
Математичнi Студiї. Т.62, №2 Matematychni Studii. V.62, No.2

УДК 517.98

A. I. Bandura, T. M. Salo, O. B. Skaskiv

COMPOSITION OF ENTIRE FUNCTION AND ANALYTIC FUNCTIONS

IN THE UNIT BALL WITH A VANISHED GRADIENT

A. I. Bandura, T. M. Salo, O. B. Skaskiv. Composition of entire function and analytic functions
in the unit ball with a vanished gradient , Mat. Stud. 62 (2024), 132–140.

The composition H(z) = f(Φ(z)) is studied, where f is an entire function of a single complex
variable and Φ is an analytic function in the n-dimensional unit ball Bn, n ≥ 2, with a vanished
gradient. We found conditions by the function Φ providing boundedness of the L-index in joint
variables for the function H, if the function f has bounded l-index for some positive continuous
function l and L(w) = l(Φ(w))(max{1, |Φ′

w1
(w)|}, . . . ,max{1, |Φ′

wn
(w)|}) : Bn → Rn

+.
Such a constructed vector-valued function L : Bn → Rn

+ allows us to consider a function Φ
with a nonempty zero set for its gradient. The obtained results complement earlier published
results with gradΦ(w) = ∇Φ(z) = (∂Φ(w)

∂w1
, . . . , ∂Φ(w)

∂wn
) ̸= 0. We prove the following statement

(Theorem 3): Suppose that the function l : C → R+ satisfies some condition for the regularity
of behavior. Let g : C → C be an entire function of bounded l-index N(g, l), and Φ: Bn → C
be an analytic function such that the vector-valued function L(w) : Bn → Rn

+ defined above
also satisfies some conditions for regularity of behavior. If there exists C2 ≥ 1 such that for all
w ∈ Bn and for all J ∈ Zn

+ \ {0} with ∥J∥ ≤ N(g, l) + 1, one has

|Φ(J)(w)| ≤ C2(l(Φ(w)))
1/(N(g,l)+1)(|∇|Φ(w))J ,

then the analytic function H(w) = g(Φ(w)) : Bn → C has bounded L-index in joint variables.

1. Introduction. We examine some compositions of entire and analytic functions with usage
of the notion of L-index in joint variables. Our investigation is a generalization of the results
of paper [1] to the case where the first-order partial derivatives of the inner analytic function
can vanish in the unit ball, i.e., at least one of them (or each of them) has nonempty zero
set (the case of non-vanished gradiend in the unit ball was studied in [3]).

Let us recall some standard notations from [1–6]. Let Rn and Cn be n-dimensional real
and complex vector spaces, respectively, n ∈ N. Denote R+ = (0,+∞), 1 = (1, . . . , 1) ∈ Rn,
0 = (0, . . . , 0) ∈ Rn, 1j = (0, . . . , 0, 1︸︷︷︸

j-th place
, 0, . . . , 0),

Bn =
{
z = (z1, . . . , zn) ∈ Cn : |z| =

√
|z1|2 + . . .+ |zn|2 < 1

}
.

For K = (k1, . . . , kn) ∈ Zn
+, let us write ∥K∥ = k1 + · · · + kn, K! = k1! · . . . · kn!. For

A = (a1, . . . , an) ∈ Cn, B = (b1, . . . , bn) ∈ Cn, we will use formal notations without violation
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of the existence of these expressions A± B = (a1 ± b1, . . . , an ± bn), AB = (a1b1, . . . , anbn),
A/B = (a1/b1, . . . , an/bn), and if A, B ∈ Rn, then AB = ab11 a

b2
2 · . . . · abnn , max{A;B} =

(max{a1; b1},max{a2; b2}, . . . ,max{an; bn}), and the notation A < B means that aj < bj for
all j ∈ {1, . . . , n}. Similarly, the relation A ≤ B is defined.

