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In this paper, we study Galton-Watson branching processes with immigration. These pro-
cesses are an extension of the classical Galton-Watson model, incorporating an additional
mechanism where new individuals, called immigrants, enter the population independently of
the reproduction dynamics of existing individuals. We focus on the multi-type case, where
individuals are classified into several distinct types, and the reproduction law depends on the
type. A crucial role in the study of multi-type Galton-Watson processes is played by the matrix
M , which represents the expected number of descendants of different particle types, and its
largest positive eigenvalue, ρ. Sequences of branching processes with primitive matrices M and
eigenvalues ρ converging to 1 are referred to as near-critical.

Our focus is on the random vector Yn, representing the total number of particles across all
generations up to generation n, commonly called the total progeny, in near-critical multi-type
Galton-Watson processes with immigration. Assuming the double limit n(ρ−1) exists as n → ∞
and ρ → 1, we establish the limiting distribution of the properly normalized vector Yn. This
result is derived under standard conditions imposed on the probability generating functions of
the offspring and immigration component.

1. Introduction. The study of branching processes dates back to the 19th century when
Francis Galton and Henry Watson posed the problem of the extinction of aristocratic families.
This question had been investigated independently earlier by the French mathematician
Irenee-Jules Bienayme. Today, they are used in biology, physics, epidemiology, computer
science, genetics, and finance to model branching phenomena and population dynamics.
Objects, typically called particles or individuals, represent entities within the system that
contribute to the branching structure, whether through reproduction, transformation, or
propagation of influence.

One of many generalizations of Galton-Watson processes is allowing a number of disti-
nguishable particles with different probabilistic behavior. Such processes are called multi-type
Galton-Watson processes. Those processes can represent genetic types in animal populati-
ons, mutant types in bacterial populations, electrons, photons, etc. Another generalization
allows particles to enter the process from outside the system, forming what are known as
processes with immigration. We refer the reader to the classic papers [1, 6] for fundamental
results in Galton-Watson theory. Pakes [11] studied processes describing the total number
of particles (called total progeny) living in the critical process. Pakes [12] also studied the
total progeny in critical processes with immigration in the one-dimensional case.
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Fahady has studied the near-critical Galton-Watson processes [4] in the one-dimensional
case and Quine [13] in the multidimensional case. Inhomogeneous multi-type nearly criti-
cal Galton-Watson branching processes with immigration were studied in [14]. Nagaev and
Karpenko [7, 8] studied the total descendants in the near-critical one-dimensional processes
without immigration. The functional limit theorem for the total progeny in the one-dimensio-
nal near-critical processes with immigration was proved in [9] (see also the references there).
In addition, large and moderate deviations for the total progeny in the one-dimensional
near-critical Galton-Watson processes were investigated in [5] and [10].

In this paper, we derive limiting distributions for the total progeny in multi-type near-
critical processes with immigration, a result that, to the best of our knowledge, has not
appeared in the literature before.

2. Main results. Let X be the set of all d-tuples i = (i1, . . . , id)
′ with non-negative integer

entries and let C =
{
s ∈ X : sk ≤ 1 for all k ∈ {1, . . . , d}

}
be the d-dimensional unit ‘cube’.

Set 1 = (1, 1, . . . , 1)′ and 0 = (0, 0, . . . , 0)′. Here and subsequently, the prime ′ denotes
the transpose. Given s, w ∈ Rd, we write sw, s/w and sw instead of (s1w1, . . . , sdwd)

′,
(s1/w1, . . . , sd/wd)

′ and sw1
1 sw2

2 · · · swd
d . Let vw′ and v′w denote the dot and tensor product

of vectors v and w respectively. Then v′wu is a product of a vector u and the scalar v′w.
For any square matrix G of order d and vector v, v′G stands for the standard product of
the row v′ and the matrix G, while vG denotes a new matrix in which the i-th row is the
corresponding row of G multiplied by vi. We also write v ≤ w or v < w, if vk ≤ wk or
vk < wk for all k ∈ {1, . . . , d}.

The multi-type Galton-Watson process is a homogeneous vector Markov process {Tn}n∈Z+ ,
where Tn ∈ X and T0 = 1. Those vectors denote generations of particles, starting from the
parent particle, which forms generation T0, descendants of this particle form generation T1,
and so on. The i-th entry Tn,i of the vector Tn is treated as the number of particles of type
i in the n-th generation.

Let f1,m be the probability generating function (p.g.f.) of T1, provided the process started
with a particle of type m, i.e., T0 = em. Then

f1,m(s) =
∑
i∈X

pm(i)s
i, s ∈ C,

where pm(i) = P (T1 = i|T0 = em). By fn,m we denote the p.g.f. of Tn, provided the process
started with a particle of type m. Write

f = (f1,1, . . . , f1,d)
′, fn = (fn,1, . . . , fn,d)

′.

