
Математичнi Студiї. Т.62, №2 Matematychni Studii. V.62, No.2

УДК 517.98, 517.5

Ya. Mykytyuk, N. Sushchyk, D. Lukivska

ON THE DUAL SPACE OF A BANACH SPACE OF ENTIRE FUNCTIONS

Ya. Mykytyuk, N. Sushchyk, D. Lukivska. On the dual space of a Banach space of entire
functions, Mat. Stud. 62 (2024), 155–167.

Let L1 denote the subspace of L1(R) consisting of the restrictions to R of entire functions
of exponential type at most π, equipped with the L1(R)-norm. In this paper, we describe
the dual space L′

1, showing that it is isomorphic to the Banach space BMO(Z) of sequences
x : Z → C with bounded mean oscillation on Z. This result is an analogue of Fefferman’s
classical description of the dual of the Hardy space H1(C+) of functions analytic in the upper
half-plane. A central role in the construction of L′

1 is played by the discrete Hilbert transform.

1. Introduction. Let E denote the linear space of all entire functions, and let Bσ (σ > 0)
be the subspace of functions f ∈ E such that

supx,y∈R |f(x+ iy)|e−σ|y| <∞.

The space Bσ becomes a Banach space with the norm
∥f∥Bσ := supx,y∈R |f(x+ iy)|e−σ|y|, f ∈ Bσ.

Note that for every a, σ > 0, the linear mapping
(Iaf)(z) = f(az), z ∈ C,

is a bijection from the linear space Bσ to Baσ. Therefore, to study all possible spaces Bσ,
σ > 0, it suffices to consider the space Bπ. Note that the entire functions sinπz and cos πz
belong to the space Bπ.

Denote by Lp the subset of Lp(R) consisting of the restrictions to R of functions in Bπ.
Equipped with the Lp(R)-norm, Lp(R) is closed in Lp(R) ([1]) and thus forms a Banach space.
These spaces have been extensively studied, with most important results presented in the
monograph by B. Ya. Levin ([1]). In particular, for p ∈ (1,∞), the space Lp is isomorphic to
the Banach space ℓp := ℓp(Z), with an isomorphism given by the linear mapping J defined by

(Jf)(n) := (−1)nf(n), n ∈ Z. (1)

The extreme spaces L1 and L∞ are special and not isomorphic to the Banach spaces ℓ1 and
ℓ∞, respectively; their descriptions in terms of the discrete Hilbert operator are suggested
in [1,2]. In the monograph [1], there is no description of the dual space of L1, and we have not
found it in the available literature. However, the question of the dual space of L1 is natural
and analogous to the question of the dual space of the Hardy space H1(C+) of functions
analytic in the upper half-plane ([5]). Indeed, the space H1(C+), like the space L1, can be

2020 Mathematics Subject Classification: 30H35,46B10, 46E10.
Keywords: Banach spaces; entire functions; discrete Hilbert transfor.
doi:10.30970/ms.62.2.155-167

© Ya. Mykytyuk, N. Sushchyk, D. Lukivska, 2024



156 Ya. MYKYTYUK, N. SUSHCHYK, D. LUKIVSKA

identified with a closed subspace of L1(R). The well-known result of Fefferman ([5]) identifies
the dual space (H1(C+))

′ with the space BMO(R) of functions of bounded mean oscillation
on R via the Hilbert operator H. Likewise, we use the discrete Hilbert operator H to identify
the dual space L′

1 with the space BMO(Z) of sequences of bounded mean oscillation on Z. In
the case of the dual space L′

1, the situation is similar. Here, the discrete Hilbert operator H
naturally appears, acting on sequences x : Z → C, along with the space BMO(Z) of sequences
with bounded mean oscillation on Z.

The purpose of this work is to study and describe the space L′
1. The main result of this

paper is the following theorem.

Theorem 1. The space L′
1 is isomorphic to the space BMO(Z).

The paper is organized as follows. In Section 2, we study the action of the discrete Hilbert
transform on the special Hilbert spaces G+ and G−. Section 3 explores the relationships
between several auxiliary Banach spaces of sequences. In Section 4, we characterize the
space BMO(Z) in terms of the discrete Hilbert transform. Finally, Section 5 presents the
proof of Theorem 1, while the Appendix includes relevant definitions from Banach space
theory.

2. The discrete Hilbert transform. There are several definitions of the discrete Hilbert
transform acting in the spaces ℓp, p ∈ (1,∞). However, all of them describe operators that
are variations of the operator introduced by D. Hilbert [2] and defined by the formula

(H0 x)(n) :=
1

π

∑
k∈Z\{0}

x(n− k)

k
, n ∈ Z, x ∈ ℓp.

In this work, we define the discrete Hilbert transform as the operator acting in ℓp according
to the formula

(H x)(n) :=
1

π

∑
k∈Z

x(k)

n− k + 1/2
, n ∈ Z. (2)

This operator is also called (see [2]) the Riesz-Titchmarsh operator. The advantage of the
operator H over H0 is the existence of a continuous inverse operator in all spaces ℓp, p ∈
(1,∞). In fact, the following statement holds (see [2], [6]).

