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Nonlocal boundary value problems for arbitrary order hyperbolic systems with one spatial
variable are considered. A priori estimates for general nonlocal mixed problems for systems
with smooth and piecewise smooth coefficients are obtained. The correct solvability of such
problems is proved. Examples of additional conditions necessity are provided.

1. Introduction. Theory of boundary-value problems for hyperbolic partial differential
equations with two independent variables is almost half a century old. However, even today,
it offers new problems solving of which require various methods of modern analysis. Such
interest is caused by the fact that these equations arise in the studying of important processes
of science and technology

Not limited to the well-known examples of string oscillations, electromagnetic pertur-
bations, etc., let us point to more complex processes that lead to equations and systems of
hyperbolic type.

A basic evolution model of age-structured population ([38, 65]) leads to the Lotka–Mac-
Kendrick system

∂tu+ ∂xu = −λ(x)u, u(x, 0) = ν(x), u(0, t) = v(t)

L∫
0

β(x)u(x, t) dx,

where λ, ν, L, β are standard biological parameters, and the birth rate v(t) is often used to
control the population (v is the control).

Similar problems arise in solid-state physics ([15]). The peculiarity of these problems is
that the characteristics of hyperbolic system are both inclined and horizontal. From a physics
point of view, this means that some of perturbations in the medium propagate with a finite
velocity and some with unbounded one. The mathematical model of such a problem takes
the form

∂u

∂t
+ shE

∂u

∂x
= −u2 chE,

∂E

∂x
= pu,

∂ϕ

∂x
= −qE.
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Here u is the concentration of impurity sputtering of an electroluminophore; E is the electric
field strength; ϕ is the potential; p, q are some constants.

The initial and boundary conditions for this system are set as follows

u(x, 0) = u0(x), u(0, t)− ∂u

∂x
(0, t) = 0, u(l(t), t) = g(l(t)),

E(l(t), t) = 0, ϕ(0, t) = ϕ0, ϕ(l(t), t) = 0,

where l(t) is a currently unknown curve describing the position of the area right boundary
and satisfying the relation

l′(t)l(t)g(l(t))− b
l(t)∫
0

u(x, t) shE dx = 0

and the initial condition
l(0)∫
0

xg(x) dx = −ϕ0

pq
.

Many applications, such as the theory of service networks with complex routing, require
that the solvability conditions of some infinite differential equation systems must be find
out [25]. In the hyperbolic case, the general formulation of the mixed problem for a coun-
table system takes the form [17]

∂ui
∂t

+ λi(x, t)
∂ui
∂x

=
∞∑
j=1

aij(x, t)uj + fi(x, t), i ∈ N,

ui(x, 0) = gi(x), x ∈ [0, l], i ∈ N,

ui(0, t) =
∑
i∈I−

αij(t)uj(0, t) + hi(t), t ∈ [0, T ], i ∈ I+,

ui(l, t) =
∑
i∈I+

βij(t)uj(l, t) + hi(t), t ∈ [0, T ], i ∈ I−.

Here I+ = {2k − 1: k ∈ N}, and I− = N \ I+.
The analysis of elastic oscillations of a piezoelectric converter [67] of thin flat ring form

with impulse voltage V (t) applied between the outer and inner radii is based on the study
of solutions to the problem

∂2u

∂t2
= v2

(∂2u

∂r2
+

1

r

∂u

∂r
− 1

r
u
)
, r1 < r < r2, t > 0,

u(r, 0) = u′t(r, 0) = 0, u(r2, t) = 0,

h

∫ r2

r1

(∂u
∂r
− 1

r
u
)
dr = V (t).

The colliding process of ropes having a uniform connection and moving at the same
speed [11] leads to various boundary-value problems for following systems of equations

∂2ui
∂x∂y

= fi(x, y, u1, u2, . . . , un), i = 1, . . . , n.
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Small vibrations of a beam, taking into account the information about displacements and
inertia of rotation, are described by the system [23]

∂2u

∂x2
− kρ

G

∂2u

∂t2
=
∂v

∂x
+ f(x, t),

∂2v

∂x2
− ρ

E

∂2v

∂t2
=

GF

KEl

(∂u
∂x
− v
)
.

Here u are the transverse displacements of the beam points; v is the average rotation of the
normal section; G, E are the elastic characteristics of the beam; ρ is the linear density; F
is the cross-sectional area; K is the geometric characteristic of the system; l is the beam
length.

The above examples indicate to the need for the theory of boundary-value problems of
differential equations and systems of hyperbolic type with two independent variables such
that it would cover both classical problems. For instance, Cauchy problem, mixed problem
in rectangular domain, Goursat problem, and new more complex problems, in particular,
problems with non-local (discrete or distributed) conditions, problems without initial condi-
tions, problems with moving known or unknown boundaries, etc.

This paper proposes a unified approach to solving nonlocal boundary value problems for
linear hyperbolic equations and systems of general form with one spatial variable. It is based
on the experience of many scientists who have employed various methods in the study of
hyperbolic equations and systems.

The method of characteristics is chosen as a basis of this approach. It allows to reduce
the problems under consideration to the corresponding systems of Volterra-type integral
equations. Their studying gives us the opportunity to obtain the theorems of existence,
uniqueness, and continuous dependence of both classical solutions and different classes of
generalized solutions to boundary value problems. Some of results presented here can be
obtained by other methods. However, many of the problems considered in this paper are
sufficiently comprehensive in the method of characteristics. Such a circumstance justifies the
choice of this method as the main one.

In addition, we restrict ourselves to studying only piecewise smooth solutions. Although
by means of the results mentioned above, one could significantly extend the solutions class
to the problems under consideration by standard methods.

The review is restricted to linear problems, since in this case the theory is largely
complete. Cases of other boundary-value problems with detailed literature review, in parti-
cular, for nonlinear hyperbolic equations and systems have been considered in [16,26,32,63].

2. Auxiliary statements. Let l1 and l2 be smooth curves located into the half-plane t > 0 of
the plane xOt, x = a1(t) and x = a2(t) its equations respectively, and a1(0) = a1, a2(0) = a2,
a1(t) < a2(t), t ∈ [0, T ], T > 0. Denote Gτ = {(x, t) ∈ R2 : a1(t) < x < a2(t), 0 < t 6 τ},
where τ ∈ (0, T ], and G = GT . Let us consider the matrix differential equation

n∑
i=0

Ai

(
x, t,

∂

∂x
,
∂

∂t

)
u = f(x, t) (1)

of order n > 1 on G, where Ai is a linear homogeneous differential operator

Ai

(
x, t,

∂

∂x
,
∂

∂t

)
u ≡

i∑
j=0

Aij(x, t)
∂iu

∂xj∂ti−j

of order i. The coefficients Aij are square matrices of orderm > 1 with elements apqij ∈ C1(G);
u and f are columns of height m with components u1, . . . , um and f1, . . . , fm, respectively.
It will be further assumed that An0(x, t) ≡ Em, where Em is the unit matrix of order m.
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Equation (1) is strictly hyperbolic in G. That is, the eigenvalue of matrix bundle

An(x, t, 1, λ) = λn +
n∑
j=1

Anjλ
n−j,

namely the roots λ of the characteristic equation
detAn(x, t, 1, λ) ≡ |An(x, t, 1, λ)| = 0,

are real and different for any (x, t) ∈ G.
Let us denote these roots by−λ1(x, t), . . . ,−λmn(x, t). Suppose a non-zerom-dimensional

vector hi = hi(x, t) satisfies An(x, t, 1, λi)hi = 0, then it said to be the eigenvector of the
matrix bundle An corresponding to the eigenvalue λi for i = 1, . . . ,mn.