It is well known [6, p.36], that fn(s) = f(fn−1(s)), i.e., fn,m(s) = f1,m(fn−1(s)). We also
introduce the matrix M(s, f) = ∥Mkl(s)∥dk,l=1 of the first moments Mkl(s) =

∂f1,k
∂sl

(s) of T1.
Let {Hi}∞i=1 ⊂ X be i.i.d. vectors with the p.g.f. g(s) =

∑
i∈X p(i)s

i.
Let W n,j

l be random vectors with p.g.f. f1,j. The Galton-Watson process with immigration
is defined by the sequence

Z0 = H0, Zn+1 =
d∑

j=1

Zn,j∑
l=1

W n,j
l +Hn+1, n = 0, 1, . . . , (1)

where vectors W n,j
l belonging to the same generation are independent, and the vectors H’s

and W ’s are also assumed to be independent. The random process is uniquely defined by
the vector f and function g.

The random vector Yn =
∑n

j=0 Zj is called the total progeny of a Galton-Watson process
with immigration.
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For a given natural number U and positive constants a, b, c, we introduce the class
K = K(a, b, c, U) of probability generating functions f such that

(A) [MU(1, f)]kl ≥ a (∀k, l ∈ {1, . . . , d});

(B)
d∑

k,l,m=1

∂f 2
1,k

∂sl∂sm
(1) ≥ b; (C)

d∑
k,l,m,j=1

∂f 3
1,k

∂sl∂sm∂sj
(1) ≤ c.

The first two conditions ensure that the process is positively regular and not singular [6,
p. 38]. Given the Perron-Frobenius theorem, the process is also irreducible and the matrix
M(1, f) has the Perron root ρ(f), that is a positive eigenvalue and any other eigenvalue
(possibly complex) in absolute value is strictly smaller than ρ(f).

We call the Galton-Watson process subcritical if ρ(f) < 1, critical if ρ(f) = 1, and
supercritical if ρ(f) > 1.

Given f ∈ K, let µ(f) be the vector of extinction probabilities
µj(f) = P (∪n≥1{Zn = 0}|Z0 = ej), j ∈ {1, . . . , d}.

This vector is the smallest root of the equation f(s) = s [6, Theorem 7.1.]. Let ρµ(f) be the
Perron root of M(µ, f). If ρ(f) ≤ 1, then µ(f) = 1, and therefore ρµ(f) = ρ(f). In the case
ρ(f) > 1, we have µ(f) < 1, and , in general, the values ρµ(f) and ρ(f) are different.

We introduce the vector of immigration λ(b) = ∇g(s)|s=1 as the gradient of p.g.f. b
for Hi at the point 1. Let J = J (d1, d2) be the class of immigration p.g.f.’s g, for which the
following conditions

(A0) g(1) = 1; (B0)
d∑

k=1

λk(g) ≥ d1; (C0)
d∑

k,l=1

∂2g

∂sk∂sl
(1) ≤ d2

hold. Also, for each f ∈ K, we set

q(f) =
1

2

d∑
k,l,m=1

∂2f1,k
∂sl∂sm

(1) ulumvk,

where v = v(f) and u = u(f) are the left and the right eigenvectors of M(1, f) that
correspond the Perron root and subject to the normalized conditions u′1 = 1 and u′v = 1.

Before formulating the main result, we introduce some notation. For x, y > 0, we write

z±(x, y, f) =
1

2

√
1 +

4q(f)y

x∓1 − 1± lnx
, w±(x, y, f) =

2z±(x, y, f)∓ 1

2z±(x, y, f)± 1
.

In this paper, we study the nearly critical case of the Galton-Watson process. So, we choose
a sequence {f (n)}∞n=1 ⊂ K(a, b, c, U) of p.g.f.’s such that f (n) → f ∗ in Rd and ρ(n) = ρ(f (n))
is close to 1 for large n. We assume that the asymptotic formula ρ(n) = 1∓ ln r

n
+ o

(
1
n

)
holds

as n→ ∞, where r is some fixed number taken from (0, 1]. Define

ℓn(r) =
n2

2
if r = 1, ℓn(r) =

ρnn − 1 + n(1− ρn)

(1− ρn)2
if r < 1 and ρ(n) < 1,

ℓn(r) =
ρ−n
µ,n − 1− n(1− ρµ,n)

(1− ρµ,n)2
if r < 1 and ρ(n) > 1,

where ρµ,n = ρµ(f
(n)). Let mn = ℓn(r)v(f

(n)). We set γ(f, g) = λ′(g)u(f)/q(f) and introduce
the function

Ψ±(τ, r, f, g) = r±
1
2
γ(f,g)

(
rz±(τ,r,f) + w±(τ, r, f)r

−z±(τ,r,f)

1 + w±(τ, r, f)

)−γ(f,g)

.

Let us choose positive numbers τ1, . . . , τd such that τ =
∑d

k=1 τk and set

sn =
(
e

−τ1
mn,1 , . . . , e

−τd
mn,d

)
.
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Theorem 1. For f (n) ∈ K and g ∈ J , we consider the sequence of the Galton-Watson
processes with immigration Z

(n)
n given by (1). Let Yn be the total progeny of the n-th

random process for the n-th generation. If f (n) → f ∗ and ρ(f ∗) = 1, then there exists a
limit, as n→ ∞, of the probadility generating function E

(
sYn
n

)
of the total progeny Yn.