Proposition 1. The operator H : ℓp → ℓp for p ∈ (1,∞) is a linear homomorphism, and

H2 = −S, (3)

where S is the shift operator given by the formula (Sx)(n) := x(n + 1), n ∈ Z. Moreover,
the operator H : ℓ2 → ℓ2 is unitary.

Remark 1. To simplify notations, we denote norms in the spaces ℓp in the same way as
norms in the spaces Lp(R). Specifically, if x ∈ ℓp (x ∈ ℓ∞), then

∥x∥p :=

(∑
n∈Z

|x(n)|p
)1/p

, ∥x∥∞ := sup
n∈Z

|x(n)|.

Let ℓ2,+ and ℓ2,− denote the Hilbert spaces{
x ∈ CZ : ∥x∥2,± <∞

}
, ∥x∥2,± :=

(∑
n∈Z

(1 + n2)±1|x(n)|2
)1/2

.
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It is clear that ℓ2,+ ⊂ ℓ1, ℓ∞ ⊂ ℓ2,−. This implies that the sequence d(j) ≡ 1 (j ∈ Z) belongs
to the space ℓ2,− and the functional Fd(x) :=

∑
j∈Z x(j), x ∈ ℓ1, is continuous in the spaces

ℓ2,+ and ℓ1.
Let us consider the closed subspaces in ℓ2,+ and ℓ2,−

G+ := {x ∈ ℓ2,+ : Fd(x) = 0}, G− := {y ∈ ℓ2,− : y(0) = 0},
which are Hilbert spaces with the norms

∥x∥+ := ∥x∥2,+ (x ∈ G+), ∥y∥− := ∥y∥2,− (y ∈ G−),

respectively. Denote by (en)n∈Z, en = (en(1), . . . , en(j), . . .) = (0, . . . 0︸ ︷︷ ︸
n−1

, 1, 0, . . .) the standard

basis in the space ℓ2, i.e., en(j) = 0 if j ̸= n, and en(n) = 1.
Denote by Φ the linear span of the set Φ0 := {ej − ej+1 : j ∈ Z}. Clearly,

Φ0 ⊂ Φ ⊂ G+ ⊂ ℓ1 ⊂ ℓ2.

Proposition 2. The bilinear formG+×G− ∋ (x, y) 7→ ⟨x, y⟩ :=
∑

j∈Z x(j)y(j) is continuous
and

|⟨x, y⟩| ≤ ∥x∥+∥y∥−, x ∈ G+, y ∈ G−. (4)
Moreover:

(I) for every y ∈ G− the formula Fy(x) := ⟨x, y⟩, x ∈ G+, defines a functional Fy ∈ G′
+, in

particular, ∥Fy∥ ≤ ∥y∥−;

(II) if y ∈ G− and kerFy ⊃ Φ0, then y = 0;

(III) if y ∈ G− \ {0}, then Fy ̸= 0;

(IV) for every F ∈ G′
+, there exists the unique y ∈ G− such that F = Fy.

Proof. Continuity of the bilinear form ⟨·, ·⟩ and the estimate (4) follow directly. This also
implies (I).

Let us prove (II). If y ∈ G− and kerFy ⊃ Φ0, then
0 = Fy(ej − ej+1) = y(j)− y(j + 1), j ∈ Z.

Therefore, y = cd, where c ∈ C. Since y ∈ G−, we have 0 = y(0) = c, implying y = 0. The
statement (II) yields (III).

Now we prove (IV ). Let F ∈ G′
+. By the Hahn-Banach theorem, F can be extended to

a functional F̃ ∈ (ℓ2,+)
′. By Riesz’s theorem, there exists u ∈ ℓ2,− such that

F̃ (x) =
∑
j∈Z

x(j)u(j), x ∈ ℓ2,+.

Let y = u− u(0)d. Then y ∈ G− and for any x ∈ G+ we have

Fy(x) =
∑
j∈Z

x(j)y(j) = F̃ (x)− u(0)Fd(x) = F (x),

thus F = Fy. To show uniqueness, assume y1 ∈ G− such that F = Fy = Fy1 . Then Fy−y1 = 0.
Hence, in view of (II), y − y1 = 0, i.e. y = y1.

As shown below, the operator H maps G+ into itself. However, the operator H does not

act on the space G−. Instead, there is a one-dimensional perturbation of H, denoted
◦
H, that

maps ℓ2,− (or G−) into itself. This operator acts according to the formula

(
◦
Hx)(n) := 1

π

∑
k∈Z

x(k)

(
1

n− k + 1/2
+

1

k − 1/2

)
, n ∈ Z, x ∈ ℓ2,−.
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Theorem 2. The operator H is a linear homeomorphism of the space G+ onto itself, and
◦
H is a linear homeomorphism of the space G− onto itself. Moreover,

⟨H−1x, y⟩ = ⟨x,
◦
Hy⟩ (x ∈ G+, y ∈ G−), (5)

H−1x = −HS−1x (x ∈ G+), (
◦
H)−1y = −

◦
HS−1y (y ∈ G−). (6)

First, we prove several auxiliary lemmas.

