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The work is devoted to the study of algebras of entire symmetric functions on some Banach
spaces of sequences. A function on a vector space is called symmetric with respect to some fixed
group G of operators acting on this space, or G-symmetric, if it is invariant under the action of
elements of the group G on its argument. For different vector spaces there exist some natural
groups of symmetries. In the case of vector spaces of sequences the most natural are groups of
operators permuting coordinates of sequences. Such groups of operators are generated by some
groups of bijections on the set N of positive integers. The most commonly used for this purpose
is the group S of all bijections on N. We consider entire functions and polynomials that are
symmetric with respect to the group of operators, generated by S, on the complex Banach space
ℓp(Cn) of all absolutely summable in a power p ∈ [1,+∞) sequences of n-dimensional complex
vectors. We construct some natural isomorphism between the space ℓp(Cn) and its partial case
– the classical Banach space ℓp. Also we construct the group of operators on ℓp that is consistent
with the isomorphism and the above-mentioned group of operators on ℓp(Cn). This group is
generated by the subgroup of S, elements of which permute elements of N “by blocks”. We obtain
the isomorphism between Fréchet algebras of complex-valued entire functions of bounded type
on ℓp and ℓp(Cn) that are symmetric with respect to the above-mentioned respective groups
of operators. The respective subalgebras of continuous symmetric polynomials on these spaces
are also isomorphic.

Introduction. The most general notion of symmetry of a function on a vector space is
introduced in [1]. A function on a vector space is called symmetric with respect to some
fixed group G of operators acting on this space, or G-symmetric, if it is invariant under
the action of elements of the group G on its argument. In the case of Banach spaces with
some symmetric structure it is natural to consider groups of operators that preserve this
structure. For example, if a Banach space has a symmetric Schauder basis, then commonly
used group is the group of operators permuting elements of this basis. One of such spaces
is the Banach space ℓp of all absolutely summable in a power p ∈ [1,+∞) sequences of real
or complex numbers. In [6, 7, 12] there were studied algebras of continuous polynomials
that are symmetric with respect to the group of all permutations of coordinates of elements
of ℓp. One of the key properties of such algebras is that they have countable algebraic bases
(see definition below). Consequently, algebras of entire symmetric functions of bounded type
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on ℓp belong to the class of the so-called countably generated algebras (see [13, 14]). This
property is significantly used in the description of the spectra of such algebras [4, 5].

In [9], it is constructed a countable algebraic basis of the algebra of symmetric continuous
polynomials (see Theorem 3 below) on the complex Banach space ℓp(Cn) of all absolutely
summable in a power p ∈ [1,+∞) sequences of n-dimensional complex vectors. Consequently,
the Fréchet algebra of entire symmetric functions of bounded type on this space is countably
generated. We extend these results to functions on ℓp that satisfy weaker symmetry requi-
rements than the classical ones. We construct some natural isomorphism between spaces ℓp
and ℓp(Cn). Although ℓp and ℓp(Cn) are isomorphic, the properties of symmetric functions
with respect to classical groups of symmetry on these spaces are different. For example, each
algebraic basis of the algebra of all continuous symmetric polynomials on ℓp is the sequence
of polynomials that cannot contain more than one m-homogeneous element for each integer
m ≥ p. Meanwhile, in the case n ≥ 2 the algebraic basis of the algebra of all continuous
symmetric polynomials on ℓp(Cn) contains more than one m-homogeneous element for each
integer m ≥ p. We construct some special group of operators GΘn,ℓp on ℓp, consistent with
the classical group of symmetry on ℓp(Cn) and with the above-mentioned isomorphism. This
group is a proper subgroup of the classical group of all operators of permutation of coordi-
nates of elements of ℓp. Elements of the group GΘn,ℓp permute coordinates of elements of ℓp “by
blocks” of the length n. We show that the Fréchet algebra of entire functions of bounded type
on ℓp that are symmetric with respect to this group is isomorphic to the above-mentioned
Fréchet algebra of entire symmetric functions of bounded type on ℓp(Cn). The respective
subalgebras of continuous symmetric polynomials on these spaces are also isomorphic. We
construct an algebraic basis of the algebra of continuous GΘn,ℓp-symmetric polynomials on ℓp
as the image (with respect to the isomorphism of algebras) of the above-mentioned algebraic
basis of the algebra of continuous symmetric polynomials on ℓp(Cn).