All eigenvectors h1, . . . , hmn and eigenvalues λ1, . . . , λmn can be partitioned into n non-
intersecting groups of m elements such that the vectors of every group form a base in Rm.
Denote by Hi = Hi(x, t) the square matrix of order m such that h(i−1)m+1, . . . , him are its
columns and Λi = diag(λ(i−1)m+1, . . . , λim) the diagonal matrix of order m. Then
detHi(x, t) 6= 0 and det(Λi − Λj) 6= 0 for any (x, t) ∈ G, where i 6= j.

Consider the following block matrices

A = A(x, t) =


An1(x, t) An2(x, t) · · · Ann−1(x, t) Ann(x, t)
−Em 0 · · · 0 0
...

... . . . ...
...

0 0 · · · −Em 0


and

P = P (x, t) =


H1Λ

n−1
1 · · · HnΛn−1

n
... . . . ...

H1Λ1 · · · HnΛn

H1 · · · Hn

 = (Pij)
n
i,j=1,

where Pij = HjΛ
n−i
j . Because det(A + λEmn) = detAn(x, t, 1, λ), the values −λi(x, t) are

eigenvalues of the matrix A. Therefore, this matrix is similar to a diagonal one. It is easy to
see that

detP (x, t) = ±
n∏
i=1

detHi(x, t)
∏

1≤j<i≤n

det
(
Λi(x, t)− Λj(x, t)

)
6= 0

for any (x, t) ∈ G and P−1AP = diag(Λ1, . . . ,Λn).
Suppose P−1 = (P ij)ni,j=1, where P ij = P ij(x, t) are square matrices of order m. Let us

introduce the linear homogeneous matrix operators

Miu ≡Mi

(
x, t,

∂

∂x
,
∂

∂t

)
u ≡

n∑
j=1

P ij(x, t)
∂n−1u

∂tn−j∂xj−1
, i = 1, . . . , n. (2)

It is easy to see that its form a base in the space of linear homogeneous matrix operators of
order n− 1, in particular

∂n−1u

∂tn−i∂xi−1
≡

n∑
j=1

PijMj

(
x, t,

∂

∂x
,
∂

∂t

)
u, i = 1, . . . , n. (3)

From the above we immediately obtain the decomposition

An

(
x, t,

∂

∂x
,
∂

∂t

)
u ≡

n∑
i=1

P1i

(
Em

∂

∂t
+ Λi

∂

∂x

)
Miu+ Ān−1

(
x, t,

∂

∂x
,
∂

∂t

)
u. (4)
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Here Ān−1 is a linear homogeneous differential operator of order n− 1, defined in an obvious
way, with coefficients depending on the operator An coefficients and the first derivatives of
the matrics P block elements Pij.

3. A priori estimates for solutions to general nonlocal mixed problems for systems
with smooth coefficients. It is well known about the important role of a priori estimates
for solutions in boundary-value theory of hyperbolic-type differential equations [12,41,68]. In
the case of one spatial variable, the a priori estimates for solutions to general mixed problems
of first-order hyperbolic systems by different methods have been obtained in [70–73,78]. The
same for one high-order equation have been done in [10,44,60,61]. In this section, we mainly
use the ideas of [60,78] to obtain a priori estimates for solutions to general mixed problems
for system (1).

Suppose system (1) is given on G; Anj(x, t) ∈ C1(G), j = 1, . . . , n; Aij(x, t), f(x, t) ∈
C(G), i = 0, . . . , n− 1, j = 0, . . . , i, and a1(t), a2(t) ∈ C1[0, T ].

Assume that the differences w1
i (t) ≡ λi(a1(t), t) − a′1(t) and w2

i (t) ≡ λi(a2(t), t) − a′2(t)
have no zeros on [0, T ]. Let us denote by I+

1 (I−1 ) the set of indices i such that w1
i (t) > 0

(w1
i (t) < 0), and by I+

2 (I−2 ) the set of indices i such that w2
i (t) > 0 (w2

i (t) < 0).
Suppose F (x, t) is an arbitrary function defined on G and M is a boundary point of G.

Then a value of F atM means the limit value of F (x, t) as (x, t) approachesM by arbitrarily
way from G.

For (1), we impose the initial conditions

∂iu(x, 0)

∂ti
= gi(x), i = 0, 1, . . . , n− 1, x ∈ [a1, a2] (5)

and the boundary ones

2∑
i=1

n−1∑
j=0

Bijk

(
t,
∂

∂x
,
∂

∂t

)
u

∣∣∣∣
x=ai(t)

= hk(t), k = 1, . . . , N, t ∈ [0, T ]. (6)

Here Bijk(t,
∂
∂x
, ∂
∂t

) is a linear homogeneous differential operator of order j such that its
coefficients are continuous functions of the variable t; gi(x) and hk(t) are given functions;
N = card I+

1 + card I−2 .
Suppose gi(x) ∈ Cn−i−1[a1, a2], i = 0, 1, . . . , n− 1, hk(t) ∈ C[0, T ], k = 1, . . . , N . Equati-

ons (6) show that the operator Bijk must be a string of length m

Bijk

(
t,
∂

∂x
,
∂

∂t

)
=

(
B1
ijk

(
t,
∂

∂x
,
∂

∂t

)
, . . . , Bm

ijk

(
t,
∂

∂x
,
∂

∂t

))
with elements being scalar homogeneous differential operators

Bp
ijk

(
t,
∂

∂x
,
∂

∂t

)
=

j∑
q=0

Bpq
ijk(t)

∂j

∂xq∂tj−q
, p = 1, . . . ,m,

of order j.
By P rs

ij (x, t), r, s = 1, . . . ,m, denote the elements of the matrix Pij(x, t). Put

α1
k,(j−1)m+s(t) =

m∑
r=1

n−1∑
q=0

Brq
1,n−1,k(t)P

rs
q+1,j(a1(t), t), k = 1, . . . , N, (j − 1)m+ s ∈ I+

1 ;
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α2
k,(j−1)m+s(t) =

m∑
r=1

n−1∑
q=0

Brq
2,n−1,k(t)P

rs
q+1,j(a2(t), t), k = 1, . . . , N, (j − 1)m+ s ∈ I−2 .

Let ν and µ be the cardinalities of the sets I+
1 and I−2 , respectively. Suppose α1(t) is the

square matrix of order N such that its first ν columns are formed from α1
k,(j−1)m+s(t), and

the rest µ ones are formed from α2
k,(j−1)m+s(t). The index k corresponds to the line number.