Lemma 1. The set Φ is everywhere dense in G+.

Proof. Assume that Φ is not everywhere dense in G+. Then there exists a nonzero functional
F ∈ G′

+ such that kerF ⊃ Φ. Thus, kerF ⊃ Φ0 and, according to points (IV ) and (II) of
Proposition 2, it follows that F = 0. This leads to a contradiction. Therefore, Φ is everywhere
dense in G+.

Lemma 2. Let x ∈ ℓ1 and Hx ∈ ℓ1. Then Fd(x) = Fd(Hx) = 0.

Proof. Let x ∈ ℓ1 and y = Hx ∈ ℓ1. The functions
ψ(t) =

∑
k∈Z

x(k)eikt, φ(t) =
∑
k∈Z

y(k)eikt, t ∈ [−π, π],

are continuous on the interval [−π, π]. It is easy to verify the equality
φ(t) = ψ(t)θ(t), t ∈ (−π, 0) ∪ (0, π),

where
θ(t) =

1

π

∑
m∈Z

eimt

m+ 1/2
= i sign(t) · e−it/2.

Since the function θ is discontinuous at the origin, the above formula implies that ϕ(0) =
ψ(0) = 0, and thus Fd(x) = ψ(0) = 0, Fd(y) = ϕ(0) = 0.

Proof of Theorem 2. Let M be the operator acting in the space of sequences CZ defined by
(Mx)(k) := kx(k), k ∈ Z.

It is easy to see that the operators (M ± 1
4
I) homeomorphically map the space ℓ2,+ to ℓ2 and

H(M − 1
4
I)x− (M + 1

4
I)Hx = − 1

π
Fd(x)d = 0, x ∈ G+.

This implies that for every x ∈ G+

∥Hx∥2,+ = ∥(M + 1
4
I)−1H(M − 1

4
I)x∥2,+ ≤ c1c2∥x∥+, (7)

where c1 = ∥(M + 1
4
I)−1∥ℓ2→ℓ2,+ , c2 = ∥M − 1

4
I∥ℓ2,+→ℓ2 . Here, we also take into account that

∥H∥ℓ2→ℓ2 = 1. Thus, the operator H continuously acts from G+ to ℓ2,+. Since
G+ ⊂ ℓ2,+ ⊂ ℓ1,

in view of Lemma 2, we obtain that HG+ ⊂ G+. Thus, the operator H continuously maps
G+ to G+. Applying the equality (3), we see that operator H : G+ → G+ has a continuous
inverse operator H−1 and

H−1 = −HS−1. (8)
Now, let us consider the operator

◦
H. It follows from the definition that

◦
Hx =MH(M − 1

2
I)−1x, x ∈ G−.

The operator (M − 1
2
I)−1 homeomorphically maps the space ℓ2,− into the space ℓ2, and

therefore ∥
◦
Hx∥− ≤ c̃1c̃2∥x∥2,−, where c̃1 = ∥M∥ℓ2→ℓ2,− , c̃2 = ∥(M − 1

2
I)−1∥ℓ2,−→ℓ2 . Since

(
◦
Hx)(0) = 0 for x ∈ ℓ2,−, we conclude that the operator

◦
H : G− → G− is continuous.
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Let G̃− be the set of finitely supported sequences y ∈ G− and note that G̃− is everywhere
dense in G−. Let x ∈ Φ, y ∈ G̃−. Since Fd(x) = 0, we have

⟨x,
◦
Hy⟩ = 1

π

∑
n∈Z

∑
k∈Z

x(n)y(k)
( 1

n− k + 1/2
+

1

k − 1/2

)
=

=
1

π

∑
n∈Z

∑
k∈Z

x(n)y(k)

n− k + 1/2
= −⟨S−1Hx, y⟩.

Hence, in view of (8), we get
⟨x,

◦
Hy⟩ = ⟨H−1x, y⟩, x ∈ Φ, y ∈ G̃−. (9)

Since the bilinear form ⟨·, ·⟩ is continuous onG+×G−, and both
◦
H and H−1 are continuous

in the spaces G− and G+, respectively, and taking into account that Φ is everywhere dense
in G+ and G̃− is everywhere dense in G−, from (9), we obtain the equality

⟨x,
◦
Hy⟩ = ⟨H−1x, y⟩, x ∈ G+, y ∈ G−.

Thus, applying (3), we have

⟨x, (
◦
H)2y⟩ = ⟨H−2x, y⟩ = −⟨S−1x, y⟩ = −⟨x, Sy⟩, x ∈ G+, y ∈ G−.

Therefore, taking into account point (IV ) of Proposition 2, we have (
◦
H)2 = −S. The operator

S homeomorphically maps the space G− (G+) onto itself, so the operator
◦
H : G− → G− is a

linear homeomorphism, and (
◦
H)−1 = −

◦
HS−1.