Note that if we consider the sequence of groups GΘn,ℓp , where instead of n we substitute
powers of some integer a ≥ 2, then each element of the sequence contains the next element
as a proper subgroup. Consequently, the conditions of the symmetry with respect to the
next element are weaker than the conditions of the symmetry with respect to the current
one. Therefore such sequences of groups can be used in investigations of the so-called weakly
symmetric functions on ℓp (see [3, 18]). Firstly, the notion of weak symmetry was defined in
[18], Weak symmetric functions are applied to the approximation of non-symmetric functions
by symmetric functions.

1. Preliminaries. Let N be the set of all positive integers. Let Z+ be the set of all nonnega-
tive integers.

Symmetric mappings. Let A,B be arbitrary nonempty sets. Let S be an arbitrary fixed
set of mappings that act from A to itself. A mapping f : A → B is called S-symmetric if
f(s(a)) = f(a) for every a ∈ A and s ∈ S.

The algebra Hb(X). Let X be a complex Banach space. Let Hb(X) be the Fréchet algebra
of all entire functions f : X → C, which are bounded on bounded sets endowed with the
topology of uniform convergence on bounded sets.

Let
∥f∥r = sup

∥x∥≤r

|f(x)|

for f ∈ Hb(X) and r > 0. The topology of Hb(X) can be generated by an arbitrary set of
norms {∥ · ∥r : r ∈ Γ}, where Γ is any unbounded subset of (0,+∞).
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The algebras Hb,S(X) and PS(X). Let X be a complex Banach space. Let S be a set of
operators on X. Let Hb,S(X) be the subalgebra of all S-symmetric elements of Hb(X). By
[16, Lemma 3], Hb,S(X) is closed in Hb(X). So, Hb,S(X) is a Fréchet algebra. Let PS(X) be
the subalgebra of Hb,S(X) consisting of all S-symmetric continuous polynomials on X.

Algebraic basis. Let A be a unital commutative algebra over the field C. For every
polynomial Q : Cn → C of the form

Q(z1, . . . , zn) =
∑

(k1,...,kn)∈Ω

α(k1,...,kn)z
k1
1 · · · zknn ,

where α(k1,...,kn) ∈ C and Ω is some nonempty finite subset of Zn
+, let us define the mapping

QA : A
n → A by

QA(a1, . . . , an) =
∑

(k1,...,kn)∈Ω

α(k1,...,kn)a
k1
1 · · · aknn , (1)

where a1, . . . , an ∈ A (we consider the zeroth power a0j of an element aj to be the unit
element of A).

Let a, a1, . . . , an ∈ A. The element a is called an algebraic combination of a1, . . . , an if
there exists a polynomial Q : Cn → C such that a = QA(a1, . . . , an).

A nonempty set B ⊂ A is called an algebraic basis of A if every element of A can be
uniquely represented as an algebraic combination of some elements of B.

Isomorphisms of Fréchet algebras of entire symmetric functions. We will use the
following result, the item a) of which is proven in [19, Theorem 2] and the items b) and c)
are proven in [17, Theorem 4]).

Theorem 1. Let X and Y be complex Banach spaces. Let S1 and S2 be semigroups of
operators on X and Y resp. Let ιX,Y : X → Y be an isomorphism such that

1) for every x ∈ X and s1 ∈ S1, there exists s2 ∈ S2 such that ιX,Y (s1(x)) = s2(ιX,Y (x));
2) for every y ∈ Y and s2 ∈ S2, there exists s1 ∈ S1 such that ι−1

X,Y (s2(y)) = s1(ι
−1
X,Y (y)).

Then
a) the mapping

I : f ∈ Hb,S2(Y ) 7→ f ◦ ιX,Y ∈ Hb,S1(X) (2)

is an isomorphism, i.e., I is a continuous linear multiplicative bijection;
b) the restriction of I to PS2(Y ) is an isomorphism between algebras PS2(Y ) and PS1(X);
c) if PS2(Y ) has some algebraic basis B, then I(B) is an algebraic basis in PS1(X).

The space ℓp(Cn). Let n ∈ N and p ∈ [1,+∞). Let us denote ℓp(Cn) the vector space of all
sequences x = (x1, x2, . . .), where xj =

(
x
(1)
j , . . . , x

(n)
j

)
∈ Cn for j ∈ N, such that the series∑∞

j=1

∑n
s=1 |x

(s)
j |p is convergent. The space ℓp(Cn) with norm

∥x∥ℓp(Cn) =

( ∞∑
j=1

n∑
s=1

|x(s)
j |p

)1/p

is a Banach space. If n = 1, then as usual we will write ℓp(C) = ℓp.

