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Let R ∈ (0,+∞] and DR = {z ∈ C : |z| < R}. Denote by AR the class of all functions f
analytic in DR such that f(z) ̸≡ 0. For any function f ∈ AR, let M(r, f) = max{|f(z)| : |z| = r}
be the maximum modulus, K(r, f) = rM(r, f ′)/M(r, f), and µ(r, f) = max{|an(f)|rn : n ≥ 0}
be the maximal term of the Maclaurin series of the function f , where an(f) denotes the n-th
coefficient of this series. Suppose that Φ is a continuous function on [a, lnR) such that for every
x ∈ R we have xσ−Φ(σ) → −∞ as σ ↑ lnR, and let Φ̃(x) = max{xσ−Φ(σ) : σ ∈ DΦ} be the
Young conjugate function of Φ, φ(x) = Φ̃′

+(x) for all x ∈ R, and Γ(x) = (Φ̃(x)− lnx)/x for all
sufficiently large x. Put

∆ = lim
x→+∞

lnx

Φ(φ(x))
, t(f) = lim

r↑R

lnµ(r, f)

Φ(ln r)
, k(f) = lim

r↑R

K(r, f)

Φ−1(ln r)
, k1(f) = lim

r↑R

K(r, f)

Γ−1(ln r)
,

where f ∈ AR. We prove the following results:

(a) for any function f ∈ AR such that t(f) ≤ 1, the inequality k1(f) ≤ 1 holds;

(b) for an arbitrary positive sequence (rn) increasing to R, there exists a function f ∈ AR

such that t(f) = 1 and lim
n→+∞

K(rn, f)/Γ
−1(ln rn) = 1;

(c) for any function f ∈ AR such that t(f) ≤ 1, the inequality k(f) ≤ 1 + ∆ holds;

(d) there exists a function f ∈ AR such that t(f) = 1 and k(f) = 1 +∆.

1. Introduction. Let R ∈ (0,+∞] and DR = {z ∈ C : |z| < R}. By AR we denote the
class of all functions f analytic in DR such that f(z) ̸≡ 0. For any function f ∈ AR and all
r ∈ (0, R), we put

M(r, f) = max{|f(z)| : |z| = r}, K(r, f) = r
M(r, f ′)

M(r, f)
.

If P is a polynomial of degree n, then for every r > 0 by Bernstein’s classical inequality,
we have K(r, P ) ≤ n. An analogue of this inequality for transcendental entire functions was
also obtained by S. Bernstein [1, p. 76].

Theorem A ([1]). Let ρ and T be positive numbers. If f ∈ A+∞ is a function of order ρ
and type T , i.e.

lim
r→+∞

lnM(r, f)

Trρ
= 1,
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then
lim

r→+∞

K(r, f)

eTρrρ
≤ 1. (1)

T. Kövari [2] proved that inequality (1) is sharp.

Theorem B ([2]). Let ρ and T be positive numbers. Then there exists a function f ∈ A+∞
of order ρ and type T such that

lim
r→+∞

K(r, f)

eTρrρ
= 1.

Analogues of the results of S. Bernstein and T. Kövari for wide classes of analytic func-
tions were established in [3]–[7]. In order to formulate those of the obtained results that
relate directly to the classes AR, we introduce some notations and definitions.

Suppose that A ∈ (−∞,+∞]. By ΩA we denote the class of all functions Φ: DΦ → R
such that DΦ is an interval of the form [a,A), Φ is continuous on DΦ, and the following
condition

∀x ∈ R : lim
σ↑A

(xσ − Φ(σ)) = −∞ (2)

holds. It is easy to see that in the case when A < +∞ condition (2) is equivalent to the
condition Φ(σ) → +∞ as σ → A − 0, and in the case when A = +∞ this condition is
equivalent to the condition Φ(σ)/σ → +∞ as σ → +∞.

Let Ω′
A be the class of all functions Φ ∈ ΩA such that Φ is a continuously differentiable

function on DΦ and Φ′ is an increasing function on DΦ.
If Φ ∈ ΩA, then let Φ̃ be the Young conjugate function of Φ, i.e.

Φ̃(x) = max{xσ − Φ(σ) : σ ∈ DΦ}, x ∈ R.
Properties of Young conjugate functions are well known. Some of these properties are given
in the following lemma (see, for example, [8]).