3. The special spaces X and Y . Let us consider the Banach spaces

X0 := {x ∈ ℓ1 : Fd(x) = 0}, X1 := {x ∈ ℓ1 : H−1x ∈ X0},

Y0 := {y ∈ ℓ∞ : y(0) = 0}, Y1 := {y ∈ G− : (
◦
H)−1y ∈ Y0},

(10)

which are equipped with the norms

∥x∥X0 := ∥x∥1, x ∈ X0; ∥x∥X1 := ∥H−1x∥X0 , x ∈ X1,

∥y∥Y0 := ∥y∥∞, y ∈ Y0; ∥y∥Y1 := ∥(
◦
H)−1y∥Y0 , y ∈ Y1. (11)

As we can see, there is a close connection between the spaces Xj and Yj.

Lemma 3. (I) The operator H isometrically maps the space X0 to X1.

(II) The operator
◦
H isometrically maps the space Y0 to Y1.

(III) The topological embeddings Y0 ⊂ G− and Y1 ⊂ G− hold.

(IV) The space G+ is topologically and everywhere densely embedded in the spaces X0

and X1.

Proof. (I) It follows from the definitions that H : X0 → X1 is a bijection and ∥Hx∥X1 =
∥x∥X0 , x ∈ X0. Therefore, the operator H isometrically maps the space X0 to X1.

(II) According to Theorem 2, the operator
◦
H : G− → G− is a bijection, and by definition

∥
◦
Hy∥Y1 = ∥y∥Y0 , y ∈ Y0. Therefore,

◦
H isometrically maps Y0 to Y1.

(III) Let c =
(∑

n∈Z(1 + n2)−1
)1/2. Since ∥y∥− ≤ c∥y∥∞ = c∥y∥Y0 , y ∈ Y0, we have

∥y∥− ≤ c1∥(
◦
H)−1y∥− ≤ cc1∥(

◦
H)−1y∥Y0 = cc1∥y∥Y1 , y ∈ Y1,
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where c1 = ∥
◦
H∥G−→G− . Thus, the embeddings Y0 ⊂ G− and Y1 ⊂ G− are topological.

(IV ) Since G+ ⊂ ℓ1 and Fd(x) = 0 for all x ∈ G+, it follows that G+ ⊂ X0. Hence,
HG+ ⊂ X1. According to Theorem 2,HG+ = G+, and therefore, G+ ⊂ X1.

Using the Cauchy-Schwarz inequality, we obtain ∥x∥X0 = ∥x∥1 ≤ c∥x∥+, x ∈ G+, where
c =

(∑
n∈Z(1 + n2)−1

)1/2. From this, it follows that ∥x∥X1 = ∥H−1x∥X0 ≤ c∥H−1x∥+ ≤
cc2∥x∥+, x ∈ G+, where c2 = ∥H−1∥G+→G+ . Hence, the embeddings G+ ⊂ X0 and G+ ⊂ X1

are topological.
Let x ∈ X0. For an arbitrary n ∈ N, we define

xn(j) :=

{
x(j), if |j| ≤ n;
0, if |j| > n,

un := xn + Fd(x− xn)e0.

It is easy to see that un ∈ G+ and ∥x − un∥1 → 0 as n → ∞. Thus, G+ is everywhere
dense in X0. Consequently, according to (I), the set HG+ is everywhere dense in X1. Since
HG+ = G+, it follows that G+ is everywhere dense in X1.

Lemma 4. If Fj ∈ X ′
j , then there exists yj ∈ Yj such that Fj(x) = ⟨x, yj⟩, x ∈ G+ (j = 0, 1).

Proof. Let F0 ∈ X ′
0. Since X0 is a subspace of ℓ1, by the Hahn-Banach theorem, F0 can

be extended to a continuous functional on ℓ1. Therefore, there exists u ∈ ℓ∞ such that
F0(x) = ⟨x, u⟩, x ∈ G+. Put y0 = u−u(0)d. Clearly, y0 ∈ Y0. Since ⟨x, d⟩ = 0 for all x ∈ G+,
we have F0(x) = ⟨x, u⟩ = ⟨x, y0⟩ − u(0)⟨x, d⟩ = ⟨x, y0⟩, x ∈ G+.

Let F1 ∈ X ′
1. Since the operator H : X0 → X1 is an isometry, the functional

F (x) := F1(Hx), x ∈ X0,

is continuous on X0. Thus, there exists u ∈ Y0 such that F (x) = ⟨x, u⟩, x ∈ G+.

Let y1 =
◦
Hu. Then y1 ∈ Y1. Taking into account (9), we obtain F1(x) = F (H−1x) =

⟨H−1x, u⟩ = ⟨x,
◦
Hu⟩ = ⟨x, y1⟩, x ∈ G+.

Let X denote the intersection of the Banach spaces X0 and X1, and let Y denote the
sum of the Banach spaces Y0 and Y1, i.e. (see the Appendix) X = X0 ∩X1, Y = Y0 + Y1,

∥x∥X := max{∥x∥X0 , ∥x∥X1}, x ∈ X,

∥y∥Y = inf{∥y0∥Y0 + ∥y1∥Y1 : y0 ∈ Y0, y1 ∈ Y1, y = y0 + y1}, y ∈ Y.