In every column the index k runs through the values 1, . . . , N in the same order. We assume
that the condition

|α1(t)| ≡ detα1(t) 6= 0, for all t ∈ [0, T ] (7)

holds. It is an analogue of the well-known Lopatinsky condition for the case of problem (1),
(5), (6). In what follows, we will call (7) the solvability condition of the problem. If ν+µ = 0,
then boundary conditions (6) are missing and the condition (7) is not required. In this case,
we have the Cauchy problem for system (1) with initial conditions (5).

Let us denote

‖u‖2r,G =

∫∫
G

m∑
i=1

r∑
j=0

j∑
k=0

( ∂jui
∂tj−k∂xk

)2

dxdt; ‖f‖2 =

∫∫
G

m∑
i=1

f 2
i dxdt;

‖g‖2 =

a2∫
a1

n−1∑
i=0

m∑
j=1

(dn−i−1gij
dxn−i−1

)2

dx; ‖h‖2 =

T∫
0

N∑
k=0

h2
kdt,

(8)

where gi1, . . . , gim are the elements of the column gi.

Theorem 1. Under all the above conditions, for any Cn−1(G)-solution u = u(x, t) to
problem (1), (5), (6) the estimate

‖u‖2n−1,G 6 C(‖f‖2 + ‖g‖2 + ‖h‖2) (9)

holds. A constant C > 0 depends only on the coefficients of system (1), on the ones of
boundary conditions (6), and on the domain G measure.

Proof. Put

Vi(x, t) ≡Mi

(
x, t,

∂

∂x
,
∂

∂t

)
u, i = 1, . . . , n. (10)

Let v(i−1)m+1, . . . , vim be components of the vector Vi. Then, by (3), (4), system (1) can be
written in one of n equivalent forms

∂Vi
∂t

+ Λi
∂Vi
∂x

+
n∑
j=1

aijVj = Ri

(
x, t,

∂

∂x
,
∂

∂t

)
u+ P i1f, i = 1, . . . , n, (11)

where aij(x, t) are known square matrices of order m; Rj are linear combinations of matrix
coefficients at derivatives up to order n − 2 inclusive; the elements of this matrices are
continuous on G.

Initial conditions (5) are reduced to

Vi(x, 0) = ϕi(x) ≡
n∑
j=1

P ij(x, 0)
dj−1gn−j(x)

dxj−1
, i = 1, . . . , n. (12)
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Due to (2), (3), (10), boundary conditions (6) can be written as

2∑
i=1

n∑
j=1

n−1∑
q=0

m∑
r,s=1

Brq
i,n−1,k(t)P

rs
q+1,j(ai(t), t)v(j−1)m+s(ai(t), t) =

= hk(t)−
2∑
i=1

n−2∑
j=0

Bijk

(
t,
∂

∂x
,
∂

∂t

)
u
∣∣∣
x=ai(t)

, k = 1, . . . , N.

Suppose that (7) holds, then the above equalities can be written equivalently as

vi(a1(t), t) =
∑
j∈I−1

σ1
ij(t)vj(a1(t), t) +

∑
j∈I+2

σ2
ij(t)vj(a2(t), t) +

+
N∑
k=1

σik(t)

{
hk(t)−

2∑
r=1

n−2∑
j=0

Bijk

(
t,
∂

∂x
,
∂

∂t

)
u
∣∣∣
x=ar(t)

}
, i ∈ I+

1 ,

vi(a2(t), t) =
∑
j∈I−1

ρ1
ij(t)vj(a1(t), t) +

∑
j∈I+2

ρ2
ij(t)vj(a2(t), t) +

+
N∑
k=1

ρik(t)

{
hk(t)−

2∑
r=1

n−2∑
j=0

Bijk

(
t,
∂

∂x
,
∂

∂t

)
u
∣∣∣
x=ar(t)

}
, i ∈ I−2 ,

(13)

where σ1
ij(t), σ2

ik(t), σij(t) ρ1
ij(t), ρ2

ij(t), ρij(t) are known continuous functions on [0, T ].
Let γ > 0 be some constant and Q1(x, t), . . . , Qnm(x, t) positive continuously differenti-

able functions on G. We denote V ∗i = diag(v(i−1)m+1, . . . , vim), Q∗i = (Q(i−1)m+1, . . . , Qim).
Multiply left-hand side of (11) by 2e−γtQ∗i (x, t)V

∗
i (x, t). Then sum up obtained equalities

over i from 1 to n and integrate the result over subset Gτ ⊂ G, where 0 < τ ≤ T . After
simple transformations, we get∫∫

Gτ

e−γtF (v) dxdt+

τ∫
0

e−γtS(v) dt = N1 +N2 +N3 −N4, (14)

where

N1 =

∫∫
Gτ

2e−γt
n∑
i=1

Q∗i (x, t)V
∗
i (x, t)Ri

(
x, t,

∂

∂x
,
∂

∂t

)
u dxdt,

N2 =

∫∫
Gτ

2e−γt
n∑
i=1

Qi(x, t)V
∗
i (x, t)P i1(x, t)f(x, t) dxdt,

N3 =

a2∫
a1

nm∑
i=1

Qi(x, 0)v2
i (x, 0)dx, N4 =

a2(τ)∫
a1(τ)

e−γτ
nm∑
i=1

Qi(x, τ)v2
i (x, τ)dx,

F (v) = γ

nm∑
i=1

Qiv
2
i + 2

n∑
i,j=1

Q∗iV
∗
i aijVj −

n∑
i=1

(∂Q∗i
∂t

V ∗i Vi +
∂Q∗i
∂x

V ∗i ΛiVi +

+Q∗iV
∗
i

∂Λi

∂x
Vi

)
≡ γ

nm∑
i=1

Qiv
2
i +

nm∑
i,j=1

bijvivj;
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S(v) =
nm∑
i=1

(
Qi(a2(t), t)w

2
i (t)v

2
i (a2(t), t)−Qi(a1(t), t)w

1
i (t)v

2
i (a1(t), t)

)
≡ S2(v)− S1(v).

Obviously, bij(x, t) are continuous functions on G.
Given a set of positive continuous functions Qi(x, t) on G, we choose a number γ so large

that the quadratic form F is positive-definite one

F (v) > C1

nm∑
i=1

v2
i (x, t), C1 > 0.

Let us write S2(v) = S+
2 (v) +S−2 (v), where addends of the sum S2 are indexed by i ∈ I+

2 ,
and ones of S−2 does so by i ∈ I−2 . Analogously, S1(v) = S+

1 (v) + S−1 (v), where S+
1 and S−1

are corresponded to the indices i ∈ I+
1 and i ∈ I−1 , respectively.

Since w2
i (t) > 0, i ∈ I+

2 and w1
i (t) < 0, i ∈ I−1 , for t ∈ [0, T ], then for arbitrary strictly

positive Qi(a1(t), t), i ∈ I−1 , and Qi(a2(t), t), i ∈ I+
2 , the difference S+

2 (v) − S−1 (v) is a
positive-definite quadratic form of vi(a1(t), t), i ∈ I−1 , and vi(a2(t), t), i ∈ I+

2 . In the sums
S+

1 and S−2 , let us replace vi(a1(t), t), i ∈ I+
1 , and vi(a2(t), t), i ∈ I−2 by their expressions (13).