Suppose the Perron roots for f (n) admit the asymptotics ρ(n) = 1 + o
(
1
n

)
as n → ∞,

then
E
(
sYn
n

)
→

(
cosh

√
2τq(f ∗)

)−γ(f∗,g)

, n→ ∞.

If the Perron roots approach 1 more slowly, namely ρ(n) = 1∓ ln r
n

+ o
(
1
n

)
as n→ ∞ for

some fixed r ∈ (0, 1), then
E
(
sYn
n

)
→ Ψ±(τ, r, f

∗, g), n→ ∞.

3. Preliminary results. The proof of Theorem 1 is divided into several lemmas.
By Kρ we denote subset of functions f from K for which the Perron root of M(1, f) equals

to ρ. We define σ(n, s) = σ(n, s, ρ(f)) = 1
n
+ (1− ρ(f))2 + |1− s|. By α(n, s) = α(n, s, ρ(f))

we denote such infinitesimal that sup{α(n, s, ρ(f)) : f ∈ Kρ} → 0, σ(n, s) → 0. Unnecessary
arguments in σ(n, s) and α(n, s) will be dropped. For simplicity, we will assume throughout
the paper that all coordinates 1 − s converge to 0 at the same rate as σ(n, s) goes to 0,
meaning that there exist positive constants c1 and c2 such that c1 ≤ 1−sk

1−sm
≤ c2, σ(n, s) →

0, k,m ∈ {1, 2, . . . , d}. We also assume that rate of convergence of components 1 − sk of
the vector 1 − s are at least of the order O(min{ 1

n2 ,
1−ρ(f)

n
}) as σ(n, s) → 0. Our choice of

normalizing sequences in Theorem 1 guarantees that those assumptions are satisfied.
For matrices M(s, f), let ρs(f) be the Perron root; us(f), vs(f) be the right and the left

eigenvectors corresponding to ρs(f), for which the normalisation conditions u′s(f)vs(f) =
u′s(f)1 = 1 are also satisfied. By ρ̂s(f), we denote the second largest in magnitude eigenvector
of M(s, f). If s is sufficiently close to 1, then the Perron root exists, as guaranteed by the
Perron-Frobenius theorem. To simplify the notation, we will omit the argument f in the
defined above functions. Thus, we will write M(s), ρs, q, w±(τ, r), and similar expressions
instead of M(s, f), ρs(f), q(f), w±(τ, r, f), etc., unless it becomes necessary to explicitly
specify the dependence on f .

Lemma 1. For a fixed s0, 0 < s0 ≤ 1, there exist constants 0 < η = η(s0, a, U), d̂ =

d̂(s0, c, U, d2) < +∞, such that for all f ∈ K, g ∈ J, k, l,m ∈ {1, 2, . . . , d} and s ∈ Cs0 : {s :
0 < s0 ≤ s ≤ 1} the following inequalities hold:

i) ρs(f) ≥ η; ii) ρ̂s(f)
ρs(f)

≤ 1− η; iii) Mlm(s, f) ≤ d̂; iv) ∂2f1,k
∂sl∂sm

(s) ≤ d̂; v) vs,k(f) ≤ 1/η;

vi) us,k(f) ≥ η; vii) vs,k(f) ≥ η; viii) λ′(b)u(f) ≤ λ′(b)1 ≤ d̂.

Proof. Lemma 1 for s0 = 1 was proved by M.P. Quine in [13, Lemma 3].
Let d(f 1, f 2) = maxk∈{1,2,...,d}(supi∈X |pk(i, f 1)− pk(i, f

2)|). M.P. Quine proves that with
this metric K is a compact, therefore every sequence f (n) has a convergent subsequence
f (nk). Let f (n) → f ∗ in metrics d(·, ·). It is easy to show that Mml(s, f

(n)) → Mml(s, f
∗) if

f (n) → f ∗ as n → ∞. Using this fact and condition (A), it is easy to show that for fixed
s ∈ C there exists a constant a(s), such that [MU(s, f)]ml ≥ a(s),m, l ∈ {1, 2, . . . , d}, f ∈ K.
Given that Mml(s, f) are increasing in s, a(s) must be non-decreasing. Therefore, for all
s ≥ s0, we have

a(s) ≥ a(s0) > 0. (2)
The product of two compact spaces is compact; hence, Cs0 × K is compact. Since ei-

genvalues are continuous functions of their matrices, ρs(f) attains its lower bound η = ρs∗(f
∗)
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for some point s∗ ∈ Cs0 and f ∗ ∈ K. Using (2) and the Perron-Frobenius theorem, we ensure
its positivity and thus prove (i). The rest of the estimates follow similarly, using Quine’s
technique.