2. The main result.
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2.1. Isometrical isomorphism between ℓp and ℓp(Cn). Let n ∈ N and p ∈ [1,+∞). Let
us construct an isomorphism between ℓp and ℓp(Cn). Let ι : ℓp → ℓp(Cn) be defined in the
following way. For y = (y1, y2, . . .) ∈ ℓp, let

ι(y) = x, (3)

where
x =

((
x
(1)
1 , . . . , x

(n)
1

)
,
(
x
(1)
2 , . . . , x

(n)
2

)
, . . .

)
(4)

is such that
x
(s)
j = y(j−1)n+s (5)

for every j ∈ N and s ∈ {1, . . . , n}. Let us show that the mapping ι is well defined.

Lemma 1. For every y ∈ ℓp, the element ι(y), defined by (3), belongs to ℓp(Cn) and
∥ι(y)∥ℓp(Cn) = ∥y∥ℓp .

Proof. Let y = (y1, y2, . . .) ∈ ℓp. Then the series
∑∞

m=1 |ym|p is convergent. Let x = ι(y).
Then, taking into account (4) and (5),

∞∑
j=1

n∑
s=1

|x(s)
j |p =

∞∑
j=1

n∑
s=1

|y(j−1)n+s|p =
∞∑

m=1

|ym|p. (6)

By (6), since the series
∑∞

m=1 |ym|p is convergent, it follows that the series
∑∞

j=1

∑n
s=1 |x

(s)
j |p

is convergent too. Therefore x ∈ ℓp(Cn). Also, by (6), ∥x∥ℓp(Cn) = ∥y∥ℓp .

Let us define the mapping κn : N → N × {1, . . . , n} in the following way. Let m ∈ N.
Then there exist unique j ∈ N and s ∈ {1, . . . , n} such that m = (j − 1)n+ s. We set

κn(m) = (j, s). (7)

It can be checked that the mapping κn is a bijection. Evidently,

κ−1
n ((j, s)) = (j − 1)n+ s (8)

for every (j, s) ∈ N× {1, . . . , n}.
Let us establish some properties of the mapping ι.

Lemma 2. The mapping ι, defined by (3), is surjective.

Proof. Let us show that ι is surjective. Let x =
((
x
(1)
1 , . . . , x

(n)
1

)
,
(
x
(1)
2 , . . . , x

(n)
2

)
, . . .

)
∈

ℓp(Cn). Let us construct y = (y1, y2, . . .) ∈ ℓp such that ι(y) = x. For m ∈ N, we set

ym = x
(s)
j , (9)

where (j, s) = κn(m) and the mapping κn is defined by (7). Let us show that y ∈ ℓp. By (9),

∞∑
m=1

|ym|p =
∑

(j,s)∈κn(N)

|x(s)
j |p.
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Since κn is surjective, κn(N) = N× {1, . . . , n}. Consequently,

∑
(j,s)∈κn(N)

|x(s)
j |p =

∞∑
j=1

n∑
s=1

|x(s)
j |p.

Therefore
∞∑

m=1

|ym|p =
∞∑
j=1

n∑
s=1

|x(s)
j |p. (10)

Since x ∈ ℓp(Cn), the series in the right-hand side of the equality (10) is convergent. Con-
sequently, the series in the left-hand side of the equality (10) is convergent too. Therefore
y ∈ ℓp.

Let us show that ι(y) = x. Let z = ι(y). Let us show that z = x. Let

z =
((
z
(1)
1 , . . . , z

(n)
1

)
,
(
z
(1)
2 , . . . , z

(n)
2

)
, . . .

)
.

Let j0 ∈ N and s0 ∈ {1, . . . , n}. By (5),

z
(s0)
j0

= y(j0−1)n+s0 . (11)

Let m0 = (j0 − 1)n+ s0. Then
y(j0−1)n+s0 = ym0 . (12)

Since m0 = (j0 − 1)n + s0, by the definition of the mapping κn, it follows that (j0, s0) =
κn(m0). Consequently, by (9),

ym0 = x
(s0)
j0

. (13)

By (11),(12) and (13), z(s0)j0
= x

(s0)
j0

. Thus, z = x.