LetM , m1, m2 be positive integers. Consider as Qi(x, t), i = 1, . . . ,mn, arbitrary smooth
functions on G satisfying the conditions∣∣Qi(a1(t), t)w

1
i (t)
∣∣ > M, i ∈ I−1 ;∣∣Qi(a2(t), t)w

2
i (t)
∣∣ > M, i ∈ I+

2 ;

m1 6
∣∣Qi(a1(t), t)w

1
i (t)
∣∣ 6 m2, i ∈ I+

1 ;

m1 6
∣∣Qi(a2(t), t)w

2
i (t)
∣∣ 6 m2, i ∈ I−2 .

We take M so large, and m1, m2 so small that the following inequality

S(v) > C2

(∑
i∈I−1

v2
i (a1(t), t) +

∑
i∈I+2

v2
i (a2(t), t)

)
−

− C3

( m∑
q=1

2∑
r=1

n−2∑
j=0

j∑
s=0

( ∂juq
∂tj−s∂xs

)2
∣∣∣∣
x=ar(t)

+ ‖h‖2
)

holds, where C2, C3 are some positive constants.
It is readily seen that

N4 > m1e
−γτ

a2(τ)∫
a1(τ)

nm∑
i=1

v2
i (x, τ)dx, |N1 +N2 +N3| 6 C4

(
‖u‖2n−1,Gτ

+ ‖f‖2 + ‖g‖2
)
, C4 > 0,

in (14). Also, it is easy to deduce that
τ∫

0

m∑
q=1

2∑
r=1

n−2∑
j=0

j∑
s=0

( ∂juq
∂tj−s∂xs

)2
∣∣∣∣
x=ar(t)

dt 6 C5

(
‖u‖2n−1,Gτ

+ ‖g‖2
)
, C5 > 0.

Then, from what has been said and (14), we immediately obtain
a2(τ)∫
a1(τ)

nm∑
i=1

v2
i (x, τ) dx 6 C6

(
‖u‖2n−1,Gτ

+ ‖f‖2 + ‖g‖2 + ‖h‖2
)
, C6 > 0,
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and as a result
a2(τ)∫
a1(τ)

m∑
q=1

n−1∑
j=0

j∑
k=0

(∂juq(x, τ)

∂tj−k∂xk

)2

dx 6 C7

( a2(τ)∫
a1(τ)

nm∑
i=1

v2
i (x, τ) dx+ ‖u‖2n−1,Gτ

+ ‖g‖2
)

6

6 C8

(
‖u‖2n−1,Gτ

+ ‖f‖2 + ‖g‖2 + ‖h‖2
)
,

where a constant C8 > 0 does not depend on u. Using Gronwall’s lemma, we get (9).

4. The case of a system with piecewise smooth coefficients. The aim of this section
is to establish an a priori estimate, analogous to (9), for the solution to a general mixed
problem for a hyperbolic system with discontinuous coefficients. Many questions arising by
consideration of such problems are described in [4].

Let R > 1 be a given positive integer. Let lr, r ∈ {1, . . . , R+1}, be a curve defined by the
equation x = ar(t), t ∈ [0, T ]. Suppose ar(t) ∈ C1[0, T ]. We will assume that ar(t) < ar+1(t),
r = 1, . . . , R, for all t ∈ [0, T ]. Denote

Gr =
{

(x, t) ∈ R2 : 0 < t 6 T, ar(t) < x < ar+1(t)
}
, G =

R⋃
r=1

Gr.

On every Gr, let us consider a strictly hyperbolic system
n∑
i=0

Ari

(
x, t,

∂

∂x
,
∂

∂t

)
ur = f r(x, t), r = 1, . . . , R (15)

of the form (1), where Ari is the linear homogeneous matrix differential operator

Ari

(
x, t,

∂

∂x
,
∂

∂t

)
ur =

i∑
i=0

Arij(x, t)
∂iur

∂xj∂ti−j

of order i. Its coefficients Arij are square matrices of order m; ur and f r are columns of
height m with components ur1, . . . , urm and f r1 , . . . , f

r
m, respectively. Put Arn0(x, t) ≡ Em,

r = 1, . . . , R, just like before. SupposeArnj ∈ C1(Gr), j = 1, . . . , n;Arij(x, t), f r(x, t) ∈ C(Gr),
i = 0, . . . , n− 1, j = 0, 1, . . . , i, r = 1, . . . , R.

For every r ∈{1, . . . , R}, denote by−λr1(x, t), . . . ,−λrnm(x, t) the λ-roots of the characteri-
stic equation detArn(x, t, 1, λ) = 0. Suppose the differences w1

ir ≡ λi(ar(t), t) − a′r(t) and
w2
ir ≡ λi(ar+1(t), t)− a′r+1(t) do not have zeros on [0, T ]. Let I+

1r (resp. I
−
1r) denote the set of

those indices i for which w1
ir(t) > 0 (resp. w1

ir(t) < 0). Likewise, I+
2r (resp. I−2r) does so for

w2r
i (t) > 0 (resp. w2r

i (t) < 0).
For (15), we consider the initial conditions

∂iur(x, 0)

∂ti
= gri (x), i = 0, 1, . . . , n− 1, r = 1, . . . , R, x ∈ [ar(0), ar+1(0)], (16)

together with following boundary conditions on l1 and lR+1 and conjugation conditions on
l2, . . . , lR

R∑
r=1

r+1∑
i=r

n−1∑
j=0

Br
ijk

(
t,
∂

∂x
,
∂

∂t

)
ur
∣∣∣
x=ai(t)

= hk(t), k = 1, . . . , N1, t ∈ [0, T ]. (17)
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Here N1 =
R∑
r=1

(card I+
1r + card I−2r); Br

ijk are the operators

Br
ijk =

(
Br1
ijk, . . . , B

rm
ijk

)
, Brp

ijk ≡
j∑
q=0

Brpq
ijk (t)

∂j

∂xq∂tj−q
.

Their structure, for every r, is the same as for the operators Bijk in (6).
Suppose gri ∈ Cn−i−1[ar(0), ar+1(0)], and the coefficients and free terms of (17) are conti-

nuous on [0, T ]. Evidently, at R = 1, the formulated problem is the one from the previous
section.

For every fixed r = 1, . . . , R, we introduce the matrices Ar(x, t) and P r(x, t) as well as
A and P in Section 2. Let P r

ij, i, j = 1, . . . , n, be the block elements of the matrix P r, and
P rps
ij , p, s = 1, . . . ,m, the elements of P r

ij. Put

αr1k,(j−1)m+s(t) =
m∑
p=1

n−1∑
q=0

Brpq
r,n−1,k(t)P

rps
q+1,j(ar(t), t), , (j − 1)m+ s ∈ I+

1r,

αr2k,(j−1)m+s(t) =
m∑
p=1

n−1∑
q=0

Brpq
r+1,n−1,k(t)P

rps
q+1,j(ar+1(t), t), (j − 1)m+ s ∈ I−2r

for all k = 1, . . . , N1 and r = 1, . . . , R.
Let α2(t) be a square matrix of order N1 such that αrqkp(t), introduced above, are its

elements. Here p = (j − 1)m + s ∈ I+
1r for q = 1 but p(j − 1)m + s ∈ I−2r for q = 2 and

j = 1, . . . , n, s = 1, . . . ,m. For every fixed triple p, r, q, the elements αrqkp(t), k = 1, . . . , N1,
present a column of the matrix.