Conditions (i) and (ii) of Lemma 1, together with condition (C), ensure that the condi-
tions of the theorem in cite [2] are satisfied for the matrices M(s,f)

ρs
. As a result for all f ∈ K

and all s ∈ Cs0 , there exists a sequence δn converging to zero such that

(1− δn)us(f)v
′
s(f) ≤

Mn(s, f)

ρns
≤ (1 + δn)us(f)v

′
s(f). (3)

Now we provide the Taylor expansions for f(s).
The Taylor expansion (or a Taylor-type expansion at the point 1, see Joffe and Spitzer [3]

and Quine [13]) of the vectors f(s) at a point s0, where s, s0 ∈ C, s0 > s, gives

f(s0)− f(s) =M(s0)(s0 − s)− E(s)(s0 − s), (4)

where 0 ≤ E(s) ≤M(s0), E(s) → 0, s→ s0, s ≤ t =⇒ E(t) ≤ E(s),

f(s0)−f(s) =M(s0)(s0−s)−w[s0, s0−s]+es[s0, s0−s] =M(s0)(s0−s)−ŵ[s0, s0−s], (5)

with

wk[s0, s] =
1

2

d∑
l,m=1

∂2f1,k
∂sl∂sm

(s0)slsm, 0 ≤ es[·] ≤ w[·], es[s0, ·] → 0 as s→ s0. (6)

The Taylor expansion (or modification of the Joffe and Sitzer method at the point 1) for
the gradients Mk(s) = (Mk1(s), . . . ,Mkd(s))

′ for k ∈ {1, . . . , d} gives
Mk(s)−Mk(s0) = wk(s0)(s− s0)− Ek(s)(s− s0),

where wk(s0) = ∥wklm(s0)∥dl,m=1, wklm(s0) =
∂2f1,k
∂sl∂sm

(s0) and 0 ≤ Ek(s) ≤ wk(s0), Ek(s) → 0,
s→ s0, or in matrix form

M(s)−M(s0) = w(s0, s)− Ê(s0, s) = ŵ(s0, s), (7)

where w(s0, s) = ∥wkm(s0, s)∥dk,m=1, wkm(s0, s) = [wk(s0)(s− s0)]m,

Ê(s0, s) = ∥Êkm(s0, s)∥dk,m=1 and Êkm(s0, s) = [Ek(s)(s− s0)]m.
Finally, we provide the representation for the immigration p.g.f., given by M.P. Quine [13]

1− g(s) = λ′(1− s)− d′[s](1− s), (8)

where 0 ≤ dk[s] ≤ d2
2

∑d
l=1(1− sl) (∀k ∈ {1, 2, . . . , d}).

Lemma 2. Let 0 < s0 ∈ C. Then there exist a positive constant cm, such that for any
x, y ∈ Cs0 and any f ∈ K the following holds

|v′x(f)M(y, f)ux(f)− ρy(f)| ≤ cm|x− y|2. (9)

Proof. In view of normalisation v′sus, we can rewrite v′s1M(s2)us1 − ρs1 as

v′xM(y)ux − ρy = v′xM(y)(ux − uy) + (vx − vy)
′M(y)uy = (vx − vy)

′M(y)(ux − uy)+

+ρy(v
′
y(ux − uy) + (vx − vy)

′uy) = (vx − vy)
′M(y)(ux − uy) + ρy(v

′
yux + v′xuy − 2). (10)

The inequalities (i) and (ii) of Lemma 1 guarantee (a consequence of the Implicit functi-
on theorem) that the vectors vs are differentiable functions of s on the compact Cs0 × K.
Therefore, we can express their Taylor expansions as

vx = vy + (V (y) + Ev(x))(x− y), (11)
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where V (y) =
∥∥Vkl(y)∥∥k,l∈{1,...,d} , Vkl(y) = ∂vk(y)

∂yl
, [Ev(x)]kl → 0, x → y. Note that Vkl(x)

must be bounded on the compact Cs0 ×K. Multiplying the transposed equation (11) by uy,
we obtain v′xuy − 1 = ((V (y) + Ev(x))(x− y))′ uy. Similarly, we can show that v′yux − 1 =

= − ((V (y) + Ev(x))(x− y))′ ux. From these two equations, we get

v′yux + v′xuy − 2 = ((V (y) + Ev(x))(x− y))′ (uy − ux). (12)

The vectors ux are also differentiable on the compact Cs0 × K, so their derivatives are
uniformly bounded, and hence, (12) implies

|v′yux + v′xuy − 2| ≤ c1m|x− y|2. (13)

Lemma 1 (iii) also shows that

|(vx − vy)
′M(y)(ux − uy)| ≤ c2m|x− y|2. (14)

The relations (10), (13) and (14) yield (9).

Lemma 3. Let θn = n ln ρµ. If σ(n) → 0, then

θn = −n|1− ρ|(1 + α(n)), (15)

If ρ > 1, then

1− µ =
(ρ− 1)

q
u(1+ α), (16)

(1− ρµ) = (ρ− 1)(1 + α). (17)

Proof. From [13], we know that

1− fn(s) = v′(1− fn(s))(u+ α(n, s)) = ψn(1− s)(u+ α(n, s)), s ∈ C, (18)

where ψn(s) =
ρnv′s

1+πnqv′s
, π0 = 0, πn =

∑n
j=1 ρ

j−2. Since µ = f(µ) = · · · = fn(µ), we get

1− µ = 1− fn(µ) = ρn
v′(1− µ)

1 + πnqv′(1− µ)
(u+ α(n)). (19)

Premultiplying the left and right sides of (19) by v′ and taking into consideration the normali-
sation condition v′u = 1, we get the equation v′(1−µ) = ρn v′(1−µ)

1+πnqv′(1−µ)
(1+α(n)). Solving this

equation for v′(1−µ) gives v′(1−µ) = −(1− ρn(1 + α(n)))/qπn. Since ρn ≤ ĉ as σ(n, s) → 0,
then 1− ρn(1+α(n)) = (1− ρn)(1+α(n)), we have v′(1−µ) = (ρ− 1)q−1(1+α(n)), which
gives (16) by the first equality in (18) (α(n) = α, since 1− µ doesn’t directly depend on n).