It follows from (11) that ∥x∥X1 = ∥H−1x∥1, x ∈ X1, and from (3) we get H = −SH−1.
Since the operator S : ℓ1 → ℓ1 is an isometry, we have ∥Hx∥1 = ∥SH−1x∥1 = ∥H−1x∥1, and
thus,

∥x∥X = max{∥x∥1, ∥H−1x∥1} = max{∥x∥1, ∥Hx∥1}, x ∈ X. (12)

Theorem 3. The space X ′ is isomorphic to the space Y.

Proof. Let F ∈ X ′. We will show that there exists y ∈ Y such that F (x) = Fy(x), x ∈ G+.
Lemma 3 yields that G+ ⊂ X0 ∩ X1 and G+ is everywhere dense in both X0 and X1. By
Theorem 6 (see the Appendix), X ′ = (X0 ∩ X1)

′ = X ′
0 + X ′

1. Thus, there exist functionals
Fj ∈ X ′

j (j = 0, 1) such that F (x) = F0(x) + F1(x), x ∈ X0 ∩ X1. Lemma 4 implies that
there exist yj ∈ Yj such that Fj(x) = ⟨x, yj⟩, x ∈ G+ (j = 0, 1). Therefore,

F (x) = ⟨x, y⟩ = Fy(x), x ∈ G+,
where y = (y0 + y1) ∈ Y.

Let us show that for an arbitrary y ∈ Y the functional Fy ∈ G′
+ can be uniquely extended

to a functional F y ∈ X ′. Indeed, if y ∈ Y , then y = y0 + y1, where y0 ∈ Y0 and y1 ∈ Y1.
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Therefore, Fy(x) = ⟨x, y0⟩+ ⟨x, y1⟩, x ∈ G+. Using (10) and (11), we obtain y1 =
◦
Hu, where

u ∈ Y0, moreover
∥y1∥Y1 = ∥

◦
Hu∥Y1 = ∥u∥Y0 .

Thus (see (5)), Fy(x) = ⟨x, y0⟩+⟨x,
◦
Hu⟩ = ⟨x, y0⟩+⟨H−1x, u⟩, x ∈ G+. Consequently, taking

into account (12), for an arbitrary x ∈ G+, we have

|Fy(x)| ≤ |⟨x, y0⟩|+ |⟨H−1x, u⟩| ≤ ∥x∥1∥y0∥∞ + ∥H−1x∥1∥u∥∞ ≤
≤ max{∥x∥1, ∥H−1x∥1} · (∥y0∥Y0 + ∥u∥Y0) = ∥x∥X(∥y0∥Y0 + ∥y1∥Y1).

Since G+ is everywhere dense in X, the functional Fy can be uniquely extended to F y ∈ X ′

with
∥F y∥ ≤ inf{∥y0∥Y0 + ∥y1∥Y1 : y = y0 + y1, y0 ∈ Y0, y1 ∈ Y1} = ∥y∥Y .

Now, consider the mapping Y ∋ y 7→ Γy := F y ∈ X ′. It follows from the above that Γ is a
continuous surjection. Let us check that ker Γ = {0}. Indeed, if y ∈ ker Γ, then Fy(x) = 0,
x ∈ G+. Thus, by statement (III) of Proposition 2, we conclude y = 0. Therefore, the
operator Γ is a continuous bijection. Consequently, by the Banach inverse theorem, Γ is a
linear homeomorphism. Thus, X ′ ∼ Y .

4. The space BMO(Z). The spaces BMO(Rn) of functions of bounded mean oscillation were
introduced by John and Nirenberg in [3]. Similarly, one can introduce the spaces BMO(X)
in the case when X is a measure space (see [4]). In this section, we describe the space
BMO(Z) in terms of the discrete Hilbert transform. The main result is Theorem 5, which is
an analogue of Fefferman’s theorem (see [5]).

Let I be the set of all bounded intervals in R of positive length. For an arbitrary
f ∈ L1,loc(R) and an arbitrary I ∈ I , we put

fI :=
1

|I|

∫
I
f(t) dt, f ∗

I :=
1

|I|

∫
I
|f(t)− fI | dt, ∥f∥∗ := sup

I∈I
f ∗
I .

If ∥f∥∗ <∞, then we say that f has bounded mean oscillation, f ∈ BMO(R). The value
∥f∥∗ is the norm in BMO(R). Since constant functions have zero BMO-norm, we identify
f ∈ BMO(R) with f+const and consider BMO(R) as a subset of the quotient space L1,loc/C,
where C is the one-dimensional subspace of constant functions.

Let Ĩ be the set of all non-empty bounded intervals Ĩ in Z. For an arbitrary sequence
φ : Z → C and an artitrary Ĩ ∈ Ĩ , we define

φĨ :=
1

|Ĩ|

∑
k∈Ĩ

φ(k), φ∗
Ĩ :=

1

|Ĩ|

∑
k∈Ĩ

|φ(k)− φĨ | (|Ĩ| = card Ĩ), ∥φ∥∗ := sup
Ĩ∈Ĩ

φ∗
Ĩ .