Suppose the condition

detα2(t) 6= 0, for all t ∈ [0, T ], (18)

similar to that of Lopatinsky is satisfied. It is also called the solvability conditions of pro-
blem (15)–(17).

We denote by ‖ur‖2n,Gr , ‖f r‖
2
Gr the corresponding norms defined by (8) for G = Gr.

Theorem 2. Under the assumptions of the current section, for any Cn−1(G)-solution of
problem (15)–(17) the estimate

R∑
r=1

‖ur‖2n−1,Gr 6 C

R∑
r=1

(
‖f r‖2Gr + ‖gr‖2

)
+ C ‖h‖2 (19)

holds. Here a constant C > 0 does not depend on the solution.

Proof. The theorem can be proved in the same scheme as can Theorem 1, so let us restrict
ourselves only to general remarks.

On every Gr, we consider the operatorsM r
i and the vector functions V r

i with components
vr(i−1)m+1, . . . , v

r
im, i = 1, . . . , n, analogous to ones in (2) and (10). For functions V r

i we obtain
a first-order system (11), assuming that all coefficients in (11) are marked by the upper
index r. Respectively, initial conditions (16) induce the ones for V r

i . From (17) due to (18),
we can expressed vri (ar(t), t), i ∈ I+

1r, r = 1, . . . , R and vri (ar+1(t), t), i ∈ I−2r, r = 2, . . . , R+1,
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in terms of hk(t), k = 1, . . . , N1, the values of ur and of their derivatives up to order n − 2
inclusive on the lines lr, r = 1, . . . , R+ 1, and the values of the rest function vri on the ones.

Thus, the equalities of form (13) are obtained. Suppose γ is sufficiently large and the
same for all Gr, and the functions Q1(x, t), . . . , Qn(x, t) are chosen, on each component Gr

separately, as in previous section. They are piecewise smooth ones on G. Thus we have
an equality of form (14). Finally, acting as in Section 3 with obvious changes, we get an
inequality of type (19).

Remark 1. Suppose the initial data of the problems considered in Sections 2–4 are smoother;
then one can get estimates for the norms ‖·‖N,G of solutions, where N > n− 1.

Remark 2. By slightly changing the proofs of Theorems 1 and 2, one can obtain, under the
appropriate conditions for the initial data, a priori estimates for Lp-norms of solutions and
of their derivatives up to order of not less than n− 1.

5. Correct solvability of a nonlocal problem with nonseparated and integral initial
data. Various methods have been used to prove the correct solvability of mixed problems for
two-dimensional hyperbolic equations and systems with smooth coefficients. Depending on
the proof technique, there are three basic ones ([16]). The first is the approximation of smooth
functions by analytic ones; the second is the using of the finite difference method (both
covering the multidimensionality of spatial variables); and the third is the characteristics
method (specific in the case of one spatial variable). Various problems for a second order
equation have been studied in [14, 27, 34–37, 39, 47]. Mixed problems for first-order systems
have been considered in [1, 8, 18, 20, 21, 28, 33, 40–43, 56, 62, 69–75, 77, 79]. Cases of an single
equation or high order system of equations have been investigated in [2, 7, 10, 22, 24, 44,
45, 47, 49, 51, 60, 61, 70, 71, 76]. In [54, 57, 58] the simplest mixed problems for equations and
systems with boundary conditions involving integrals, over the spatial variable, of the desired
solution have been studied. Various models of problems with nonlocal conditions, such as
nonseparated and integral ones, have also been studied in [26,32,63].

This section deals with conditions for correct solvability of a general problem, with
integral constraints, for system (1) defined in Section 2 on G.

We find a solution of (1) on G satisfying the initial conditions (5) and constraints

n−1∑
i=0

i∑
j=0

m∑
p=1

(
2∑
q=1

Bpj
qik(t)

∂iup
∂ti−j∂xj

∣∣∣∣
x=aq(t)

+

+

a2(t)∫
a1(t)

Cpj
ik (ξ, t)

∂iup(ξ, t)

∂ti−j∂ξj
dξ

)
= hk(t), k = 1, . . . , N0, t ∈ [0, T ];

n−1∑
i=0

i∑
j=0

m∑
p=1

a2(t)∫
a1(t)

Cpj
ik (ξ, t)

∂iup(ξ, t)

∂ti−j∂ξj
dξ = hk(t), k = N0 + 1, . . . , N,

(20)

where Bpj
qik, C

pj
ik , hk are known functions, 0 6 N0 6 N . In extreme cases N0 = 0 and N0 = N

the corresponding conditions are absent.



170 V. M. KYRYLYCH, O. Z. SLYUSARCHUK

Suppose initial conditions (5) and condition (20) are agreed at (a1, 0) and (a2, 0). Namely

n−1∑
i=0

i∑
j=0

m∑
p=1

(
2∑
q=1

Bpj
qik(0)g

(j)
i−j,p(aq) +

a2∫
a1

Cpj
ik (ξ, 0)g

(j)
i−j,p(ξ) dξ

)
= hk(0), k = 1, . . . , N0.

n−1∑
i=0

i∑
j=0

m∑
p=1

a2(t)∫
a1(t)

Cpj
ik (ξ, 0)g

(j)
i−j,p(ξ)dξ = hk(0), k = N0 + 1, . . . , N.

(21)

Let us construct matrices β1(t), β2(t), β3(t), β4(t) as follows. The matrices β1(t) and
β2(t), likewise to ones in Section 4, consist of elements α1

k,(j−1)m+s(t) and α2
k,(j−1)m+s(t),

respectively, where k = 1, . . . , N0. The matrices β3(t) and β4(t) are composed in the same
way, but they consist of elements

α3
k,(j−1)m+s(t) =

m∑
r=1

n−1∑
q=0

Crq
n−1,k(a1(t), t)P

rs
q+1,j(a1(t), t)w

1
(j−1)m+s(a1(t), t),

where k = N0 + 1, . . . , N , (j − 1)m+ s ∈ I+
1 , and

α4
k,(j−1)m+s(t) = −

m∑
r=1

n−1∑
q=0

Crq
n−1,k(a2(t), t)P

rs
q+1,j(a2(t), t)w

2
(j−1)m+s(a2(t), t),

where k = N0 + 1, . . . , N , (j − 1)m+ s ∈ I−2 .
Note for the pairs of matrices β1(t), β2(t) and β3(t), β4(t), the index k runs in the same

order over the sets 1, . . . , N0 and N0 + 1, . . . , N , respectively. The same being true for the
pairs β1(t), β2(t) and β3(t), β4(t), but for index (j − 1)m+ s running over I+

1 and I−2 .