Since 1− µ = α by (16), and ρs are differentiable functions of s on the compact, it must
be the case that ρ = ρµ + α. Therefore, to prove (17), it is sufficient to show that ρµ < 1.

Suppose the opposite ρµ > 1. Let uµ be the right eigenvector of ρµ, which we know to be
positive. Take a small β > 0, k ∈ {1, 2, . . . , d}, then

f1,k(µ− βuµ) = f1,k(µ)− β

d∑
l=1

Mkl(µ)uµ,l + o(β) =

= µk − βρµuµ,k + o(β) = µk − βuµ,l − (ρµ − 1)βuµ,l(1 + o(1)) < µk − βuµ,l. (20)
The relation (20) implies that the map f = f(s) maps the set 0 ≤ s ≤ µ − αuµ to itself.
Therefore, by Brauer’s theorem, there exists a fixed point s∗ = f(s∗) on 0 ≤ s ≤ µ − βuµ.
But µ itself is the smallest fixed point on 0 ≤ s ≤ 1, which contradicts our assumption that
ρµ > 1 and proves (17).

The relation (15) follows directly from (17) and the Taylor expansion for the logarithm.
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It is known [15, p. 7] that t0(s) = s and tn(s) = sf(tn−1(s)). Additionally, according to
Pakes [11], there exists a unique solution h∗ = h∗(s) to the equation in the one-dimensional
case h(s) = sf(h(s)), s < 1. This solution is the limit of a strictly decreasing sequence tn(s).
The same result can easily be extended to the multi-dimensional case (Wang proves similar
equality in [15]).

Lemma 4. Let σ(n, s) → 0. Then for s ∈ Cs0,

v′µµ(1− s) = v′µ(µ− h∗)α(s), v′µ(µ− h∗) = α(s), (21)
v′h∗(tn(s)− h∗) = α(n, s). (22)

Proof. Expansion (5) gives
h∗ = sf(h∗) = s (µ−M(µ)(µ− h∗) + ŵ[µ, µ− h∗]) . (23)

Let sm = mink∈{1,2,...,d}(sk). Then, after subtracting sh∗ from the previous equation and
premultiplying it by v′µ, we get

v′µ (s(µ−M(µ)(µ− h∗))− sh∗) = v′µs((I −M(µ))(µ− h∗)) ≥
≥ smv

′
µ((I −M(µ))(µ− h∗)) = sm(1− ρµ)v

′
µ(µ− h∗) ≥ 0. (24)

Since h∗(s) ≤ h∗(1) = µ, relations (23) and (24) imply v′µsŵ[µ, µ − h∗] ≤ v′µh
∗(1 − s) ≤

v′µµ(1 − s). Using (23), the previous inequality, and (17), we derive v′µ(µ − h∗) = v′µµ(1 −
s) + v′µs (M(µ)(µ− h∗)− ŵ[µ, µ− h∗]) = v′µµ(1− s) + v′µ(µ− h∗)(1 + α(s)).
From those equations follows the first part of (21). Using (5), we have

µ− h∗ = µ− sf(h∗) = µ(1− s) + s (M(µ)− Eh∗) (µ− h∗),
from which follows v′µ(µ − h∗) ≤ v′µ(1 − s) + v′µM(µ)(µ − h∗) = v′µ(1 − s) + ρµv

′
µ(µ − h∗).

Thus, v′µ(µ− h∗) ≤ v′µ(1− s)/(1− ρµ). Since the components of 1− s have rate of at least
1−ρ
n

as σ(n, s) → 0, last inequality and Lemma 1 (vii) prove the second part of (21).
Since h∗ ≤ tn(s), µ ≤ 1, µ−h∗ = α(s) by (21), and 1−µ = α by (16), we obtain (22).

Lemma 5. Let σ(n, s) → 0, then

µ− h∗ = v′µ(µ− h∗)uµ(1+ α(s)). (25)

tn(s)− h∗ = v′h∗(tn(s)− h∗)uh∗(1+ α(n, s)); (26)

Proof. Let us proceed to prove (25). Choose sequence fn ∈ K, for which ρ(fn) → 1. Denote
µ(fn) = µn, h

∗(fn) = h∗n. Since µ = f(µ) and h∗ = sf(h∗), using (4) repeatedly, we derive
µn − h∗n = µn(1− s) + s(M(µn)− E(h∗n))(µn − h∗n) = . . .

. . . =
n−1∑
k=0

(s(M(µn)− E(h∗n)))
k µn(1− s) + (s(M(µn)− E(h∗n)))

n (µn − h∗n).