We denote the K-th order partial derivative of the entire function F (z) = F (z1, . . . , zn)
by

F (K)(z) =
∂∥K∥F

∂zK
=

∂k1+···+knF

∂zk11 . . . ∂zknn
, where K = (k1, . . . , kn) ∈ Zn

+.

Let L(z) = (l1(z), . . . , ln(z)), where lj(z) : Bn → R+ is a continuous function such that

(∀z ∈ Bn) : lj(z) > β/(1− |z|), j ∈ {1, . . . , n}, (1)

where β >
√
n is a some constant.

An analytic functionF in the unit ball is calleda function of bounded L-index in joint vari-
ables ([3]) if there exists a number m ∈ Z+ such that for all z ∈ Bn and J = (j1, j2, . . . , jn) ∈
Zn

+, one has
|F (J)(z)|
J !LJ(z)

≤ max

{
|F (K)(z)|
K!LK(z)

: K ∈ Zn
+, ∥K∥ ≤ m

}
. (2)

The least integer m for which inequality (2) holds is called the L-index in joint variables
of the function F and is denoted by N(F,L,Bn). If we will consider entire functions instead
analytic functions in the unit ball and lj(zj) ≡ 1, j ∈ {1, 2, . . . , n}, then the entire function F
is called a function of bounded index in joint variables or function of bounded index [8]. If
n = 1 then we obtain a notion N(g, l) of the l-index for entire function g of one complex
variable with a continuous function l : C → R+. This class of functions was actively studied by
M. Sheremeta and his scholars ([11,13,17]) as an extension of the index of an entire function
([9]) to a wider class of entire functions whose growth exceed the growth of exponential-type
functions. He put the j-th power of the function l in the denominator of the Taylor coefficient
from (2).

Many papers are devoted to a composition of two holomorphic functions belonging to
different classes and various definitions of the index. Nowadays, the most exhaustively investi-
gated cases are case of the bounded l-index for entire functions of single variable ([10, 11])
and analytic in a disc functions ([12,13]) and the case of the bounded L-index in a direction
for multivariate entire functions ([14]) and analytic functions in a unit ball ([15]). The case
of the bounded index in joint variables is more difficult (see [2, 3, 14]). Here, we will try
to implement the mentioned approach for the notion of bounded L-index in joint variables
and obtained Theorem 3. The first theorem can be applied to consider a nonlinear partial
differential equation. For example, we have a composite PDE, make changes to the variables,
and transform the equation to a simpler form. If the simpler equation has analytic solutions
of bounded index in some sense (see [16, 17]), then we can apply Theorem 3 to learn the
properties of the analytic solutions of the composite PDE.

2. Auxiliary propositions. To prove the main theorem, we need an auxiliary proposition.
For R ∈ Rn

+, j ∈ {1, . . . , n} and L(z) = (l1(z), . . . , ln(z)), we define

Dn
[
z0, R/L(z0)

]
= {z ∈ Cn : |zj − z0j | ≤ rj/lj(z

0), j ∈ {1, . . . , n}}
λ1,j(z0, R) = inf

{
lj(z)/lj(z

0) : z ∈ Dn
[
z0, R/L(z0)

]}
, λ1,j(R) = inf

z0∈Cn
λ1,j(z0, R),
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λ2,j(z0, R) = sup
{
lj(z)/lj(z

0) : z ∈ Dn
[
z0, R/L(z0)

]}
, λ2,j(R) = sup

z0∈Cn

λ2,j(z0, R).

By Q(Bn) we denote a class of functions L(z) for which every R ∈ Rn
+ with |R| ≤ β

satisfies the condition 0 < λ1,j(R) ≤ λ2,j(R) < +∞. If n = 1, then Q ≡ Q1.