Therefore the square matrix β(t) =

(
β1(t) β2(t)
β3(t) β4(t)

)
has order N .

Let the solvability condition

det β(t) 6= 0 for all t ∈ [0, T ] (22)

be satisfied. It is analogous, for given problem, to the Lopatinsky condition.

Theorem 3. Suppose the following conditions hold:

1) in (1), the coefficients of the operator An are continuously differentiable; the coefficients
rest of Ai, i < n, and the free term f are continuous on G;

2) the initial functions gi are continuously differentiable n− i− 1 times on [a1, a2];

3) for k = 1, . . . , N0, the coefficients and free terms in (20) are continuous on G and [0, T ]
respectively;

4) for k = N0 + 1, . . . , N , the coefficients Cpj
n−1,k(x, t) are continuously differentiable in

x and t, and the coefficients Cpj
ik (x, t), i < n − 1, are continuous and continuously

differentiable in t on G;

5) the functions a1(t), a2(t), hk(t), k = N0 + 1, . . . , N , are continuously differentiable on
[0, T ];
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6) agreement conditions (21) and solvability conditions (22) are satisfied.

Then there exists a unique solution of class Cn−1(G) to problem (1), (5), (20) continuously
depending on the right parts of (1) and (20), and initial functions (5) in the sense of metri-
cs (8).

The meaning of this solution will be specified below.

Proof. The proof is based on the method of characteristics and is to reduce the problem to
an equivalent system of Volterra integral equations. This system is solved by the iteration
method.

Introducing functions (10), let us write equation (1) in form (11), namely as

∂vi
∂t

+ λi(x, t)
∂vi
∂x

= Fi(x, t, u, v), i = 1, . . . , nm. (23)

Here Fi is a linear function with continuous coefficients on G; the ones are depended on vi,
i = 1, . . . , nm, on uj, j = 1, . . . ,m, and on all derivatives of the functions uj up to order
n− 2 inclusive; v is a vector with components v1, . . . , vnm. Taking into account (12), initial
conditions (5) can be written as

vi(x, 0) = ψi(x), i = 1, . . . , nm, x ∈ [a1, a2]. (24)

Let us consider the auxiliary functions

vi(a1(t), t) = ν1
i (t), i ∈ I+

1 ,

vi(a2(t), t) = ν2
i (t), i ∈ I−2 .

(25)

Suppose x = ϕi(t, ξ, τ) is a solution of the characteristic equation x′t = λi(x, t) satisfying
the initial condition x(τ) = ξ, where (ξ, τ) ∈ G. Let Li(ξ, τ) be the corresponding characteri-
stic passing through (ξ, τ), let it be extended backwards in time to the intersection with the
boundary of G, and ti(ξ, τ) the smallest value of t for its points. Evidently, 0 6 ti(ξ, τ) 6 τ .
If ti(ξ, τ) > 0, then ϕi(ti(ξ, τ), ξ, τ) is equal to a1(ti(ξ, τ)) or to a2(ti(ξ, τ)).

Accordingly, the domain G is split into three parts

G0
i := {ti(ξ, τ) ≡ 0},

G1
i := {ti(ξ, τ) > 0, ϕi(ti(ξ, τ), ξ, τ) ≡ a1(ti(ξ, τ))},

G2
i := {ti(ξ, τ) > 0, ϕi(ti(ξ, τ), ξ, τ) ≡ a2(ti(ξ, τ))}.

Any of the sets G1
i or G2

i may be empty.
Integrating (23) along characteristics [1, 16, 46], and taking into account (24) and (25),

we obtain in the domain G the system of integro-differential relationships

vi(x, t) = wi(x, t) +

t∫
ti(x,t)

Fi(ϕi(τ, x, t), τ, u
(
ϕi(τ, x, t), τ)

)
, v
(
ϕi(τ, x, t), τ)

)
dτ, (26)

where

wi(x, t) =


ψi(ϕi(0, x, t)), if (x, t) ∈ G0

i ,

ν1
i (ti(x, t)), if (x, t) ∈ G1

i ,

ν2
i (ti(x, t)), if (x, t) ∈ G2

i

for i = 1, . . . , nm.
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For the purpose of the function vi(x, t) to be continuous when passing from G0
i to G1

i and
to G2

i , the fulfillment of the agreement conditions

ν1
i (0) = ψi(a1), i ∈ I+

1 ; ν2
i (0) = ψi(a2), i ∈ I−2 (27)

is required. Conditions (20) can be written as

n∑
j=1

n−1∑
q=0

m∑
r,s=1

( 2∑
i=1

Brq
i,n−1,k(t)P

rs
q+1,j

(
ai(t), t

)
νi(j−1)m+s(t) +

+

a2(t)∫
a1(t)

Crq
n−1,k(ξ, t)P

rs
q+1,j(ξ, t)v(j−1)m+s(ξ, t) dξ

)
= H1

k(t, u), k = 1, . . . , N0;

n∑
j=1

n−1∑
q=0

m∑
r,s=1

a2(t)∫
a1(t)

Crq
n−1,k(ξ, t)P

rs
q+1,j(ξ, t)v(j−1)m+s(ξ, t) dξ = H2

k(t, u),

k = N0 + 1, . . . , N,

(28)

where H1
k and H2

k coincide with the free members hk(t) of (20) minus all the left side addends
containing derivatives of up up to order n− 2 inclusive.

Functions (25) must be such that for functions vi determined from (26), conditions (28)
are satisfied. For this to be the case, in (28) we replace vi with right-hand sides of (26).
In the one-fold integrals of the left-hand sides of the obtained equations, we do the change
of variable ξ by τ = t(j−1)m+s(ξ, t). Then we differentiate equalities corresponding to the
indices k = N0 + 1, . . . , N with respect to t. As a result, from the expressions ∂H2

k(t, u)/∂t,
(n − 1)-th derivatives of the functions up are appeared. We replace them with vi according
to (3). Then we do so with regard to vi and (26).

Finally, equalities (28) take the form∑
(j−1)m+s∈I+1

αqk,(j−1)m+sν
q
(j−1)m+s(t) +

∑
(j−1)m+s∈I−2

αqk,(j−1)m+sν
q
(j−1)m+s(t) =

=

t∫
0

∑
(j−1)m+s∈I+1

Rq1
k,(j−1)m+s(t, τ)ν1

(j−1)m+s(τ) dτ +

+

t∫
0

∑
(j−1)m+s∈I−2

Rq2
k,(j−1)m+s(t, τ)ν2

(j−1)m+s(τ) dτ +Hq+2
k (t, u, v),

where q = 1 for k = 1, . . . , N0, and q = 2 for k = N0 + 1, . . . , N .
Here Rq1

kp(t, τ), Rq2
kp(t, τ) are known continuous functions; H3

k(t, u, v) and H4
k(t, u, v) are

expressions containing vi, up and derivatives of up up to order n− 2 inclusive.
Taking into account (22), these equalities can be solved with respect to ν1

i and ν2
i . Let

us write the result in the matrix form

ν(t) =

t∫
0

R(t, τ)ν(τ) dτ +H(t, u, v).
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Here ν(τ) is a column of height N with the components ν1
i and ν2

i , R(t, τ) is a known
continuous kernel, H(t, u, v) is a vector with components of the form Hq+2

k (t, u, v).
Let S(t, τ) be resolvent of the kernel R(t, τ). Therefore the last equality can be written

as

ν(t) = H(t, u, v) +

t∫
0

S(t, τ)H(τ, u, v) dτ. (29)

Suppose conditions (21) are held; then it is easy to show that the functions ν1
i and ν2

i , defined
by (29), satisfy condition (27) for arbitrary u, v.