Lemma 1. Let A ∈ (−∞,+∞], Φ ∈ ΩA, and φ(x) = max{σ ∈ DΦ : xσ −Φ(σ) = Φ̃(x)} for
all x ∈ R. Then the following statements are true:

(i) φ is a non-decreasing function on R;

(ii) φ is a continuous from the right function on R;

(iii) φ(x) → A as x → +∞;

(iv) the right-hand derivative of Φ̃(x) is equal to φ(x) at each point x ∈ R;

(v) if x0 = inf{x > 0: Φ(φ(x)) > 0}, then Φ̃(x)/x increases to A on (x0,+∞);

(vi) the function Φ(φ(x)) is non-decreasing on [0,+∞).

Suppose that Φ ∈ ΩA, and let φ(x) and x0 be defined by Φ as in Lemma 1. Put

∆Φ = lim
x→+∞

lnx

Φ(φ(x))
.

For all x > x0, we set Φ(x) = Φ̃(x)/x. By Lemma 1, the function Φ is continuous increasing to
A on (x0,+∞). So, if A0 = Φ(x0+0), then the inverse function Φ−1 is continuous increasing
to +∞ on the interval (A0, A). We will assume that Φ −1(σ) = +∞ for all σ ∈ [A,+∞]. Put

β(σ) = lnΦ−1(σ)/Φ−1(σ), σ ∈ (A0, A). (3)
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We also put b = max{x0, e} and consider the function

Γ(x) = Φ(x)− lnx

x
, x ∈ (b,+∞). (4)

This function is continuous increasing to A on (b,+∞). Therefore, if B = Γ(b − 0), then
the inverse function Γ−1 is continuous increasing to +∞ on (B,A). It is easy to see that
Φ−1(σ + β(σ)) > Γ−1(σ) > Φ−1(σ) for all σ < A sufficiently close to A.

Note also that if Φ ∈ Ω′
A, DΦ = [a,A) and c = Φ′(a), then the function σ = φ(x),

x ∈ [c,+∞), is the inverse of the function x = Φ′(σ). In addition, in this case

∆Φ = lim
σ↑A

lnΦ′(σ)

Φ(σ)
.

Let R ∈ (0,+∞] and f ∈ AR. We expand the function f into a power series

f(z) =
∞∑
n=0

anz
n (5)

and put

µ(r, f) = max{|an|rn : n ∈ N0}, G(r, f) =
∞∑
n=0

|an|rn

for all r ∈ [0, R), where N0 denotes the set of all non-negative integers.
If Φ ∈ ΩlnR, and f ∈ AR is a function of the form (5), then let

tΦ(f) = lim
r↑R

lnµ(r, f)

Φ(ln r)
, TΦ(f) = lim

r↑R

lnM(r, f)

Φ(ln r)
, TΦ(f) = lim

r↑R

lnG(r, f)

Φ(ln r)
;

kΦ(f) = lim
r↑R

K(r, f)

Φ−1(ln r)
, k1,Φ(f) = lim

r↑R

K(r, f)

Γ−1(ln r)
, k2,Φ(f) = lim

r↑R

K(r, f)

Φ−1(ln r + β(ln r))
.

It is clear that tΦ(f) ≤ TΦ(f) ≤ TΦ(f) and k2,Φ(f) ≤ k1,Φ(f) ≤ kΦ(f).
Let Φ ∈ ΩlnR. It is proved in [8] that for any function f ∈ AR of the form (5) we have

tΦ(f) = lim
n→∞

n

Φ −1
(
1
n
ln 1

|an|

) . (6)

In addition, in [8] (see also [9, 10]) it is shown that the condition ∆Φ = 0 is necessary and
sufficient for TΦ(f) = tΦ(f) holds for any function f ∈ AR of the form (5).

The following result of M. M. Sheremeta [3] is a generalization of Theorem A to the case
of entire functions of arbitrary growth.

Theorem C ([3]). Let Φ ∈ Ω′
+∞. Then for any function f ∈ A+∞ such that TΦ(f) = 1, we

have k2,Φ(f) ≤ 1.

A detailed analysis of the proof of Theorem C, which was proposed by M. M. Sheremeta
in [3], shows that for functions analytic in a disk, we can prove a complete analogue of
Theorem C (see also [4]). At the same time, in order to establish the inequality k2,Φ(f) ≤ 1
it is enough to require the fulfillment of the condition tΦ(f) ≤ 1 instead of the stronger
condition TΦ(f) = 1. In other words, the following result is true.