Theorem 1 ([4]). Let L ∈ Q(Bn). An analytic function F : Bn → C has bounded L-index
in joint variables if and only if there exist p ∈ Z+ and C1 ∈ R+ such that for each z ∈ Bn

max

{
|F (J)(z)|
LJ(z)

: ∥J∥ = p+ 1

}
≤ C1 ·max

{
|F (K)(z)|
LK(z)

: ∥K∥ ≤ p

}
. (3)

Theorem 1 was fisrtly deduced by W. K. Hayman ([18]) for single-variate entire functions
having bounded index (n = 1, L(z) ≡ 1). M. M. Sheremeta ([13]) proved it for analytic
functions of one variable with finite bounded l-index. Note that Hayman’s Theorem is very
convenient for investigating the properties of entire solutions of differential equations ([13,
19]).

For an analytic function Φ: Bn → C and z ∈ Bn we put

∇Φ(z) =

(
∂Φ(z)

∂z1
, . . . ,

∂Φ(z)

∂zn

)
, |∇|Φ(z) =

(∣∣∣∣∂Φ(z)∂z1

∣∣∣∣, . . . , ∣∣∣∣∂Φ(z)∂zn

∣∣∣∣). (4)

Denote by Qm
1 the class of positive continuous functions L : Cm → R+ := (0,+∞) such that

for every η > 0

sup
z∈Cm

sup
t1,t2∈C

{
L(z + t11)

L(z + t21)
: |t1 − t2| ≤

η

min{L(z + t11), L(z + t21)}

}
< +∞,

where 1 = (1, . . . , 1) ∈ Cm.
We recall known results on the composition of analytic functions in the unit ball having

bounded L-index in joint variables.

Theorem 2 ([3]). Let L ∈ Qm
1 , G : Cm → C be an entire function of bounded L-index in

the direction 1 = (1, . . . , 1) ∈ Cm, Φ: Bn → C be analytic function such that ∂Φ(z)
∂zk

̸= 0 for
every k ∈ {1, . . . , n} and |Φ(J)(z)| ≤ C|∇|Φ(z)J , C ≡ const > 0, for all z ∈ Cn, J ∈ Zn

+,
∥J∥ ≤ p, where p = N(G,L).Then H(z) = G(Φ(z), . . . ,Φ(z)) has bounded L-index in joint
variables, where L(z) = (L(Φ(z), . . . ,Φ(z))|∂Φ(z)

∂z1
|, . . . , L(Φ(z), . . . ,Φ(z))|∂Φ(z)

∂zn
|) ∈ Q(Bn).

There exist simple examples of functions which do not satisfy the conditions in Theorem 2.
At first, they were presented for entire functions in [1].

3. Results on composition of entire and analytic functions. Removing the condition:
∂Φ(z)
∂zk

̸= 0 for every k ∈ {1, . . . , n}, in Theorem 2 and slightly increasing the function L, we
deduce a new result.

Theorem 3. Let l ∈ Q such that l(z) ≥ 1 for all z ∈ C, g : C → C be an entire function of
bounded l-index N(g, l), and Φ: Bn → C be an analytic function, n ≥ 2, such that

L ∈ Q(Bn), L(w) = max{1, |∇|Φ(w)}l(Φ(w)). (5)

If there exists C2 ≥ 1 such that for all w ∈ Bn and for all J ∈ Zn
+\{0} with ∥J∥ ≤ N(g, l)+1,

one has

|Φ(J)(w)| ≤ C2(l(Φ(w)))
1/(N(g,l)+1)(|∇|Φ(w))J , (6)

then the analytic function H(w) = g(Φ(w)) : Bn → C has bounded L-index in joint variables.
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Proof. The following formula was proved in [2]:

H(K)(w) = g(∥K∥)(Φ(w))(∇Φ(w))K +

∥K∥−1∑
j=1

g(j)(Φ(w))Qj,K(w), (7)

where

Qj,K(w) =
∑

11p11
+...+1np1n+...+KpK=K

0≤p11+...+p1n≤j−1

cj,K,p11 ,...,pK
(Φ(11)(w))p11 . . . (Φ(1n)(w))p1n . . . (Φ(K)(w))pK ,

and cj,K,p11 ,...,pK
∈ Z+ are some coefficients, K ∈ Zn

+. Also, it was deduced [2] that

g(k)(Φ(w)) =
H(k1i)(w)

(Φ(1i)(w))k
+

1

(Φ(1i)w))2k

k−1∑
j=1

H(j1i)(w)(Φ(1i)(w))jQ̃j,k(w), (8)

where
Q̃j,k(w)=

∑
m1+...+kmk=2(k−j)

bj,k,m1,...,mk
(Φ(1i)(w))m1 . . .(Φ(k1i)(w))mk , (9)

and bj,k,m1,...,mk
∈ Z are some coefficients, i ∈ {1, . . . , n}, k ∈ Z+.