Substituting ν1
i and ν2

i mentioned above in (26), we get

vi(x, t) = Wi(x, t) + Ui1(x, t, u) +Wi1(x, t, u, v), i = 1, . . . ,mn, (30)

where Wi are known continuous functions; Ui1 is a linear combination, with continuous
coefficients, of the values of the functions up and their derivatives up to order n− 2 on the
lines l1 and l2; Wi1 are Volterra type addends, with continuous kernels, containing vi and all
derivatives of up up to order n− 2.

Let L : x = a(t) be an arbitrary smooth curve connecting a point (x, t) ∈ G and the
segment [a1, a2] of the axis Ox, and completely lying in G. Denote by Dtf the full derivative
of f along L with respect to t.

Replacing vi in the right-hand sides of (30) with (10) and using (3), we rewrite (30) as

∂n−1u

∂tn−i−1∂xi
= T n−1

i (x, t) +Rn−1
i (x, t, u) + Sn−1

i (x, t, u), (31)

where T n−1
i , Rn−1

i , Sn−1
i are columns of height m with an obvious structure of their compo-

nents.
It follows from (3) and (10) that

Dt
∂n−2u

∂tn−i−2∂xi
=

n∑
j=1

(Pi+1,j + a′(t)Pi+2,j)Vj, i = 0, 1, . . . , n− 2.

Let us replace Vi in the right-hand sides with (10), then replace the derivatives of u of order
n− 1 with (31). Integrating the resulting equality along L with respect to t, we get

∂n−2u

∂tn−i−2∂xi
= T n−2

i (x, t) +Rn−2
i (x, t, u), (32)

where T n−2
i are known continuous functions, Rn−2

i are Volterra type addends.
After that, we consistently form expressions

∂n−3u

∂tn−i−3∂xi
, i = 0, 1, . . . , n− 3,

∂n−4u

∂tn−i−4∂xi
, i = 0, 1, . . . , n− 4, etc.

Integrating the ones along L with respect to t, we get relationships, similar to (32), for
derivatives of order n− 3, n− 4, . . . , 0. Finally, we substitute these derivatives up to order
n− 2 inclusive into (31), namely in Rn−1

i .
Then for u and its all derivatives up to order n − 1 inclusive, we obtain a system of

(n+ 1)n/2 vector Volterra-type integral equations of the form

∂n−iu

∂tn−i−j∂xj
= T n−ij (x, t) +Rn−i

j (x, t, u), i = 1, . . . , n, j = 0, 1, . . . , n− i, (33)
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where T n−ij are known functions, Rn−i
j are Volterra operators of u and of its all derivatives

up to order n− 1 inclusive.
Under the conditions of Theorem 3, it is easy to show that there exists a unique continuous

solution of system (33) on G, obtaining by the iteration method. We call it the generalized
solution to problem (1), (5), (20) of class Cn−1(G). The continuous dependence of the solution
on the free member f and on the initial functions hk also follows easily from (33).

Remark 3. Increasing the smoothness of the initial data, one can similarly proof the exi-
stence and uniqueness of a classical solution to the problem.

Remark 4. If l1 and l2 (or one of them) are characteristics of (1), then the number of
conditions (20) is decreased by two (or one) units.

6. Correct solvability of a nonlocal problem with piecewise smooth initial data.
A number of papers are devoted to the problem of the correct solvability of mixed problems
for hyperbolic equations and systems with discontinuous coefficients on a line. In particular,
in [46] a common mixed problem for a first-order system with discontinuous data has been
investigated by the method of characteristics. Mixed problems with discontinuous data for
a second-order equation have been studied by various methods in [2, 9, 19, 48, 66]. The case
of one arbitrary order equation has been considered in [48, 50]. Using the contour integral
method, in [55, 64] a broad class of problems of special kind for higher order systems has
been researched.

This section deals with the general case of a nonlocal mixed problem for a hyperbolic
arbitrary order system with discontinuous data.

Under the conditions of Section 4, let us consider system (15) with initial conditions (16)
and the conditions

n−1∑
i=0

i∑
j=0

m∑
p=1

R∑
r=1

(
r+1∑
q=r

Brpj
qik (t)

∂iurp
∂ti−j∂xj

∣∣∣∣
x=aq(t)

+

+

ar+1(t)∫
ar(t)

Crpj
ik (ξ, t)

∂iurp(ξ, t)

∂ti−j∂ξj
dξ

)
= hk(t), k = 1, . . . , K; (34)

n−1∑
i=0

i∑
j=0

m∑
p=1

R∑
r=1

ar+1(t)∫
ar(t)

Crpj
ik (ξ, t)

∂iurp(ξ, t)

∂ti−j∂ξj
dξ = hk(t), k = K + 1, . . . , N1,

where Brpj
qik , C

rpj
ik , hk(t) are given functions, 0 6 K 6 N1. This conditions are stated instead

of boundary ones on l1 and lR+1, and conjugation conditions on l2, . . . , lR.
It is assumed that the following agreement conditions of (16) and (34) at the points

(ar(0), 0), r = 1, . . . , R + 1, are satisfied

n−1∑
i=0

i∑
j=0

m∑
p=1

R∑
r=1

( r+1∑
q=r

Brpj
qik (0)

djgri−j,p(x)

dxj

∣∣∣∣
x=aq(0)

+

+

ar+1(0)∫
ar(0)

Crpj
ik (ξ, 0)

djgri−j,p(ξ)

dxj
dξ

)
= hk(0), k = 1, . . . , K. (35)
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n−1∑
i=0

i∑
j=0

m∑
p=1

R∑
r=1

ar+1(0)∫
ar(0)

Crpj
ik (ξ, 0)

djgri−j,p(ξ)

dxj
dξ = hk(0), k = K+1, . . . , N1.

Let αrpk,(j−1)m+s)(t) be the functions introduced in Section 5, where k = 1, . . . , K. For
fixed r, p, j, s, of these quantities we make up a column γrpk,(j−1)m+s)(t) of height K. Then
for fixed r = 1, . . . ,m and p = 1, 2, of these columns we do the matrices γr1(t) and γr2(t)
with (j − 1)m+ s ∈ I+

1q and (j − 1)m+ s ∈ I−2q, respectively.
Let us consider the functions

αr3k,(j−1)m+s(t) =
m∑
p=1

n−1∑
q=0

Crpq
n−1,k(ar(t), t)P

rps
q+1,j(ar(t), t)w

1
(j−1)m+s(ar(t), t),

k = K + 1, . . . , N1, (j − 1)m+ s ∈ I+
1q, r = 1, . . . , R;

αr4k,(j−1)m+s(t) = −
m∑
p=1

n−1∑
q=0

Crpq
n−1,k(ar+1(t), t)P

rps
q+1,j(ar+1(t), t)w

2
(j−1)m+s(ar+1(t), t),

k = K + 1, . . . , N1, (j − 1)m+ s ∈ I−2q, r = 1, . . . , R.