Theorem D. Let R ∈ (0,+∞] and Φ′ ∈ ΩlnR. Then for any function f ∈ AR of the form (5)
such that tΦ(f) ≤ 1, we have k2,Φ(f) ≤ 1.
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We note that if R < +∞, then for functions Φ from the class ΩlnR we can have a situation
in which ln r+β(ln r) ≥ lnR for all r ∈ [r1, R) with some r1 ∈ (0, R) (for example, if Φ(ln r) ≤
−1 − ln ln(R/r) for all r ∈ [r2, R) with some r2 ∈ (0, R)). Then Φ−1(ln r + β(ln r)) = +∞
for all r ∈ [r1, R). Therefore, if f ∈ AR, then Theorem D does not give any information
about the behavior of the quantity K(r, f) as r ↑ R. This gap is filled to some extent by the
following two theorems.

Theorem E ([5]). Let R ∈ (0,+∞] and Φ ∈ ΩlnR. Then for any function f ∈ AR of the
form (5) such that TΦ(f) ≤ 1, we have kΦ(f) ≤ 1.

Theorem F ([5]). Let R ∈ (0,+∞] and Φ ∈ ΩlnR. Then there exists a function f ∈ AR of
the form (5) such that TΦ(f) = TΦ(f) = tΦ(f) = 1 and kΦ(f) = 1.

As we mentioned above, in the case when ∆Φ = 0 we have TΦ(f) = TΦ(f) = tΦ(f). So, in
this case, the condition TΦ(f) ≤ 1 in Theorem E can be replaced by each of the conditions
TΦ(f) ≤ 1 or tΦ(f) ≤ 1.

Note that using results from [11] (see also [12, 13]), it is easy to prove the existence of
functions Φ ∈ Ω+∞ and f ∈ A+∞ such that TΦ(f) = 1, but TΦ(f) = +∞. However, despite
this, we have the following result.

Theorem G ([7]). Let R ∈ (0,+∞] and Φ ∈ ΩlnR. Then for any function f ∈ AR of the
form (5) such that TΦ(f) ≤ 1, we have kΦ(f) ≤ C1, where C1 < 1.1276 is an absolute
constant.

In connection with the formulated results, the following question arises: does there exist
an absolute constant C2 > 1 such that for any functions Φ ∈ ΩlnR and f ∈ AR with
tΦ(f) ≤ 1, we have kΦ(f) ≤ C2? A negative answer to this question follows from the follo-
wing two theorems (see Corollary 2 below), which give a sharp estimate from above on the
behavior of the quantity K(r, f) as r ↑ R under the condition tΦ(f) ≤ 1.

Theorem 1. Let R ∈ (0,+∞] and Φ ∈ ΩlnR. Then for any function f ∈ AR of the form (5)
such that tΦ(f) ≤ 1, we have k1,Φ(f) ≤ 1.

Theorem 2. Let R ∈ (0,+∞], Φ ∈ ΩlnR, and let (rn)n∈N0 be a positive sequence increasing
to R. Then there exists a function f ∈ AR of the form (5) such that tΦ(f) = 1 and

lim
n→+∞

K(rn, f)

Γ−1(ln rn)
= 1. (7)

2. Auxiliary results. In this section, we give some lemmas that we will need to prove
Theorems 1 and 2, as well as their consequences.

Lemma 2 ([8]). Let R ∈ (0,+∞], Φ ∈ ΩlnR, and let f ∈ AR be a function of the form (5).
Then the following statements are equivalent:

(i) there exists r0 ∈ (0, R) such that lnµ(r, f) ≤ Φ(ln r) for all r ∈ [r0, R);

(ii) there exists n0 ∈ N0 such that ln |an| ≤ −Φ̃(n) for all integers n ≥ n0.

The following lemma is actually proved in [6] (see the proof of Theorem 2 in [6]).

Lemma 3 ([6]). Let A ∈ (−∞,+∞], Φ ∈ ΩA, and let Γ be the function defined by (4).
Then there exist a function Θ ∈ ΩA and a number y0 > 0 such that Θ(y) = Γ(y) for all
y ≥ y0.
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In the following two lemmas, we assume that φ(x) and x0 are defined by a given function
Φ ∈ ΩA as in Lemma 1.

Lemma 4 ([14]). Let A ∈ (−∞,+∞], Φ ∈ ΩA, σ0 = Φ(x0 + 0), and y(σ) = φ(Φ −1(σ)) for
all σ ∈ (σ0, A). Then for every δ ∈ (0, 1) and each σ ∈ (σ0, A) we have

Φ−1

(
σ +

δΦ(y(σ))

Φ−1(σ)

)
≤ Φ−1(σ)

1− δ
.

Lemma 5. Let A ∈ (−∞,+∞], Φ ∈ ΩA, c ∈ R be a fixed number, and let h(c) = φ(c) and

h(x) =
Φ̃(x)− Φ̃(c)

x− c
, x > c.