We suppose that the hypothesis of the theorem is satisfied. It means that the entire
function g : C → C is of bounded l-index, and the analytic function Φ: Bn → C obeys (6).
Denote L̃(w) = |∇|Φ(w)l(Φ(w)). Replacing K in (7) by J and dividing it by (L̃(w))J , for
any J ∈ Zm

+ \ {0} we have

|H(J)(w)|
(L̃(w))J

≤ |g(∥J∥)(Φ(w))|
(L̃(w))J

· |∇|Φ(w))J +

∥J∥−1∑
k=1

|g(k)(Φ(w))|
(L̃(w))J

· |Qk,J(w)|.

Substituting L̃(w) = |∇|Φ(w)l(Φ(w)) in the last estimate, we deduce

|H(J)(w)|
(L̃(w))J

≤ |g(∥J∥)(Φ(w))|
(|∇|Φ(w))J(l(Φ(w)))∥J∥

· |∇|Φ(w))J+
∥J∥−1∑
k=1

|g(k)(Φ(w))|
(|∇|Φ(w))J(l(Φ(w)))∥J∥

· |Qk,J(w)|≤

≤ |g(∥J∥)(Φ(w))|
(l(Φ(w)))∥J∥

+

∥J∥−1∑
k=1

|g(k)(Φ(w))|
(|∇|Φ(w))J(l(Φ(w)))∥J∥

· |Qk,J(w)|. (10)

By Theorem 1, inequality (3) is valid for F = g, p = N(g, l) :

|g(N(g,l)+1)(z)|
(l(z))N(g,l)+1

≤ C1 ·max

{
|g(k)(z)|
(l(z))k

: 0 ≤ k ≤ N(g, l)

}
.

Applying this inequality with z = Φ(w) to (10), we obtain for ∥J∥ = N(g, l) + 1:

|H(J)(w)|
(L̃(w))J

≤ max
{ |g(k)(Φ(w))|

(l(Φ(w)))k
: 0 ≤ k ≤ N(g, l)

}
×

× max
∥J∥=N(g,l)+1

(
C1 +

∥J∥−1∑
k=1

|Qk,J(w)|
(|∇|Φ(w))J(l(Φ(w)))∥J∥−k

)
. (11)
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In view of (6), it is possible to deduce the upper estimate of |Qk,J(w)|

|Qk,J(w)| ≤

≤
∑

11p11
+...+1np1n+...+JpJ=J

0≤p11+...+p1n≤k−1

|ck,J,p11 ,...,pJ ||Φ
(11)(w)|p11 . . . |Φ(1n)(w)|p1n . . . |Φ(J)(w)|pJ ≤

≤
∑

11p11
+...+1np1n+...+JpJ=J

0≤p11+...+p1n≤k−1

|ck,J,p11 ,...,pJ |C
∥J∥
2 (l(Φ(w)))∥J∥/(N(g,l)+1)(|∇|Φ(w))J ≤

≤ ĉk,J(l(Φ(w)))
∥J∥/(N(g,l)+1)(|∇|Φ(w))J , (12)

where
ĉk,J = C

∥J∥
2

∑
11p11

+...+1np1n+...+JpJ=J

0≤p11+...+p1n≤k−1

|ck,J,p11 ,...,pJ |.

