3
Mp(Γxy) ⩾ C · |x− y|n−p. (55)

Draw through the points f(x) and f(y) a line r = r(t) = f(x) + (f(x) − f(y))t, −∞ <
t < ∞. Let t0 < 0 be an arbitrary point such that z1 := r(t0) ∈ D′. Now, f(Γxy) ⊂
Γ(S(z1, ε1), S(z1, ε2), A(z1, ε1, ε2)), where ε1 := |f(x) − z1| and ε2 := |f(y) − z1|. Now,
Γxy ⊂ Γf (z

1, ε1, ε2). Observe that

|f(y)− f(x)|+ ε1 = |f(y)− f(x)|+ |f(x)− z1| = |z1 − f(y)| = ε2, (56)

1 and, thus, ε1 < ε2. Now let us prove the upper bound for Mp(Γxy). We set

η(t) =

{
1
ε0
, t ∈ [ε1, ε2];

0, t ̸∈ [ε1, ε2],

here ε0 is a number from (54). Note that η satisfies the relation (19) for r1 = ε1 and r2 = ε2.
Indeed, it follows from (54) and (56) that r1 − r2 = ε2 − ε1 = |f(y) − z1| − |f(x) − z1| =
|f(x) − f(y)| = ε0. Then

∫ ε2

ε1
η(t)dt = (1/ε0) · (ε2 − ε1) ⩾ 1. By the inequality (9) and the

relation (53) applied at the point z1, we obtain that

Mp(Γxy) ⩽ Mp(Γf (z
1, ε1, ε2)) ⩽

1

εp0

∫
D′

Q(z)dm(z) =
∥Q∥1

|f(x)− f(y)|p
. (57)

By (55) and (57), we obtain that C · |x−y|n−p ⩽ ∥Q∥1/|f(x)− f(y)|p. From the latter ratio,
we obtain that

|f(x)− f(y)| ⩽ C−1/p · (∥Q∥1)1/p|x− y|
p−n
p . (58)

Thus, the following statement holds.

Theorem 4. Let f : D → D′ be a mapping satisfying the relation (53) for some p ⩾ n,
n ⩾ 2, and let Q is integrable in D′. Assume that D is n-Ahlfors regular domain (as
a metric measure space with the Euclidean metric d(x, y) = |x − y|) that (1; p)-Poincaré
inequality holds for some p > n. Also, let D′ be a domain in Rn. Then the relation (58) holds
for every x, y ∈ D, where C > 0 is some constant which does not depend on f. Moreover,
f has a continuous extension f : D → D′ and the relation (58) holds for every x, y ∈ D, as
well.

Proof. For x, y ∈ D, the relation (58) was established before the formulation of Theorem 4.
Let us to prove the possibility of a continuous boundary extension of f to ∂D. Assume
the contrary. Then there are x0 ∈ ∂D and sequences xm, ym ∈ D, m ∈ {1, 2, . . .}, such
that xm, ym → x0 as m → ∞, however, |f(xm) − f(ym)| ⩾ ε1 > 0 for some ε1 > 0.
The latter contradicts the relation (58), because it follows from it that, |f(xm) − f(ym)| ⩽
C−1/p · (∥Q∥1)1/p|xm − ym|

p−n
p → 0 as m → ∞. Finally, the relation (58) may be obtained

for x, y ∈ D by means of a limit transition operation.
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Example 1. In the unit disk D ⊂ C, let us consider the family of fractional linear transfor-
mations fn(z) =

z−n−1
n

1−z n−1
n

, n ∈ {1, 2, . . .}, z = x + iy ∈ D, i2 = −1. Note that, every fn map
the unit disk onto itself homeomorphically. Observe that, fn ∈ C1(D) and f−1

n ∈ C1(D), so
that fn ∈ W 1,p

loc (D) and f−1
n ∈ W 1,p

loc (D) for every n ∈ N and for every p > 1. Thus, fn satisfies
the relations (53)–(19) for every n ∈ N with Q(z) = KO,p(z, f), where

KO,p(z, f) =


∥f ′(z)∥p
|J(z,f)| , J(z, f) ̸= 0;

1, f ′(z) = 0;

∞, otherwise,

∥f ′(z)∥ = max
h∈Rn\{0}

|f ′(z)h|
|h|

= |f ′(z)|, J(z, f) = det f ′(z) = |f ′(z)|2, (59)

see e.g. [31, Theorem 1.1]. Observe that, the (1; p)-Poincare inequality holds in D for any
p > 1 (see [32, Theorem 10.5]). Observe that, D is a Loewner space (see [29, Theorem 8.2
and Example 8.24(a)]). Now, D is Ahlfors regular, see [29, Proposition 8.19]. Now, we may
apply Theorem 4. By this theorem one has

|f(x)− f(y)| ⩽ C−1/p ·

(∫
D

|f ′
n(z)|p−2dm(z)

)1/p

|x− y|
p−n
p , ∀ x, y ∈ D,

while, by the direct calculation, |f ′
n(z)| = 1− (n−1)2

n
/
(
1− z n−1

n

)2
, n ∈ {1, 2, . . .}. We see from

the latter inequality that fn is Hölder continuous for every fixed n ∈ {1, 2, . . .}. However, the
integral In :=

∫
D |f

′
n(z)|p−2dm(z) is unbounded over n ∈ N; otherwise, the family {fn}∞n=1

must be equicontinuous, but this is not true (for instance, we may consider the sequence
zn = n−1

n
, n ∈ {1, 2, . . .}. For this sequence, fn(zn) = 0, while fn(1) = 1 and |zn − 1| → 0 as

n → ∞. At the same time, |fn(zn)−fn(1)| ̸→ 0 as n → ∞). The reason for this phenomenon
is that the sequence of mappings fn does not have a single integrable function Q in (53) that
is common to all mappings fn, n ∈ {1, 2, . . .}.
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