Then the function h has the following properties:

(i) h is continuous non-decreasing on [c,+∞) and h(x) ≤ φ(x) for all x ≥ c;

(ii) if d = inf{x > c : φ(x) > φ(c)}, then h is increasing on [d,+∞);

(iii) if c > x0, then Φ(x) < h(x) for all x > c;

(iv) Φ−1(h(x)) ∼ x at x → +∞.

Proof. By Lemma 1 the function Φ̃ is convex on R and we have φ(x) = Φ̃′
+(x) for all x ∈ R.

Taking into account this fact, it is easy to justify (i) and (ii).
Let c > x0 and x > c. Since

h(x) = Φ(x) +
c(Φ(x)− Φ(c))

x− c
, (8)

we obtain Φ(x) < h(x). Next, we note that

Φ(x)− Φ(c) = o(Φ(φ(x))), x → +∞. (9)

In fact, since by Lemma 1 we have Φ(x) → A and Φ(φ(x)) → +∞ for x → +∞, relation (9)
is obvious in the case A < +∞. If A = +∞, then we get Φ(x) ≤ φ(x) = o(Φ(φ(x))) as
x → +∞, and this aslo implies (9).

Taking into account (8) and (9), as well as using the notation σ = Φ(x), we obtain

h(x) = Φ(x) + o

(
Φ(φ(x))

x

)
= σ + o

(
Φ(φ(Φ−1(σ)))

Φ−1(σ)

)
, x → +∞.

Then by Lemma 4 we have Φ−1(h(x)) ∼ Φ−1(σ) = x as x → +∞.

Lemma 6. Let A ∈ (−∞,+∞], Φ ∈ ΩA, and let Γ be the function defined by (4). Then

lim
σ↑A

Γ−1(σ)

Φ−1(σ)
= 1 + ∆Φ. (10)

Proof. Denote the left part in (10) by ∆0 and first of all prove the inequality ∆0 ≤ 1 +∆Φ.
Suppose the contrary, that is, there exist a number p > ∆Φ and a sequence (σn)n∈N0 increasing
to A such that Γ−1(σn) ≥ (1 + p)Φ−1(σn) for all n ∈ N0. Fixing some q ∈ (∆Φ, p), for all
n ≥ n0 we obtain
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ln Γ−1(σn)

Γ−1(σn)
≤ 1

1 + q
· lnΦ

−1(σn)

Φ−1(σn)
=

=
1

1 + q
· lnΦ−1(σn)

Φ(φ(Φ−1(σn)))
· Φ(φ(Φ

−1(σn)))

Φ−1(σn)
≤ q

1 + q
· Φ(φ(Φ

−1(σn)))

Φ−1(σn)
.

Therefore, using Lemma 4 with δ = q/(1 + q), for all n ≥ n0 we have

Γ−1(σn) = Φ−1
(
σn +

lnΓ−1(σn)

Γ−1(σn)

)
≤

≤ Φ−1
(
σn +

δΦ(φ(Φ−1(σn)))

Φ−1(σn)

)
≤ Φ−1(σn)

1− δ
= (1 + q)Φ−1(σn),

but this contradicts the inequality Γ−1(σn) ≥ (1 + p)Φ−1(σn).
Now we prove that ∆0 ≥ 1+∆Φ. Suppose the contrary again. Then there exist numbers

δ ∈ (0,∆Φ) and b < A such that for all σ ∈ (b, A) we have Γ−1(σ) ≤ (1 + δ)Φ−1(σ). Setting
σ = Γ(x), for all sufficiently large x we obtain x ≤ (1 + δ)Φ−1(Γ(x)), and therefore

Φ

(
x

1 + δ

)
≤ Γ(x) = Φ(x)− lnx

x
.

Since, as it is easy to see, Φ′
+(x) = Φ(φ(x))/x2 for all x > x0, and by Lemma 1 the function

α(x) = Φ(φ(x)) is non-decreasing on [0,+∞), for all sufficiently large x we obtain

lnx

x
≤ Φ(x)− Φ

(
x

1 + δ

)
=

∫ x

x/(1+δ)

Φ(φ(t))

t2
dt ≤ Φ(φ(x))

∫ x

x/(1+δ)

dt

t2
=

δ

x
Φ(φ(x)).

This implies that ∆Φ ≤ δ, but it is impossible because δ ∈ (0,∆Φ).