If ∥φ∥∗ <∞, then we say that φ has bounded mean oscillation, φ ∈ BMO(Z). The value
∥φ∥∗ is the norm in BMO(Z). Since constant sequences have zero BMO-norm, we identify
φ ∈ BMO(R) with φ+const and consider BMO(Z) as a subset of the quotient space ℓ1,loc/C,
where C is the one-dimensional subspace of constant sequences.

Remark 2. To avoid complicating the notation, we use the same symbols for similar objects
in the definitions of the spaces BMO(R) and BMO(Z), in particular for norms. This should
not lead to misunderstandings.

Remark 3. The formula P0φ := φ−φ(0)d (φ ∈ CZ) defines a projector in the space CZ. In
particular, it projects the space ℓ∞ onto Y0 and ∥P0∥ℓ∞→ℓ∞ ≤ 2. Moreover, if φ ∈ BMO(Z),
then P0φ ∈ BMO(Z) and ∥P0φ∥∗ ≤ 2∥φ∥∗.



162 Ya. MYKYTYUK, N. SUSHCHYK, D. LUKIVSKA

Let χk denote the characteristic function of the interval Ik := [k, k + 1) for k ∈ Z, and
consider the linear operators

U : CZ → L1,loc(R), V : L1,loc(R) → CZ,

defined by the formulas
Uφ :=

∑
n∈Z

φ(n)χn (φ ∈ CZ), (V f)(n) := fIn (n ∈ Z, f ∈ L1,loc(R)).

Proposition 3. The operator U continuously maps BMO(Z) into BMO(R), and the operator
V continuously maps BMO(R) into BMO(Z), satisfying

∥V f∥∗ ≤ ∥f∥∗, f ∈ BMO(R), (13)
∥Uφ∥∗ ≤ 6∥φ∥∗, φ ∈ BMO(Z), (14)
V Uφ = φ, φ ∈ BMO(Z). (15)

Proof. First, let us make a few remarks.
(a) Let f ∈ BMO(R), φ = V f, and [n,m] =: I ∈ I , where n,m ∈ Z (n < m) and
Ĩ := [n,m) ∩ Z. Clearly, fI = φĨ and

|φ(k)− φĨ | =
∣∣∣∣∫

Ik
(f(t)− fI) dt

∣∣∣∣ ≤ ∫
Ik
|f(t)− fI | dt, k ∈ Ĩ,

therefore,

φ∗
Ĩ =

1

|Ĩ|

∑
k∈Ĩ

|φ(k)− φĨ | ≤
1

|I|

∫
I
|f(t)− fI | dt = f ∗

I .

(b) For an arbitrary f ∈ L1,loc(R), α ∈ C and I ∈ I

|fI − α| =
∣∣∣∣ 1|I|

∫
I
(f(t)− α) dt

∣∣∣∣ ≤ 1

|I|

∫
I
|f(t)− α| dt.

Thus,

f ∗
I =

1

|I|

∫
I
|f(t)− fI | dt ≤

1

|I|

∫
I
|f(t)− α| dt+ 1

|I|

∫
I
|α− fI | dt ≤

≤ |fI − α|+ 1

|I|

∫
I
|f(t)− α| dt ≤ 2

|I|

∫
I
|f(t)− α| dt. (16)

(c) If k ∈ Z and Ĩ = {k, k + 1}, then

φĨ =
φ(k) + φ(k + 1)

2
and φ∗

Ĩ =
|φ(k)− φ(k + 1)|

2
. (17)

Let f ∈ BMO(R) and φ = V f. From (a), it follows that φ ∈ BMO(Z) and ∥φ∥∗ ≤ ∥f∥∗,
thus, (13) holds.

Now we prove (14). Let φ ∈ BMO(Z), f = Uφ and I ∈ I . First, consider the case when
|I| ≤ 1. Then there exists k ∈ Z such that I ⊂ Ik ∪Ik+1. Taking into account (16) and (17),
we obtain

f ∗
I ≤ 2

|I|

∫
I
|f(t)− φ(k)| dt = 2

|I|

∫
I∩Ik+1

|φ(k + 1)− φ(k)| dt ≤ 2|φ(k + 1)− φ(k)| = 4φ∗
Ĩ .
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Thus,
f ∗
I ≤ 4φ∗

Ĩ ≤ 4∥φ∥∗, when |I| ≤ 1. (18)

Let |I| > 1 and I1 = [n,m] be the smallest interval in I that contains I with n,m ∈ Z.
Then |I1| ≤ 3|I|. Take into account (16), we have

f ∗
I ≤ 2

|I|

∫
I
|f(t) − fI1 | dt ≤ 2

|I|

∫
I1
|f(t) − fI1| dt ≤ 6

|I1|

∫
I1
|f(t) − fI1 | dt = 6f ∗

I1 .

According to (a) f ∗
I1 = φ∗

Ĩ1
≤ ∥φ∥∗, where Ĩ1 := [n,m) ∩ Z. Therefore,

f ∗
I ≤ 6f ∗

I1 ≤ 6∥φ∥∗, I ∈ I , (19)

thus, ∥f∥∗ ≤ 6∥φ∥∗.
The verification of the equality (15) is straightforward.