Theorem 2. Let n ∈ N and p ∈ [1,+∞). The mapping ι, defined by (3), is an isometrical
isomorphism between ℓp and ℓp(Cn).

Proof. It can be checked that ι is linear. By Lemma 1, ι is isometrical. Therefore, since
every linear isometrical mapping is injective, it follows that ι is injective. By Lemma 2, ι is
surjective. So, ι is bijective. Thus, ι is an isometrical isomorphism.

2.2. Algebras of symmetric functions on ℓp and ℓp(Cn). Let B be some set of bijections,
acting from N to itself. Let X be an arbitrary vector space of sequences of scalars or vectors
such that (xb(1), xb(2), . . .) ∈ X for every b ∈ B and (x1, x2, . . .) ∈ X. For b ∈ B, let the
operator gb,X : X → X be defined by

gb,X((x1, x2, . . .)) = (xb(1), xb(2), . . .), (14)

where (x1, x2, . . .) ∈ X. Let
GB,X = {gb,X : b ∈ B}, (15)

where operators gb,X are defined by (14). It can be checked that if B is a group with respect
to the operation of composition, then GB,X is also a group.

Let S be the group of all bijections, acting from N to itself. Let n ∈ N and p ∈ [1,+∞).
Let us consider GS,ℓp(Cn)-symmetric functions on ℓp(Cn), where the group GS,ℓp(Cn) is defined
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by (15). Usually such functions are called symmetric (see [2, 9, 15]) or block-symmetric (see
[8, 10, 11]).

Let us define the so-called power sum symmetric polynomials on ℓp(Cn). For a multi-
index k = (k1, . . . , kn) ∈ Zn

+, let ⟨k⟩ = k1 + . . . + kn. For every k ∈ Zn
+ such that ⟨k⟩ ≥ ⌈p⌉,

where ⌈p⌉ is the ceiling of p, let us define the mapping Hk : ℓp(Cn) → C by

Hk(x) =
∞∑
j=1

n∏
s=1
ks>0

(
x
(s)
j

)ks
, (16)

where x =
((
x
(1)
1 , . . . , x

(n)
1

)
,
(
x
(1)
2 , . . . , x

(n)
2

)
, . . .

)
∈ ℓp(Cn). Note that Hk is a GS,ℓp(Cn)-

symmetric ⟨k⟩-homogeneous polynomial. By [9, Proposition 2], the polynomial Hk is conti-
nuous. We will use the following result from [9]:

Theorem 3 ([9], Corollary 15). Let n ∈ N and p ∈ [1,+∞). The set of polynomials{
Hk : k ∈ Zn

+ such that ⟨k⟩ ≥ ⌈p⌉
}

(17)

is an algebraic basis of the algebra PGS,ℓp(Cn)
(ℓp(Cn)) of all GS,ℓp(Cn)-symmetric continuous

complex-valued polynomials on ℓp(Cn).

Note that the analogical result for the real case is established in [15].
Let n ∈ N. Let us construct the group of operators on ℓp, whose elements permute

coordinates of elements of ℓp by blocks of the length n.

Recall that S is the group of all bijections, acting from N to itself. Let id{1,...,n} be the
identical mapping on {1, . . . , n}. For σ ∈ S, let σ × id{1,...,n} be the mapping, acting from
N× {1, . . . , n} to itself, defined by(

σ × id{1,...,n}
)
((j, s)) = (σ(j), s), (18)

where (j, s) ∈ N × {1, . . . , n}. Since both σ and id{1,...,n} are bijections, it follows that
σ × id{1,...,n} is a bijection too.

For σ ∈ S, let θσ,n : N → N be defined by

θσ,n = κ−1
n ◦

(
σ × id{1,...,n}

)
◦ κn, (19)

where κn and σ× id{1,...,n} are defined by (7) and (18) resp. Since mappings κ−1
n , σ× id{1,...,n}

and κn are bijections, it follows that θσ,n is a bijection too.
Let

Θn = {θσ,n : σ ∈ S}, (20)

where θσ,n is defined by (19). Since, for every σ ∈ S, the mapping θσ,n is a bijection, acting
from N to itself, it follows that Θn is a subset of S.

Let us establish some properties of mappings, defined by (18) and (19).