Lemma 7. Let A ∈ (−∞,+∞], Φ ∈ ΩA, and let β be the function defined by (3). Then

lim
σ↑A

Φ−1(σ + β(σ))

Φ−1(σ)
=

{
+∞, if ∆Φ ≥ 1;

1/(1−∆Φ), if ∆Φ < 1.
(11)

Proof. We denote the left-hand and right-hand side parts in (11) by ∆0 and δ0, respectively,
and first of all we prove the inequality ∆0 ≤ δ0. We assume that ∆Φ < 1, since otherwise
this inequality is trivial. Let ∆ ∈ (∆Φ, 1) be a fixed number. The definition of ∆Φ implies
the existence of a number σ1 < A such that

lnΦ−1(σ) ≤ ∆Φ(φ(Φ−1(σ))), σ ∈ [σ1, A).

Therefore, using Lemma 4, for some σ2 < A and all σ ∈ [σ2, A) we obtain

Φ−1(σ + β(σ)) = Φ−1

(
σ +

lnΦ−1(σ)

Φ−1(σ)

)
≤ Φ−1

(
σ +∆

Φ(φ(Φ−1(σ)))

Φ−1(σ)

)
≤ Φ−1(σ)

1−∆
.

Since ∆ ∈ (∆Φ, 1) is arbitrary, this implies the inequality ∆0 ≤ δ0.
Now we prove that ∆0 ≥ δ0. Assume that ∆0 < δ0. Then, fixing an arbitrary δ ∈ (∆0, δ0),

for some σ3 < A we have

Φ−1(σ + β(σ)) ≤ δΦ−1(σ), σ ∈ [σ3, A). (12)

Put ∆ = (δ−1)/δ. Note that then ∆ < ∆Φ. In addition, for some σ4 < A and all σ ∈ [σ4, A)
by (12) and Lemma 4 we obtain

lnΦ−1(σ)

Φ−1(σ)
= β(σ) ≤ Φ(δΦ−1(σ))− σ = Φ(δΦ−1(σ))− Φ(Φ−1(σ)) =

∫ δΦ−1(σ)

Φ−1(σ)

Φ(φ(x))

x2
dx ≤
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≤ Φ(φ(δΦ−1(σ)))

∫ δΦ−1(σ)

Φ−1(σ)

dx

x2
= Φ(φ(δΦ−1(σ)))

∆

Φ−1(σ)
.

This implies that lnΦ−1(σ) ≤ ∆Φ(φ(δΦ−1(σ))) for all σ ∈ [σ4, A). Then, as it is easy to see,
∆Φ ≤ ∆, but this contradicts the inequality ∆ < ∆Φ.

For a function f ∈ AR of the form (5) and for each r ∈ (0, R), let ν(r, f) denote the
central index of this function, i.e. ν(r, f) = max{n ∈ N0 : |an|rn = µ(r, f)}. As it is known,
ν(r, f) = r(lnµ(r, f))′+ for all r ∈ (0, R). In addition, we have the following lemma (see [15]).

Lemma 8. Let R ∈ (0,+∞], (nk)k∈N0 be an increasing sequence of non-negative integers,
and (ck)k∈N0 be a positive sequence increasing to R. If a complex sequence (an)n∈N0 is such
that an0 ̸= 0, an = 0 for each integer n < n0, and for all k ∈ N0 the following relations

|ank+1
| = |an0|

k∏
j=0

c
nj−nj+1

j , |an| ≤ |ank
|cnk−n

k (n ∈ (nk, nk+1))

hold, then the function f given by (5) belongs to the class AR and we have:

(i) ν(r, f) = n0 for all r ∈ (0, c0);

(ii) ν(r, f) = nk+1 for all r ∈ [ck, ck+1) and k ∈ N0.

3. Proof of Theorems.
Proof of Theorem 1. Let R ∈ (0,+∞], Φ ∈ ΩlnR, and let f ∈ AR be a function of the form (5)
such that tΦ(f) ≤ 1. Let also Γ be the function defined above by (4).