The Hilbert transform in the spaces Lp(R), 1 < p <∞, is defined by the formula

(Hf)(x) :=
1

π
lim
ε→+0

∫
|x−t|≥ε

f(t)

x− t
dt, x ∈ R. (20)

In these spaces, H is a linear homeomorphism (see [5]). However, H does not map the space
L1(R) into itself, and the formula (20) does not allow us to correctly define its action on
functions from L∞(R). Using a one-dimensional perturbation of the operator H, we can

obtain a regularized operator
◦
H, which is defined on functions from L1,loc(R) for which∫ ∞

−∞
|f(t)|(1 + |t|)−1 dt <∞.

This regularization is given by the formula

(
◦
Hf)(x) :=

1

π
lim
ε→+0

∫
|x−t|≥ε

f(t)

(
1

x− t
+

t

t2 + 1

)
dt, x ∈ R.

Fefferman proved the theorem (see [5]) that describes BMO(R) in terms of
◦
H.

Theorem 4 (Fefferman). The following equality holds

BMO(R) = {c+ f1 +
◦
Hf2 : f1, f2 ∈ L∞(R), c ∈ C}/ const,

where the formula
∥f∥ := inf{∥f1∥∞ + ∥f2∥∞ : f = c+ f1 +

◦
Hf2, c ∈ C, f1, f2 ∈ L∞(R)}

defines a norm in BMO(R) that is equivalent to the norm ∥ · ∥∗.

The discrete analogue of this result is as follows.

Theorem 5. The following equality holds
BMO(Z) = {c+ φ1 +

◦
Hφ2 : φ1, φ2 ∈ ℓ∞, c ∈ C}/ const,

where the formula
∥φ∥△ := inf{∥φ1∥∞ + ∥φ2∥∞ : φ = c+ φ1 +

◦
Hφ2, φ1, φ2 ∈ ℓ∞, c ∈ C}

defines a norm in BMO(Z) that is equivalent to the norm ∥ · ∥∗.

The proof of Theorem 5 is based on Fefferman’s theorem and the statement that is proved
below.
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Proposition 4. The operator V
◦
H −

◦
HV continuously maps L∞(R) to ℓ∞.

Proof. Let f ∈ L∞(R) and φ := (V
◦
H −

◦
HV )f . Fix an arbitrary n ∈ Z and estimate |φ(n)|.

Let I := In−1 ∪ In ∪ In+1 and define

f1 := χIf, f2 := (1− χI)f, φj := (V
◦
H −

◦
HV )fj (j ∈ {1, 2}),

where χI is the characteristic function of the interval I. Since |φ(n)| ≤ |φ1(n)|+ |φ2(n)|, it
suffices to estimate the values |φj(n)|.

Note that ∥fj∥∞ ≤ ∥f∥∞ (j ∈ {1, 2}) and f1 ∈ L2(R), V f1 ∈ ℓ2, and

∥f1∥2 ≤
√
3∥f∥∞, ∥V f1∥2 ≤

√
3∥f∥∞. (21)

From the definitions of the operators
◦
H and

◦
H we obtain

(V
◦
Hf1)(n) =

∫
In
(Hf1)(x) dx+

1

π

∫
In

tf1(t) dt

1 + t2
, (

◦
HV f1)(n) = (HV f1)(n)− (HV f1)(0).

Thus, taking into account (21) and the fact that the operators H : L2(R) → L2(R) and
H : ℓ2 → ℓ2 are unitary, we have

|(V
◦
Hf1)(n)| ≤

∫
In

|(Hf1)(x)| dx+
1

π

∫
In

|tf1(t)| dt
1 + t2

≤ ∥Hf1∥2 +
1

6
∥f∥∞ = (

√
3 + 1/6)∥f∥∞

and |(
◦
HV f1)(n)| ≤ |(HV f1)(n)| + |(HV f1)(0)| ≤ 2∥HV f1∥2 = 2∥V f1∥2 ≤ 2

√
3∥f∥∞.

Therefore,
|φ1(n)| ≤ |(V

◦
Hf1)(n)|+ |(

◦
HV f1)(n)| ≤ 6∥f∥∞. (22)

Next, let us estimate |φ2(n)|. For this, consider the functions

Φ(x, t) :=
1

π

(
1

x− t
+

t

t2 + 1

)
, Φ0(x, t) :=

1

π

(
1

[x]− [t] + 1/2
+

1

[t]− 1/2

)
,

where [x] is the integer part of x ∈ R. It is easy to verify that

φ2(n) =

∫
In

∫
R\I

(Φ(x, t)− Φ0(x, t))f(t) dt dx. (23)

We will show that if x, t ∈ R and |x− t| ≥ 1, then

|Φ(x, t)− Φ0(x, t)| ≤
1

π

(
6

|x− t|2
+

8

1 + t2

)
. (24)

Let t ∈ R and set u = [t]− 1/2, v = t− u. Since |u| ≥ 1/2 and v ∈ [0, 3/2], we have∣∣∣∣ 1

[t]− 1/2
− t

1 + t2

∣∣∣∣ = |1 + (u+ v)2 − u(u+ v)|
(1 + t2)|u|

≤

≤ 1

1 + t2

(
v +

1 + v2

|u|

)
≤ 8

1 + t2
. (25)

Let x, t ∈ R and |x − t| ≥ 1. Put u = x − t and v = [x] − [t] + 1/2. Obviously, |v| ≥ 1/2,
|u− v| ≤ 3/2. Therefore, |u| ≤ |v|+ |u− v| ≤ |v|+ 3/2 ≤ 4|v|, and thus,∣∣∣∣ 1

x− t
− 1

[x]− [t] + 1/2

∣∣∣∣ ≤ |u− v|
|u| |v|

≤ 6

|u|2
≤ 6

|t− x|2
.