From the remark at the beginning of the chapter, 1 − sj = O(min{ 1
n2 ,

1−ρ
n
}), we see that

skj = 1 + α(n, s), k ∈ {0, 1, .., n}. Then the previous inequality gives

µn−h∗n =
( n−1∑

k=0

(M(µn)−E(h∗n))
)k

µn(1−s)+(M(µn)−E(h∗n))n(µn−h∗n)(1+α(n, s)). (27)

Let P (n) = ρ−1
µn
M(µn), A(n, s) = ρ−1

µn
E(h∗n), B(n, s) = P (n)−A(n, s). From (3) it follows

that Pm(n) → R(n) = u′µn
vµn , m → ∞, uniformly for n. Having this, a simple but tedious

application of Quine’ and Spitzer’s methods to (27), gives (25).
The proof of (26) follows similarly.
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We define a∗ = a∗(s) = ρh∗v′h∗suh∗ , qh∗ = v′h∗sw[h∗, uh∗ ],
R1 = R1(s, n) = qh∗(1− an∗ ), R2 = R2(s) = (1− a∗)/v

′
h∗(s− h∗), R = R1/R2.

To prove Lemma 7 and the main theorem, we need the next lemma from [7].

Lemma 6 (Karpenko, Nagaev [7]). Let πk(ρ, s) be a sequence of non-negative functions (or
vector functions) such that lim

σ(n,s)→0
sup{πk(ρ, s) : f ∈ Kρ} <∞ for all k ∈ N and

lim
σ(n,s)→0

inf
{∑n

k=1 πk(ρ, s) : f ∈ Kρ

}
= ∞.

Then
∑n

k=1 πk(ρ, s)α(k, s) =
∑n

k=1 πk(ρ, s)α(n, s).

Define

q(s0) = q(s0, f) =
1

2

d∑
k,l,m=1

∂2f1,k
∂sl∂sm

(s0) us0,lus0,mvs0,k,

W = W (s, ρµ) =
4q(µ)v′µ(1− s)

(1− ρµ)2
, V = V (s, ρµ) =

√
1 +W.

Lemma 7. Let σ(n, s) → 0, then

tn(s)− h∗ =
(1− a∗)a

n
∗ (1 + α(n, s))

R2(1−R(1 + α(n, s)))
(1+ α(n, s)); (28)

µ− h∗ =
(1− ρµ)(V − 1)

2q(µ)
uµ(1+ α(s)). (29)

Proof. Relations (5), (6), and (26) give

tn+1(s)− h∗ = sM(h∗)(tn(s)− h∗) + (v′h∗(tn(s)− h∗))2sw[h∗, uh∗ ](1 + α(n, s)). (30)

After multiplying (30) from the left-hand side by v′h∗ , we obtain

v′h∗(tn+1(s)− h∗) = ρh∗v′h∗(h∗ − hn(s))
v′h∗sM(h∗)(tn(s)− h∗)

ρh∗v′h∗(tn(s)− h∗)
+

+(v′h∗(tn(s)− h∗))2qh∗(1 + α(n, s)). (31)

Taking into account the normalisation v′h∗uh∗ = 1 and using (26), we get

ρh∗
v′h∗sM(h∗)(tn(s)− h∗)

ρh∗v′h∗(tn(s)− h∗)
= a∗

(
1−

(
1− (vh∗s)′uh∗(1+ α(n, s))

(vh∗s)′uh∗v′h∗uh∗(1+ α(n, s))

))
=

= a∗

(
1− ((vh∗(1− s))′ − (vh∗(1− s))′uh∗v′h∗)uh∗α(n, s)

(vh∗s)′uh∗v′h∗uh∗(1+ α(n, s))

)
.

Let xn = v′h∗(tn(s) − h∗), bn(s) = 1 − ((vh∗ (1−s))′−(vh∗ (1−s))′uh∗v
′
h∗ )uh∗α(n,s)

(vh∗s)′uh∗v
′
h∗uh∗ (1+α(n,s))

. Then, using the
previous equation and (31), we obtain the equation

xn+1 = a∗bn(s)xn + qh∗x2n(1 + α(n, s)). (32)

Now proceed as in [7, p. 442]. Let yn = 1/xn. Then (32) give

yn = a∗bn(s)yn+1 + qh∗
xn
xn+1

(1 + α(n, s)). (33)
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The relation (22) shows that x2
n

xn+1
= α(n). Note that a∗ = 1 + α(s), qh∗ = q(h∗) + α(s).

Assumption made on the rate of convergence of 1− s and parts (v)-(vii) of Lemma 1 shows
that

∏k
l=1 bl(s) = 1 + α, k ∈ {1, . . . , n}. This and (32) gives xn

xn+1
= 1+α(n,s)

a∗bn(s)
= 1 + α(n, s), so

we can rewrite (33) as yn+1 = a−1
∗ b−1

n (s)yn− qh∗(1+α(n, s)). Iteration of this equation yields

yn+1 = −qh∗a−n
∗

n∑
k=0

ak∗

k∏
l=0

b−1
n−l(1 + α(k, s)) + a−n−1

∗

n∏
l=0

b−1
n−l(s)y0.