We substitute estimate (12) in (11) and use ∥J∥ = N(g, l)+1, that is, (l(Φ(w)))∥J∥/(N(g,l)+1) =
l(Φ(w)). Therefore, the following inequality is valid:

|H(J)(w)|
(L̃(w))J

≤ max
{ |g(k)(Φ(w))|

(l(Φ(w)))k
: 0 ≤ k ≤ N(g, l)

}
×

× max
∥J∥=N(g,l)+1

(
C1 +

∥J∥−1∑
k=1

ĉk,J(l(Φ(w)))
∥J∥/(N(g,l)+1)(|∇|Φ(w))J

(|∇|Φ(w))J(l(Φ(w)))∥J∥−k

)
=

= max
{ |g(k)(Φ(w))|

(l(Φ(w)))k
: 0 ≤ k ≤ N(g, l)

}
max

∥J∥=N(g,l)+1

(
C1 +

∥J∥−1∑
k=1

ĉk,J
(l(Φ(w)))∥J∥−1−k

)
.

Since l(Φ(w)) ≥ 1, one has (l(Φ(w)))∥J∥−1−k ≥ 1 for k ≤ ∥J∥ − 1. Thus, for ∥J∥ =
N(g, l) + 1

|H(J)(w)|
(L̃(w))J

≤ C3max
{ |g(k)(Φ(w))|

(l(Φ(w)))k
: 0 ≤ k ≤ N(g, l)

}
, (13)

where C3 = max∥J∥=N(g,l)+1(C1 +
∑N(g,l)

k=1 ĉk,J). Dividing equality (8) by lk(Φ(w)) and esti-
mating by the modulus, we deduce for each i ∈ {1, . . . , n}

|g(k)(Φ(w))|
lk(Φ(w))

≤

≤ |H(k1i)(w)|
lk(Φ(w))|Φ(1i)(w)|k

+
1

|Φ(1i)(w)|2klk(Φ(w))

k−1∑
j=1

|H(j1i)(w)||Φ(1i)(w)|j|Q̃j,k(w)| =

=
|H(k1i)(w)|

lk(Φ(w))|Φ(1i)(w)|k
+

k−1∑
j=1

Q̃j,k(w)|
|Φ(1i)(w)|2k−2jlk−j(Φ(w))

|H(j1i)(w)|
|Φ(1i)(w)|jlj(Φ(w))

.

Introducing the maximum of the fraction |H(j1i)(w)|
|Φ(1i)(w)|j lj(Φ(w))

over j ∈ {1, . . . , k}, we can
increase the previous estimate

|g(k)(Φ(w))|
lk(Φ(w))

≤ max
1≤j≤k

{
|H(j1i)(w)|

lj(Φ(w))|Φ(1i)(w)|j

}(
1 +

k−1∑
j=1

|Q̃j,k(w)|
lk−j(Φ(w))|Φ(1i)(w)|2(k−j)

)
.
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Substituting the expression from (9) instead of Q̃j,k(w), we obtain

|g(k)(Φ(w))|
lk(Φ(w))

≤ max

{
|H(j1i)(w)|

lj(Φ(w))|Φ(1i)(w)|j
: 1 ≤ j ≤ k

}
×

×
(
1 +

k−1∑
j=1

∑
m1+2m2+...+kmk=2(k−j)

|bj,k,m1,...,mk
| |Φ

(1i)(w)|m1 · . . . · |Φ(k1i)(w)|mk

lk−j(Φ(w))|Φ(1i)(w)|2(k−j)

)
. (14)

Estimating (6) and l(z) ≥ 1 gives us

|Φ(s1i)(w)| ≤ C2l
s/2(Φ(w))|Φ(1i)(w)|s,

because s/2 ≥ 1/(N(g, l)+1) for s ∈ {1, 2, . . . , N(g, l)+1}. Substituting the right-hand side
of this inequality in (14), we deduce

|g(k)(Φ(w))|
lk(Φ(w))

≤max

{
|H(j1i)(w)|

lj(Φ(w))|Φ(1i)(w)|j
: 1 ≤ j ≤ k

}(
1+

k−1∑
j=1

∑
m1+2m2+...+kmk=2(k−j)

|bj,k,m1,...,mk
|(C2)

m1+m2+...+mk
(l(Φ(w)))(m1+2m2+...+kmk)/2|Φ(1i)(w)|m1+2m2+...+kmk

lk−j(Φ(w))|Φ(1i)(w)|2(k−j)

)
.