Lemma 3. For every n ∈ N and σ1, σ2 ∈ S,(
σ1 × id{1,...,n}

)
◦
(
σ2 × id{1,...,n}

)
= (σ1 ◦ σ2)× id{1,...,n}. (21)
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Proof. For (j, s) ∈ N× {1, . . . , n}, by (18),((
σ1 × id{1,...,n}

)
◦
(
σ2 × id{1,...,n}

))
((j, s)) =

(
σ1 × id{1,...,n}

)(
(σ2(j), s)

)
=

=
(
σ1(σ2(j)), s

)
=

(
(σ1 ◦ σ2)(j), s

)
=

(
(σ1 ◦ σ2)× id{1,...,n}

)
((j, s)).

So, the equality (21) holds.

Lemma 4. For every n ∈ N and σ1, σ2 ∈ S,

θσ1,n ◦ θσ2,n = θσ1◦σ2,n.

Proof. Taking into account (19) and Lemma 3,

θσ1,n ◦ θσ2,n = κ−1
n ◦

(
σ1 × id{1,...,n}

)
◦ κn ◦ κ−1

n ◦
(
σ2 × id{1,...,n}

)
◦ κn =

= κ−1
n ◦

(
σ1 × id{1,...,n}

)
◦
(
σ2 × id{1,...,n}

)
◦ κn =

= κ−1
n ◦

(
(σ1 ◦ σ2)× id{1,...,n}

)
◦ κn = θσ1◦σ2,n.

Proposition 1. For every n ∈ N, the set Θn, defined by (20), is a subgroup of the group S.

Proof. As it was mentioned above, Θn is a subset of S. Let us show that Θn is a subgroup
of S.

Let a1, a2 ∈ Θn. Let us show that a1 ◦ a2 ∈ Θn. By (20), there exist σ1, σ2 ∈ S such that
a1 = θσ1,n and a2 = θσ2,n. By Lemma 4, a1 ◦ a2 = θσ1◦σ2,n. Since σ1, σ2 ∈ S and S is a group,
it follows that σ1 ◦ σ2 ∈ S. Consequently, θσ1◦σ2,n ∈ Θn, that is, a1 ◦ a2 ∈ Θn.

Let a ∈ Θn. Let us show that the inverse element of a belongs to Θn. By (20), there
exists σ ∈ S such that a = θσ,n. Since σ ∈ S and S is a group, it follows that σ−1 ∈ S.
Consequently, θσ−1,n ∈ Θn. By Lemma 4,

a ◦ θσ−1,n = θσ,n ◦ θσ−1,n = θσ◦σ−1,n = θe,n

and
θσ−1,n ◦ a = θσ−1,n ◦ θσ,n = θσ−1◦σ,n = θe,n,

where e is the identity element of the group S. Note that e× id{1,...,n} is the identical mapping
on N× {1, . . . , n}. Consequently, taking into account (19), θe,n = e. So, θσ−1,n is the inverse
element of a.

Thus, Θn is a subgroup of S.

Let us show how elements of the group Θn act on elements of N.

Lemma 5. Let n ∈ N, σ ∈ S and m ∈ N. Let (j, s) = κn(m). Then

θσ,n(m) = (σ(j)− 1)n+ s,

where θσ,n is defined by (19).

Proof. By (19), (18) and (8), taking into account that (j, s) = κn(m),

θσ,n(m) =
(
κ−1

n ◦
(
σ × id{1,...,n}

)
◦ κn

)
(m) =

=
(
κ−1

n ◦
(
σ × id{1,...,n}

))
((j, s)) = κ−1

n ((σ(j), s)) = (σ(j)− 1)n+ s.
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Let us show that, in fact, elements of the group Θn permute subsets {1, . . . , n}, {n +
1, . . . , 2n}, . . . of N.

Corollary 1. Let n ∈ N, σ ∈ S and k ∈ N. Then

θσ,n ({(k − 1)n+ 1, . . . , (k − 1)n+ n}) = {(σ(k)− 1)n+ 1, . . . , (σ(k)− 1)n+ n} , (22)

where θσ,n is defined by (19).

Proof. By (7),
κn

(
(k − 1)n+ s

)
= (k, s)

for every s ∈ {1, . . . , n}. Consequently, by Lemma 5,

θσ,n((k − 1)n+ s) = (σ(k)− 1)n+ s

for every s ∈ {1, . . . , n}. Therefore the equality (22) holds.

Let n ∈ N and p ∈ [1,+∞). Let GΘn,ℓp be the group of operators on ℓp, defined by (15),
where Θn is defined by (20). Let us prove some properties of elements of groups GS,ℓp(Cn)

and GΘn,ℓp .