So, using Lemma 6, we get yn+1 = −qh∗a−n
∗

∑n
k=0 a

k
∗(1 + α(n, s)) + a−n−1

∗ y0(1 + α), and
consequently

xn =
(
a−n
∗ x−1

0 − qh∗
(a−n

∗ − 1)

(a∗ − 1)

)−1

(1 + α(n, s)). (34)

Using the fact that x0 = s− h∗ and rearranging (34) we get that

v′h∗(tn(s)− h∗) =
(1− a∗)a

n
∗ (1 + α(n, s))

R2(1−R(1 + α(n, s)))
. (35)

This relation, along with (26), prove (28).
Representations (5) for h∗ and (21) give h∗ = s(µ−M(µ)(µ−h∗)+w[µ, µ−h∗](1+α(s))).

Let x = v′µ(µ− h∗). Applying similar steps to (31)-(32), we get the equation
q(µ)x2(1 + α(s)) + (1− ρµ)x− v′µ(1− s)(1 + α(s)) = 0.

This equation has one positive solution

x = (1− ρµ)

√
1 +W (1 + α(s))2 − 1

2q(µ)(1 + α(s))
.

The relation (29) follows directly from this representation.

Lemma 8. If −θn(V − 1) ≤ ĉ, −θnV ≥ ĉ and σ(n, s) → 0, then
1− a∗ = (1− ρµ)V (1 + α(s)); (36)

an∗ = eθnV (1 + α(n, s)), 1− an∗ = (1− eθnV )(1 + α(n, s)). (37)

Proof. Using (21), we can rewrite the representation (7) as
M(h∗) =M(µ) + w(h∗, µ)(1 + α(s)).

Multiplying this equation by v′µ from the left-hand side and by uµ from the right-hand side,
and using (29), we get

v′µM(h∗)uµ = ρµ − (1− ρµ)(V − 1)(1 + α(s)). (38)

Next we multiply the equation (38) by (vh∗s)′uh∗ and rearrange to get

(vh∗s)′uh∗v′µM(h∗)uµ = ρµ − (1− ρµ)(V − 1)
(
1 + ρµ

(1− (vh∗s)′uh∗)

(1− ρµ)(V − 1)
+ α(s)

)
.

Simple calculations show that ρµ (1−(vh∗s)
′uh∗ )

(1−ρµ)(V−1)
= α(s). Therefore, we have

(vh∗s)′uh∗v′µM(h∗)uµ = ρµ − (1− ρµ)(V − 1)(1 + α(s)). (39)

The relations (9) and (29) show that
v′µM(h∗)uµ − ρh∗ = O

(
(1− ρµ)

2(V − 1)2
)

(40)

and thus,

1− a∗ = 1− (vh∗s)′uh∗v′µM(h∗)uµ + (vh∗s)′uh∗v′µM(h∗)uµ − a∗ = (1− ρµ)V (1 +α(s)), (41)
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proving (36). The relations (40) and (41) imply that we can replace the left-hand side of (39)
by a∗. We can express ρµ−1 as ln ρµ(1+α) and get a∗ = ρµ(1+(V −1) ln ρµ(1+α(s))). Given
the first condition of the lemma, −(V − 1) ln ρµ = α(n, s), so we can use the approximation,
ln(1+(V −1) ln ρµ(1+α(s))) = (V −1) ln ρµ(1+α(n, s)). Thus, an∗ = ρnµe

θn(V−1)(1+α(n, s)) =
= eθnV (1 + α(n, s)), which proves (37). The second part of (37) follows from the previous
equation and the second condition of the lemma.

Lemma 9. If ρ ≷ 1 and σ(n, s) → 0, then in the conditions of Lemma 8,

tn(s)− h∗ =
V (V ± 1)eV θk(1− ρµ)

q(V ∓ 1 + (V ± 1)eV θk)
u(1+ α(n, s)), (42)

s− h∗ =
(1− ρµ)(V ± 1)

2q
u(1+ α(s)). (43)

Proof. The relations 1− µ = α, µ− h∗ = α(s) and the continuity of w(s) and us give

q(µ) = q · (1 + α), uµ = u(1+ α); (44)
q(h∗) = q · (1 + α(s)), uh∗ = u(1+ α(s)). (45)

Now, the representation (42) follows directly from (28), using (36), (37) as well as (45).
To prove (43) we represent s− h∗ as

s− h∗ = s(1− f(h∗)) = s(1− µ+ µ− h∗ + h∗ − f(h∗)) = s(1− µ+ µ− h∗ − f(h∗)(1− s)).
The relation (21) allows us to rewrite this equation as

s− h∗ = s(1− µ+ (µ− h∗)(1+ α(s))). (46)

Splitting (46) into cases with ρ ≷ 1, and using (16), (17), (29), (44), yields (43).