We fix an arbitrary p > 1 and choose some q ∈ (1, p). Since tΦ(f) ≤ 1, for some r1 ∈ (0, R)
and all r ∈ [r1, R) we have lnµ(r, f) ≤ qΦ(ln r). Applying Lemma 2 with qΦ instead of Φ,
for some n1 ∈ N0 and all integers n ≥ n1 we obtain ln |an| ≤ −qΦ̃(n/q). Therefore, for some
integer n2 ≥ n1 we have

ln(n|an|) ≤ lnn− qΦ̃(n/q) ≤ q(ln(n/q)− Φ̃(n/q)) = −nΓ(n/q), n ≥ n2. (13)

According to Lemma 3, there exist a function Θ ∈ ΩlnR and a number r2 ∈ (0, R) such
that for all r ∈ [r2, R) we have Θ −1(ln r) = Γ−1(ln r) > 0. Put θ(x) = Θ̃′

+(x) for all x ∈ R,
and let γ(r) = Θ(θ(Θ −1(ln r))) and n0 = n0(r) = [pΓ−1(ln r)] + 1 for all r ∈ [r2, R). Setting
δ = (p− q)/p and using Lemma 4 with Θ instead of Φ, for all r ∈ [r2, R) we get

Γ−1
(
ln r +

δγ(r)

Γ −1(ln r)

)
= Θ −1

(
ln r +

δΘ(θ(Θ −1(ln r)))

Θ −1(ln r)

)
≤ Θ −1(ln r)

1− δ
=

p

q
Γ−1(ln r) ≤ n0

q
.

This implies that

Γ(n0/q)− ln r ≥ δγ(r)/Γ −1(ln r), r ∈ [r2, R). (14)

We choose a point r3 ∈ [r2, R) such that the inequalities n0(r3) ≥ n2 and γ(r3) > 0 are
satisfied. Using (13) and (14), for each fixed r ∈ [r3, R) we obtain∑

n>n0

n|an|rn ≤
∑
n>n0

1

en(Γ(n/q)−ln r)
≤

∑
n>n0

1

en(Γ(n0/q)−ln r)
=

∑
n>n0

1

enδγ(r)/Γ−1(ln r)
=

=
1

en0δγ(r)/Γ−1(ln r)(eδγ(r)/Γ−1(ln r) − 1)
≤ Γ −1(ln r)

epδγ(r)δγ(r)
. (15)
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Assuming that r ∈ [r3, R) is fixed, we set P (z) =
∑

n≤n0
anz

n for all z ∈ C. Using
Berstein’s inequality for polynomials and estimate (15), we obtain

rM(r, f ′) ≤ rM(r, P ′) +
∑
n>n0

n|an|rn ≤ n0M(r, P ) +
∑
n>n0

n|an|rn ≤

≤ n0

(
M(r, f) +

∑
n>n0

|an|rn
)
+

∑
n>n0

n|an|rn ≤ n0M(r, f) + 2
∑
n>n0

n|an|rn ≤

≤ ([pΓ−1(ln r)] + 1)M(r, f) +
2Γ −1(ln r)

epδγ(r)δγ(r)
.

Since γ(r) → +∞ as r ↑ R, this shows that k1,Φ(f) ≤ p. Finally, since p > 1 is arbitrary, we
have k1,Φ(f) ≤ 1. 2

Proof of Theorem 2. Let R ∈ (0,+∞], Φ ∈ ΩlnR, Γ be the function defined above by (4),
and let (rn)n∈N0 be a positive sequence increasing to R.

By Lemma 3 there exists a function Θ ∈ ΩlnR such that Θ(x) = Γ(x) for all sufficiently
large x ∈ R. Put θ(x) = Θ̃′

+(x) for all x ∈ R and let x0 = inf{x > 0: Θ(θ(x)) > 0}. For
every fixed a ∈ R, we set ha(a) = θ(a) and let ha(x) = Θ̃(x)−Θ̃(a)

x−a
, x > a. Also we put

d(a) = inf{x > a : θ(x) > θ(a)}. According to Lemma 5, the restriction of the function ha

to the interval [d(a),+∞) is a continuous increasing to +∞ function. We denote the inverse
function to this restriction by h−1

a .
Let (δk)k∈N0 be a fixed sequence of points in the interval (1, 2) decreasing to 1. Using

Lemma 5, it is easy to justify the existence of a subsequence (ρk)k∈N0 of the sequence (rn)n∈N0

and an increasing sequence (nk)k∈N0 with n0 = [x0] + 1 such that for all k ∈ N0 we have:

(a) d(nk) ≤ ln ρk;

(b) nk+1 =
[
h−1
nk
(ln ρk)

]
;

(c) hnk
(x) ≤ Θ(δkx) if x ≥ nk+1;

(d) (k + 1)2nk ≤ exp (Θ(θ(2nk+1))/8);

(e) nk+1 ≥ 4nk.