Lemma 6. For every σ ∈ S and y ∈ ℓp,

ι
(
gθσ,n,ℓp(y)

)
= gσ,ℓp(Cn)

(
ι(y)

)
, (23)

where ι is defined by (3), gθσ,n,ℓp and gσ,ℓp(Cn) are defined by (14), and θσ,n is defined by (19).

Proof. Let σ ∈ S and y = (y1, y2, . . .) ∈ ℓp. Let us show that the equality (23) holds.
Let sequences x = (x1, x2, . . .), z = (z1, z2, . . .) ∈ ℓp(Cn), where xm =

(
x
(1)
m , . . . , x

(n)
m

)
, zm =(

z
(1)
m , . . . , z

(n)
m

)
∈ Cn for m ∈ N, be defined by

x = ι
(
gθσ,n,ℓp(y)

)
(24)

and
z = gσ,ℓp(Cn)

(
ι(y)

)
. (25)

Let us show that x = z.
Let (j, s) ∈ N× {1, . . . , n}. Let us show that x

(s)
j = z

(s)
j .

Let us find the value of x(s)
j . Let v = (v1, v2, . . .) ∈ ℓp be defined by

v = gθσ,n,ℓp(y). (26)

By (24) and (26),
x = ι(v).

Therefore, by (3),
x
(s)
j = v(j−1)n+s. (27)

By (14) and (26),
v(j−1)n+s = yθσ,n((j−1)n+s). (28)

So, by (27) and (28),
x
(s)
j = yθσ,n((j−1)n+s). (29)
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By Lemma 5, taking into account that, by (7), κn((j − 1)n+ s) = (j, s),

θσ,n((j − 1)n+ s) = (σ(j)− 1)n+ s. (30)

By (29) and (30),
x
(s)
j = y(σ(j)−1)n+s. (31)

Let us find the value of z(s)j . Let w = (w1, w2, . . .) ∈ ℓp(Cn), where wm =
(
w

(1)
m , . . . , w

(n)
m

)
∈

Cn for m ∈ N, be defined by
w = ι(y). (32)

By (25) and (32),
z = gσ,ℓp(Cn)

(
w
)
. (33)

By (14) and (33), zj = wσ(j) and, consequently,

z
(s)
j = w

(s)
σ(j). (34)

By (3) and (32),
w

(s)
σ(j) = y(σ(j)−1)n+s. (35)

By (34) and (35),
z
(s)
j = y(σ(j)−1)n+s. (36)

By (31) and (36), x(s)
j = z

(s)
j . Thus, x = z. So, the equality (23) holds.

Corollary 2. For every σ ∈ S and x ∈ ℓp(Cn),

ι−1
(
gσ,ℓp(Cn)(x)

)
= gθσ,n,ℓp

(
ι−1(x)

)
, (37)

where ι is defined by (3), gθσ,n,ℓp and gσ,ℓp(Cn) are defined by (14), and θσ,n is defined by (19).

Proof. Let σ ∈ S and x ∈ ℓp(Cn). Let us show that the equality (37) holds. Substituting
y = ι−1(x) into Lemma 6, we obtain ι

(
gθσ,n,ℓp

(
ι−1(x)

))
= gσ,ℓp(Cn)(x). Consequently,

ι−1
(
ι
(
gθσ,n,ℓp

(
ι−1(x)

)))
= ι−1

(
gσ,ℓp(Cn)(x)

)
,

that is, gθσ,n,ℓp
(
ι−1(x)

)
= ι−1

(
gσ,ℓp(Cn)(x)

)
. So, the equality (37) holds.

Let us apply Theorem 1 to algebras of entire symmetric functions on ℓp and ℓp(Cn).