4. Proof of the theorem. By ϕn(s) we denote p.g.f. of the total progeny in n-th generation
for processes with immigration. It satisfies (see for example [12]) next functional equation

ϕn(s) =
n−1∏
k=0

g(tk(s)). (47)

Proof. From (47), we have E
(
exp{−

∑d
k=1 τkYn,k/mn,k}

)
= ϕn(sn). Note that since τ/mn =

α(n) as σ(n) → 0, we have
1− sn =

τj
mn,j

(1 + tjα(n)). (48)

Then, similarly to the one-dimensional case (Pakes [12, p. 287]),

lnϕn(sn) = −
n−1∑
k=0

(1− g(tk(sn)))−
n−1∑
k=0

rn,k(sn),

where

0 ≤ rn,k(sn) ≤
(1− g(τk(sn)))

2

g(τk(sn))
≤ (1− g(τk(sn))) (1− g(h∗(sn)))

g(h∗(sn))
, σ(n) → 0.

Using the expansion (8), we get

lnϕn(sn) = −
n−1∑
k=0

λ′(1− tk(sn)) +
n−1∑
k=0

d′[tk(sn)](1− tk(sn))−
n−1∑
k=0

rn,k(sn), (49)

where the second and the third sums tend to zero if the first sum is bounded.
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Note that by (26), (43) and (45), we have sn − tk(sn) = v′(sn − tk(sn))u(1 + α(k, sn)).
From this equation and Lemma 1 (viii), we also get that nλ′(1−sn) → 0 as σ(n) → 0. Then
equation (49) can be rewritten as

lnϕn(sn) = −λ′u
n−1∑
k=0

v′(sn − tk(sn))(1 + α(k, sn)) +
n−1∑
k=0

d′[tk(sn)](1− tk(sn))−
n−1∑
k=0

rn,k(sn).

(50)
First, consider the case where r < 1. Combined representation for ℓn(r) gives

mn =
ρ∓n
µ,n − 1∓ n(1− ρµ,n)

(1− ρµ,n)2
v for ρ ≷ 1.

From this, (44) and (48), it follows that W = 4qτ(1 + τα(n))/
(
ρ∓n
µ,n − 1∓n(1− ρµ,n)

)
, and

thus

V =

√
1 + 4qτ

1 + τα(n)

ρ∓n
µ,n − 1∓ n(1− ρµ,n)

= z±(τ(1 + τα(n)), eθn). (51)

We express v′(sn − tk(sn)) as v′(sn − h∗) + v′(h∗ − tk(sn)). From (43) we get

v′(sn − h∗) =
(1− ρµn)(V ± 1)

2q
(1 + α(n)),

and therefore

n−1∑
k=0

v′(sn − h∗) = n
(1− ρµn)(V ± 1)

2q
(1 + α(n)) → −(z±(τ, r, f

∗)± 1) ln r

2q
, σ(n) → 0, (52)

since eθn → r as σ(n) → 0 by (15).
We are again under the conditions of Lemma 8. Combining (35), (36), (37), and (43), we

obtain

v′(tk(sn)− h∗(sn)) =
V (V ± 1)eV θk(1− ρµn)

q(V ∓ 1 + (V ± 1)eV θk)
(1 + α(k, sn)). (53)

Note that n(1− ρµn) = − ln r(1 + α(n)). Using this, (42), (51), and Lemma 6 we get
n−1∑
k=0

v′(tk(sn)− h∗) =

= − ln r

qn

n−1∑
k=0

z±(τ(1 + τα(n)), eθ)(z±(τ(1 + τα(n)), eθ)± 1)rkz±(τ(1+τα(n)),eθ)/n(1 + α(k, sn))

z±(τ(1 + τα(n)), eθ)∓ 1 + rz±(τ(1+τα(n)),eθ)k/n(z±(τ(1 + τα(n)), eθ)± 1)

−→
σ(n)→0

− ln r

q(f ∗)

∫ 1

0

z±(τ, r, f
∗)(z±(τ, r, f

∗)± 1)rxz±(τ,r,f∗)

z±(τ, r, f ∗)∓ 1 + rxz±(τ,r,f∗)(z±(τ, r, f ∗)± 1)
dx =

= − 1

q(f ∗)
ln
w±(τ, r, f

∗) + rz±(τ,r,f∗)

1 + w±(τ, r, f ∗)
, (54)

where θ ≡ θn. Combining (50), (52), (54) and Lemma 1 (viii) yields the result.
Consider the case r = 1. Representation for ℓn(r) in this case, together with the relations

(15), (44) and (48), show that W = 8qτ(1+τα(n))
θ2n

→ ∞ and V =
√
8qτ(1 + τα(n))/θn. Then,

by (43)
n−1∑
k=0

v′(sn − h∗) =

√
2τ

q
(1 + τα(n)) −→

σ(n)→0

√
2τ

q(f ∗)
. (55)
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The relations (43), (53) and Lemma 6 yield

n−1∑
k=0

v′(tk(sn)− h∗) =
1

n

n−1∑
k=0

√
8qτe−

√
8qτk/n

q
(
1 + e−

√
8qτk/n

)(1 + α(n)(sn))

−→
σ(n)→0

1

q(f ∗)

∫ 1

0

2
√

2q(f ∗)τe−2x
√

2q(f∗)τ

1 + e−2x
√

2q(f∗)τ
dx = − 1

q(f ∗)
ln

1 + e−2
√

2q(f∗)τ

2
. (56)

Combining (50), (55) and (56) yields the result.
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