For every k ∈ N0, we set ck = exp(hnk
(nk+1)). Since

Θ(nk+1) < hnk
(nk+1) ≤ Θ(δknk+1) < Θ(2nk+1) < Θ(nk+2), k ∈ N0, (16)

and by Lemma 1 we have Θ(x) → lnR as x → +∞, the sequence (ck)k∈N0 is positive and
increasing to R. In addition, since Θ

′
+(x) = Θ(θ(x))/x2 for all x ∈ R and the function

Θ(θ(x)) is nondecreasing on [0,+∞), for every k ∈ N0 by (16) and (e) we obtain

ln ck+1 − ln ck > Θ(nk+2)−Θ(2nk+1) =

∫ nk+2

2nk+1

Θ(θ(x))

x2
dx ≥ Θ(θ(2nk+1))

∫ nk+2

2nk+1

dx

x2
=

= Θ(θ(2nk+1))

(
1

2nk+1

− 1

nk+2

)
≥ 1

4nk+1

Θ(θ(2nk+1)). (17)

Let bnk
= exp(−Θ̃(nk)) for all k ∈ N0. Since

ln ck = hnk
(nk+1) =

Θ̃(nk+1)− Θ̃(nk)

nk+1 − nk

=
ln bnk

− ln bnk+1

nk+1 − nk

,
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we have bnk+1
= bnk

c
nk−nk+1

k , and therefore, as it is easy to see,

bnk+1
= bn0

k∏
j=0

c
nj−nj+1

j , k ∈ N0.

Consider the power series g0(z) =
∑∞

k=0 bnk
znk . According to Lemma 8, the function g0

belongs to the class AR, and µ(r, g0) = bnk+1
rnk+1 for all r ∈ [ck, ck+1] and k ∈ N0. In addition,

by Lemma 2 there exists s0 ∈ (0, R) such that lnµ(r, g0) ≤ Θ(ln r) for all r ∈ [s0, R).
Let n ∈ N0. We put bn = 0 if n < n0, and let bn = bnk

cnk−n
k if n ∈ (nk, nk+1) for some

k ∈ N0. Consider the series g(z) =
∑∞

n=0 bnz
n. According to Lemma 8, the function g belongs

to the class AR, and µ(r, g) = µ(r, g0) for all r ∈ [0, R). Therefore, lnµ(r, g) ≤ Θ(ln r) for all
r ∈ [s0, R). Then, by Lemma 2, there exists p0 ∈ N0 such that ln bn ≤ −Θ̃(n) for all integers
n ≥ p0.

Further, we note that if n, k ∈ N0, k ≥ 1 and n ≤ nk, then

bnc
n
k = bnc

n
k−1

(
ck
ck−1

)n

≤ µ(ck−1, g)

(
ck
ck−1

)n

= bnk
cnk
k−1

(
ck
ck−1

)n

=

= bnk
cnk
k

(
ck−1

ck

)nk−n

= µ(ck, g)

(
ck−1

ck

)nk−n

.

Therefore, using (17), (e) and (d), we obtain∑
n≤nk−1

bnc
n
k ≤ µ(ck, g)

∑
n≤nk−1

(
ck−1

ck

)nk−n

≤ µ(ck, g)nk−1

(
ck−1

ck

)nk−nk−1

≤

≤ µ(ck, g)
nk−1

eΘ(θ(2nk))/8
≤ µ(ck, g)

(k + 1)2
. (18)

Put mk = nk+1 − [nk+1

k+2
], k ∈ N0. Using (e), we see that nk < mk < nk+1 (∀ k ∈ N0).

Let n ∈ N0. We put an = bn/n if n ∈ (m2p, n2p+1] for some p ∈ N0, and let an = 0
otherwise. Consider series (5) and note that it can be written in the form

f(z) =
∞∑
p=0

n2p+1∑
n=m2p+1

anz
n.

It is obvious that f is a function from the class AR. We will prove that tΦ(f) = 1 and (7)
holds.

Using (4), for all sufficiently large n ∈ N0 we have
ln an ≤ ln(bn/n) ≤ −Θ̃(n)− lnn = −nΓ(n)− lnn = −nΦ(n).

In addition, if p ∈ N0 is large enough and n = n2p+1, then ln an = ln(bn/n) = −nΦ(n).
Therefore, to establish the equality tΦ(f) = 1, it is enough to use formula (6).

Let n ∈ N0 and r ∈ (0, R) be fixed numbers. We put
AN(r) =

∑
n≤N

nanr
n, BN(r) =

∑
n>N

nanr
n, CN(r) =

∑
n≤N

anr
n, DN(r) =

∑
n>N

anr
n.