Theorem 4. Let n ∈ N and p ∈ [1,+∞). Let ι be the isometrical isomorphism between ℓp
and ℓp(Cn), defined by (3). Then

a) the mapping

I : f ∈ Hb,GS,ℓp(Cn)
(ℓp(Cn)) 7→ f ◦ ι ∈ Hb,GΘn,ℓp

(ℓp) (38)

is an isomorphism, where Hb,GS,ℓp(Cn)
(ℓp(Cn)) is the Fréchet algebra of entire GS,ℓp(Cn)-sym-

metric functions of bounded type on ℓp(Cn) and Hb,GΘn,ℓp
(ℓp) is the Fréchet algebra of entire

GΘn,ℓp-symmetric functions of bounded type on ℓp;
b) the restriction of the isomorphism I to PGS,ℓp(Cn)

(ℓp(Cn)) is an isomorphism between
algebras of polynomials PGS,ℓp(Cn)

(ℓp(Cn)) and PGΘn,ℓp
(ℓp);

c) the set of polynomials{
I(Hk) : k ∈ Zn

+ such that ⟨k⟩ ≥ ⌈p⌉
}

(39)

is an algebraic basis of the algebra PGΘn,ℓp
(ℓp), where polynomials Hk are defined by (16).
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Proof. Let us substitute ℓp, ℓp(Cn), GΘn,ℓp , GS,ℓp(Cn), ι instead of X, Y, S1, S2, ιX,Y respectively
into Theorem 1. Let us check the conditions of Theorem 1.

Note that, by Theorem 2, ι is an isometrical isomorphism between ℓp and ℓp(Cn).
Let us show that the condition 1) of Theorem 1 holds. Let x ∈ ℓp and s1 ∈ GΘn,ℓp . By

(15) and (20), there exists σ ∈ S such that s1 = gθσ,n,ℓp , where θσ,n is defined by (19). Let
s2 = gσ,ℓp(Cn), where gσ,ℓp(Cn) is defined by (14). Note that s2 ∈ GS,ℓp(Cn). By Lemma 6, where
we substitute x instead of y, ι

(
gθσ,n,ℓp(x)

)
= gσ,ℓp(Cn)

(
ι(x)

)
, that is, ι(s1(x)) = s2(ι(x)). So,

the condition 1) of Theorem 1 holds.
Let us show that the condition 2) of Theorem 1 holds. Let y ∈ ℓp(Cn) and s2 ∈ GS,ℓp(Cn).

By (15), there exists σ ∈ S such that s2 = gσ,ℓp(Cn). Let s1 = gθσ,n,ℓp , where gθσ,n,ℓp is defined
by (14) and θσ,n is defined by (19). Note that s1 ∈ GΘn,ℓp . By Corollary 2, where we substitute
y instead of x, ι−1

(
gσ,ℓp(Cn)(y)

)
= gθσ,n,ℓp

(
ι−1(y)

)
, that is, ι−1(s2(y)) = s1(ι

−1(y)). So, the
condition 2) of Theorem 1 holds.

Thus, the conditions of Theorem 1 hold. Therefore, by the item a) of Theorem 1, the
mapping I, defined by (38), is an isomorphism. By the item b) of Theorem 1, the restriction
of the isomorphism I to PGS,ℓp(Cn)

(ℓp(Cn)) is an isomorphism between algebras of polynomials
PGS,ℓp(Cn)

(ℓp(Cn)) and PGΘn,ℓp
(ℓp). By Theorem 3, the set (17) is an algebraic basis of the

algebra PGS,ℓp(Cn)
(ℓp(Cn)). Consequently, by the item c) of Theorem 1 the set (39) is an

algebraic basis of the algebra PGΘn,ℓp
(ℓp).

Let us represent elements of the algebraic basis (39) in the explicit form.

Lemma 7. Let n ∈ N and p ∈ [1,+∞). For every k = (k1, . . . , kn) ∈ Zn
+ such that ⟨k⟩ ≥ ⌈p⌉

and for every y = (y1, y2, . . .) ∈ ℓp,

I(Hk)(y) =
∞∑
j=1

n∏
s=1
ks>0

(y(j−1)n+s)
ks (40)

where Hk is defined by (16) and I is defined by (38).

Proof. By (38), I(Hk) = Hk ◦ ι, where ι is defined by (3). Therefore

I(Hk)(y) = Hk(ι(y)). (41)

Let x =
((
x
(1)
1 , . . . , x

(n)
1

)
,
(
x
(1)
2 , . . . , x

(n)
2

)
, . . .

)
∈ ℓp(Cn) be defined by

x = ι(y). (42)

By (3), x(s)
j = y(j−1)n+s for every (j, s) ∈ N×{1, . . . , n}. Therefore, taking into account (16),

Hk(x) =
∞∑
j=1

n∏
s=1
ks>0

(
x
(s)
j

)ks
=

∞∑
j=1

n∏
s=1
ks>0

(y(j−1)n+s)
ks . (43)

By (41), (42) and (43), the equality (40) holds.
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