By the same way as γr1(t) and γr2(t), of these quantities we make up the matrices γr3(t)
and γr4(t) of height N1 −K.

It is assumed that

det γ(t) = det

(
γ11(t) · · · γR1(t) γ12(t) · · · γR2(t)
γ13(t) · · · γR3(t) γ14(t) · · · γR4(t)

)
6= 0, t ∈ [0, T ]. (36)

For the case under consideration, this condition is analogous to the Lopatinsky one. We will
call it the solvability condition to problem (15), (16), (34).

Theorem 4. Suppose the following conditions hold:

1) the coefficients of the operators Arn, r = 1, . . . , R, are of class C1(Gr), and the coefficients
the rest of operators and free members f r of system (15) are of class C(Gr);

2) the initial functions gri are of class Cn−i−1[ar(0), ar+1(0)], i = 0, 1, . . . , n − 1, r =
1, . . . , R;

3) for k = 1, . . . , K, the coefficients Crpj
ik are of class C(G), and Brpj

qik and hk(t) are of class
C[0, T ]; for k = K+1, . . . , N , the functions Crpj

ik (ξ, t) and hk(t) are of class C1(Gr) and
C1[0, T ], respectively;

4) agreement conditions (35) and solvability conditions (36) are satisfied.

Then there exists a unique Cn−1-solution to problem (15), (16), (34) on every Gr. It is
continuously depended on f r(x, t), hk(t) and gri (t).

Proof. The proof is similar in spirit to the one of Theorem 3, so let us restrict ourselves to
some general instructions.

On every Gr, system (15) can be written as (23). Taking into account (36), the equality
(34) can be solved with respect to vri (ar(t), t), i ∈ I+

1r and vri (ar+1(t), t), i ∈ I−2r, where
r = 1, . . . , R.
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Then, for every r = 1, . . . , R, we repeat the reasoning of Section 5 and use the consi-
derations of [46] to transform the obtained system of integro-differential equations into a
system of Volterra-type integral equations. As a result, we come to a system of (n+ 1)nR/2
Volterra-type equations of the second kind with respect to uri (x, t) and their derivatives up
to order n− 1 inclusive. It is equivalent to the original problem. Solving this system by the
method of successive approximations, we obtain the desired result.

Remark 5. Let boundaries of G be unknown, that is, we are dealing with a hyperbolic
Stefan problem [59]. In this case conditions for unknown boundaries should be added, for all
t ∈ [0, T ], to the initial and boundary conditions of problem (1), (5), (20). For example,

a′′l (t) = Φl

(
t, a1(t), a2(t), a

′
1(t), a

′
2(t), u(a1(t), t), u(a2(t), t))

)
,

al(0) = a0
l , a′l(0) = a1

l , l = 1, 2,

max
i∈I−l

λi
(
al(t), t)

)
< a′l(t) < max

i∈I+l
λi
(
al(t), t)

)
.

(37)

Nonlinear problems (1), (5), (20), (37), and various problems with unknown boundaries for
hyperbolic equations and systems have been investigated in [3, 5, 6, 31,32].

Remark 6. For the reasonig of this section, similar to that of Sections 4 and 5, it is important
that no pair of lines lr have points in common. The intersection of some of these lines is much
more difficult [5, 6, 29–32, 52, 53]. In G, the lines of initial conditions can be degenerated to
a point (the Darboux problems). Such problems have been investigated in [52, 53]; and the
case of the Darboux problem with unknown boundaries of G have been considered in [6,32].

7. About requirement of additional conditions. In each of the problems discussed
above, it was assumed that some conditions, called the solvability conditions, are satisfied
(conditions (7), (18), (22), (36)). And if the smoothness and agreement conditions of data
are completely natural, then the occurrences of the solvability conditions may seem artificial
at first glance. Let us show by examples that these conditions are significant.

By G denote the rectangle {(x, t) ∈ R2 : 0 < x < 1, 0 < t < 0, 5}. Let us consider the
equation

∂2u

∂t2
− ∂2u

∂x2
= 0 (38)

on G. We are seeking for its solution that the initial conditions

u(x, 0) = 0, u′t(x, 0) = 0, 0 6 x 6 1 (39)

and the conditions
∂u

∂t

∣∣∣
x=0
− ∂u

∂x

∣∣∣
x=1

= h1(t),
∂u

∂x

∣∣∣
x=0

+
∂u

∂t

∣∣∣
x=1

= h2(t), (40)

are satisfied. Here h1 i h2 are given continuous functions on [0, 1/2] such that
h1(0) = h2(0) = 0.

All the assumptions of Theorem 1 hold, except for condition (7), since it is easy to verify
that detα1(t) ≡ 0 in this case.

It can be easily checked that any continuously differentiable solution of (38) on G sati-
sfying initial conditions (39) is given by

u(x, t) =


f(t− x), 0 6 x 6 t,

0, t 6 x 6 1− t, t ∈ [0, 1/2],

g(t+ x− 1), 1− t 6 x 6 1,

(41)
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where f(t) and g(t) are arbitrary continuously differentiable functions on [0, 1/2] that satisfy
the conditions f(0) = f ′(0) = g(0) = g′(0) = 0. By (40), we come to

f ′(t)− g′(t) ≡ h1(t), −f ′(t) + g′(t) ≡ h2(t).

Therefore, problem (38)–(40) is solvable if and only if h2(t) = −h1(t). If this condition is
fulfilled, then

g(t) = f(t)−
t∫

0

h1(τ) dτ, (42)

and the function f remains arbitrary. Thus, the problem above is either unsolvable or has
an infinite set of solutions. Hence, the estimate (9) is impossible.

Now let us seek the solution of (38) on G satisfying initial conditions (39) and the
conditions

∂u

∂t

∣∣∣
x=0
− ∂u

∂x

∣∣∣
x=1

= h1(t),

1∫
0

(1− 2ξ)
∂u(ξ, t)

∂t
dξ = h2(t),

(43)

where h1(t) and h2(t) are given continuous functions on [0, 1/2] such that h1(0) = h2(0) = 0,
and, in addition, the function h2 is continuously differentiable.

We see that all the conditions of Theorem 3 are satisfied except for condition (22), since
in the case under consideration det β(t) ≡ 0.

By requiring that (41) again satisfy conditions (43), we conclude that problem (38), (39),
(43) is solvable if and only if h1 and h2 are connected by

h2(t) =

t∫
0

(
1− 2(t− τ)

)
h1(τ) dτ.

If this condition is satisfied, then the problem has an infinite set of solutions of the form
(41), where f is arbitrary function, and g has the form (42).

It is easy to build similar examples for cases of failure of condition (19) or (36).
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