Since, as it is easy to see, AN(r)DN(r) ≤ CN(r)BN(r), and CN(r) > 0 if N > m0, we get

K(r, f) =
AN(r) +BN(r)

CN(r) +DN(r)
≥ AN(r)

CN(r)
, N > m0. (19)

If l ∈ N0 and l → ∞, we have

Al :=
∑

n≤n2l+1

nanc
n
2l ≥

n2l+1∑
n=m2l+1

bnc
n
2l = (n2l+1 −m2l)µ(c2l, g) = (1 + o(1))

n2l+1

2l
µ(c2l, g); (20)
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in addition, using (18), we obtain

Cl :=
∑

n≤n2l+1

anc
n
2l ≤

∑
n≤n2l−1

bnc
n
2l +

n2l+1∑
n=m2l+1

bn
n
cn2l ≤

µ(c2l, g)

(2l + 1)2
+ µ(c2l, g)

n2l+1 −m2l

m2l

≤

≤ µ(c2l, g)

(
1

(2l + 1)2
+

n2l+1

(2l + 2)m2l

)
= (1 + o(1))

µ(c2l, g)

2l
.

(21)

Using (19), (20) and (21), we have K(c2l, f) ≥ Al/Cl ≥ (1 + o(1))n2l+1 as l → ∞. Since
an ≥ 0 for each n ∈ N0, for all r ∈ (0, R) we get K(r, f) = r(lnM(r, f))′+. Hence, the
function K(r, f) is non-decreasing on (0, R), and therefore by (b) and (c) we have

K(ϱ2l, f) ≥ K(c2l, f) ≥ (1 + o(1))δ2ln2l+1 ≥ (1 + o(1))Θ
−1

(hn2l
(n2l+1)) =

= (1 + o(1))Θ
−1

(ln ϱ2l) = (1 + o(1))Γ−1 (ln ϱ2l) , l → ∞.
(22)

Since (ρk)k∈N0 is a subsequence of the sequence (rn)n∈N0 and according to Theorem 1 we
have k1,Φ(f) ≤ 1, from (22) we see that (7) is satisfied.

4. Some consequences. The following statement is a direct consequence of Theorem 1 and
Lemma 6.

Corollary 1. Let R ∈ (0,+∞] and Φ ∈ ΩlnR. Then for any function f ∈ AR of the form (5)
such that tΦ(f) ≤ 1, we have kΦ(f) ≤ 1 + ∆Φ.

Let Φ ∈ ΩlnR and let Γ be the function defined above by (4). According to Lemma 6, there
exists a positive sequence (rn)n∈N0 increasing to R such that Γ−1(ln rn)/Φ

−1(ln rn) → 1+∆Φ

as n → ∞. Theorem 2, applied precisely with this sequence, and Theorem 1 immediately
imply the following statement, which shows that the inequality kΦ(f) ≤ 1 +∆Φ from Coro-
llary 1 is sharp.

Corollary 2. Let R ∈ (0,+∞] and Φ ∈ ΩlnR. Then there exists a function f ∈ AR of the
form (5) such that tΦ(f) = 1 and kΦ(f) = 1 + ∆Φ.

Note that under the conditions ∆Φ ∈ (0, 1) and tΦ(f) ≤ 1, Theorem B together with
Lemma 7 allow us to obtain only the following inequality kΦ(f) ≤ 1/(1−∆Φ), which is not
sharp. Nevertheless, as it turns out, in the case when R = +∞ the estimate k2,Φ(f) ≤ 1 from
Theorem B is sharp, that is, for any function Φ ∈ Ω+∞ there exists a function f ∈ A+∞ of
the form (5) such that tΦ(f) = 1 and k2,Φ(f) = 1. Moreover, we have the following statement.

Corollary 3. Let Φ ∈ Ω+∞ and let ε be a positive continuous non-increasing function on
[t0,+∞) such that

∫ +∞
t0

ε(t)dt < +∞. Then there exists a function f ∈ A+∞ of the form (5)
such that tΦ(f) = 1 and

lim
r→+∞

K(r, f)

Φ−1(ln r + ε(lnΦ−1(ln r)))
≥ 1.

In fact, using the classical Borel-Nevanlinna theorem (see, for example, [16, p. 90]), by
the conditions of Corollary 3 we have Φ−1(ln r + ε(lnΦ−1(ln r))) ∼ Φ−1(ln r) as r → +∞
outside some exceptional set E ⊂ [1,+∞) of finite logarithmic measure. It is clear that then
there exists a positive sequence (rn)n∈N0 increasing to +∞ such that

Φ−1(ln rn + ε(lnΦ−1(ln rn))) ∼ Γ−1(ln rn), n → ∞.

It remains to apply Theorem 2 with exactly this sequence (rn)n∈N0 .
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