Since m1 + 2m2 + . . . + kmk = 2(k − j), we obtain (l(Φ(w)))k−j|Φ(1i)(w)|2(k−j) in the
nominator under the sum. The expression matches with the denominator and reduces with
it. Thus, it yields

|g(k)(Φ(w))|
lk(Φ(w))

≤ C4max

{
|H(j1i)(w)|

lj(Φ(w))|Φ(1i)(w)|j
: 1 ≤ j ≤ k

}
, (15)

where

C4 = 1+
k−1∑
j=1

∑
m1+2m2+...+kmk=2(k−j)

|bj,k,m1,...,mk
|(C2)

m1+m2+...+mk .

Then, from inequality (13) and (15), we obtain for each i ∈ {1, . . . , n} and ∥J∥ =
N(g, l) + 1

|H(J)(w)|
(L̃(w))J

≤ C5max

{
|H(j1i)(w)|

lj(Φ(w))|Φ(1i)(w)|j
: 0 ≤ j ≤ N(g, l)

}
, (16)

where C5 = C3C4. Estimate (16) is established by the assumption that every component
of the gradient ∇Φ does not vanish, i.e., Φ(1i)(w) ̸= 0. Our proof is significant for equa-
lity (8), providing an estimate of the k-th order derivative of the function g by smaller-order
partial derivatives of the function H in the variable wi. Similarly to [2], by the method
of mathematical induction an analog of (8) can be proved for the mixed partial derivative
J ∈ Zn

+ :

g(∥J∥)(w) =
H(J)(w)

(∇Φ(w))J
+

1

(∇Φ(w))2J

∑
0<∥K∥≤∥J∥−1,

K≤J

H(K)(w)(∇Φ(w))KQ∗(w; J,K),
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where Q∗(w; J,K) is constructed by analogy to Qj,K(w), Q̃j,k(w). Then, repeating consi-
derations from (10) to (16) as in [2], we deduce for ∥J∥ = N(g, l) + 1

|H(J)(w)|
(L̃(w))J

≤ Cmax

{
|H(K)(w)|

(l(Φ(w)))∥K∥|∇Φ(w)|K
: 0 < ∥K∥ ≤ N(g, l), K ≤ J

}
, (17)

where C > 1 is a constant.
We should like to point out that L(w) = l(Φ(w))max{1, |∇|Φ(w)}. We introduce the

function L to inequality (17) for ∥J∥ = N(g, l) + 1 in the following form:

|H(J)(w)|
(L(w))J

· (L(w))
J

(L̃(w))J
≤ Cmax

{
|H(K)(w)|
(L(w))K

· (L(w))
K

(L̃(w))K
: 0 < ∥K∥ ≤ N(g, l), K ≤ J

}
.

Inverting the fraction (L(w))J

(L̃(w))J
, one has

|H(J)(w)|
(L(w))J

≤ C
(L̃(w))J

(L(w))J
max

{
|H(K)(w)|
(L(w))K

· (L(w))
K

(L̃(w))K
: 0 < ∥K∥ ≤ N(g, l), K ≤ J

}
.

Applying max
a,b∈A⊂R+

{a · b} ≤ max
a∈A⊂R+

{a} · max
b∈A⊂R+

{b} with a finite set A to the right-hand

side of the inequality, we establish

|H(J)(w)|
(L(w))J

≤ C
(L̃(w))J

(L(w))J
max

{
|H(K)(w)|
(L(w))K

: 0 < ∥K∥ ≤ N(g, l), K ≤ J

}
×

×max

{
(L(w))K

(L̃(w))K
: 0 < ∥K∥ ≤ N(g, l), K ≤ J

}
.

Since max{a : a ∈ A ⊂ R+} = 1
min{1/a : a∈A⊂R+} , the last estimate can be rewritten as

|H(J)(w)|
(L(w))J

≤
C(L̃(w)/L(w))J max

{
|H(K)(w)|
(L(w))K

: 0 < ∥K∥ ≤ N(g, l), K ≤ J
}

min{(L̃(w)/L(w))K : 0 < ∥K∥ ≤ N(g, l), K ≤ J}
. (18)

Let T0 = T (w) = L̃(w)/L(w) = |∇|Φ(w)
max{1,|∇|Φ(w)} ∈ Rn

+ and K0 ≤ J, 0 < ∥K0∥ ≤ N(g, l)

(K0 ∈ Zn
+) be such that (T0)

K0 = min{TK
0 : 0 < ∥K∥ ≤ N(g, l), K ≤ J}. One should

observe that T0 ∈ (0, 1]n and ∥J − K0∥ ≥ N(g, l) + 1 − N(g, l) = 1, and J − K0 ≥ 1s for
some s ∈ {1, . . . , n}. Hence, TJ

0

T
K0
0

= T J−K0
0 ≤ T 1s

0 ≤ 1.

Therefore,

(L̃(w)/L(w))J

min{(L̃(w)/L(w))K : 0 < ∥K∥ ≤ N(g, l), K ≤ J}
= T J−K0

0 ≤ T 1s
0 ≤ 1.

Thus, from inequality (18), we obtain

|H(J)(w)|
(L(w))J

≤ Cmax

{
|H(K)(w)|
(L(w))K

: 0 < ∥K∥ ≤ N(g, l), K ≤ J

}
. (19)
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Let J∗ ∈ Z.+ be such that max∥J∥=N(g,l)+1
|H(J)(w)|
(L(w))J

= |H(J∗)(w)|
(L(w))J∗ and ∥J∗∥ = N(g, l) + 1.

Then, we deduce from (19)

max

{
|H(J)(w)|
(L(w))J

: ∥J∥ = N(g, l) + 1

}
=

|H(J∗)(w)|
(L(w))J∗ ≤

≤ Cmax

{
|H(K)(w)|
(L(w))K

: 0 < ∥K∥ ≤ N(g, l), K ≤ J∗
}

≤

≤ Cmax

{
|H(K)(w)|
(L(w))K

: 0 < ∥K∥ ≤ N(g, l)

}
(20)

for all w such that Φ(1i)(w) ̸= 0.
If Φ(1i)(w) = 0 for some i, then for any J ∈ Zn

+ with ∥J∥ ≤ N(g, l) + 1 and Ji ̸= 0
inequality (6) implies Φ(J)(w) = 0. In view of (7), it means H(J)(w) = 0. Thus, inequality
(20) also holds for the points w belonging to zero for at least one component of the gra-
dient ∇Φ.

Therefore, by Theorem 1, we conclude that the function H belongs to the class of func-
tions with finite L-index in joint variables.

Remark 1. On our opinion, it would be interesting to establish an analogue of Theorem 3
for the composition H(w) = g(Φ(w)) : Bn → Cm, where g : C → Cm is an entire vector-
valued function and Φ: Bn → C is an analytic function in the unit ball Bn, or even for the
composition of the most general form H(w) = G(Φ(w)) : Bn → Cm, where G : Ck → Cm is
an entire vector-valued function of several complex variables and Φ: Bn → Ck is an analytic
vector-valued function in the unit ball Bn. There are few papers on the classes of vector-
valued functions of a single variable ( [20–22]), and of several variables ( [19, 23]). Similar
problem also can be considered for functions analytic in the unit polydisc (see auxiliary
results in [7] for this class of analytic functions with bounded L-index in direction).

Remark 2. We can not deduce analog of Theorem 3 for a more general composition of
entire and analytic functions in the unit ball such as f(φ1(w1), φ2(w2)) because under usage
of methods from this assertion we obtain that |φ′

1(w1)/φ
′
2(w2)| or similar expression must

be bounded in w1 and w2.
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