From this, taking into account (25), we obtain (24). Using (23) and (24), we have
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|φ2(n)| ≤
∥f∥∞
π

∫
In

∫
R\I

(
6

|x− t|2
+

8

1 + t2

)
dt dx ≤ ∥f∥∞(12 + 8π)

π
≤ 12∥f∥∞.

Thus, considering (22), we obtain that |φ(n)| ≤ 18∥f∥∞. From the arbitrariness of n ∈ Z, it
follows that

∥V
◦
H −

◦
HV ∥L∞(R)→ℓ∞ ≤ 18. (26)

From Proposition 4, we get the following corollary.

Corollary 1. The operator
◦
H continuously maps ℓ∞ to BMO(Z).

Proof. Let φ ∈ ℓ∞ and f = Uφ. It is obvious that ∥f∥∞ ≤ ∥φ∥∞. In view of (15), we have
φ = V Uφ = V f. Thus,

◦
Hφ = V

◦
Hf − (V

◦
H −

◦
HV )f. (27)

From Fefferman’s theorem, it follows that the operator
◦
H continuously maps the space L∞(R)

into BMO(R). Therefore, taking into account (13), we obtain

∥V
◦
Hf∥∗ ≤ ∥

◦
Hf∥∗ ≤ B∥f∥∞ ≤ B∥φ∥∞, (28)

where B = ∥
◦
H∥L∞→BMO(R). Note that L∞(R) ⊂ BMO(R) and ∥g∥∗ ≤ ∥g∥∞, g ∈ L∞(R).

Therefore, (27), (28) and (26) imply that

∥
◦
Hφ∥∗ ≤ ∥V

◦
Hf∥∗ + ∥(V

◦
H −

◦
HV )f∥∗ ≤ B∥φ∥∞ + 18∥f∥∞ ≤ (B + 18)∥φ∥∞.

Thus, the operator
◦
H continuously maps ℓ∞ into BMO(Z).

Proof of Theorem 5. Let φ ∈ BMO(Z) and f = Uφ. From Proposition 3, it follows that
f ∈ BMO(R). Therefore, according to Fefferman’s theorem, f can be expressed as

f = f1 +
◦
Hf2 + c, (29)

where c is a constant, and f1, f2 ∈ L∞(R). The functions f1 and f2 can be chosen such that

∥fj∥∞ ≤ A∥f∥∗, j ∈ {1, 2}, (30)

where A is an absolute constant. Since (see (15)) V f = V Uφ = φ, it follows from (29) that

φ = V f1 + V
◦
Hf2 + c. (31)

Clearly, the operator V continuously maps L∞(R) into ℓ∞ and

∥V f∥∞ ≤ ∥f∥∞, f ∈ L∞(R). (32)

Put φ1 := V f1 + (V
◦
H −

◦
HV )f2, φ2 := V f2. Then φ = φ1 +

◦
Hφ2 + c. Taking into account

(32) and (26), we get

∥φ1∥∞ ≤ ∥V f1∥∞ + ∥(V
◦
H −

◦
HV )f2∥∞ ≤ ∥f1∥∞ + 18∥f2∥∞.

Thus, taking into account (30) and (14), we have ∥φ1∥∞ ≤ 19A∥f∥∗ = 19A∥Uφ∥∗ ≤
114A∥φ∥∗. Additionally, considering (32), (30) and (14), we obtain
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∥φ2∥∞ = ∥V f2∥∞ ≤ ∥f2∥∞ ≤ A∥f∥∗ = A∥Uφ∥∗ ≤ 6A∥φ∥∗.
Thus, we proved that BMO(Z) ⊂ {φ1 +

◦
Hφ2 + c | φ1, φ2 ∈ ℓ∞}/ const and ∥φ∥△ ≤

A1∥φ∥∗, φ ∈ BMO(Z), where A1 is an absolute constant. It remains to show that there
exists A2 > 0 such that

∥φ∥∗ ≤ A2∥φ∥△, φ ∈ BMO(Z).
Let φ ∈ BMO(Z). Then there exist φ1, φ2 ∈ ℓ∞ and c ∈ C such that

φ = φ1 +
◦
Hφ2 + c, ∥φ∥△ ≤ ∥φ1∥∞ + ∥φ2∥∞ ≤ 2∥φ∥△.

Note that ∥φ∥∗ = ∥φ1 +
◦
Hφ2 + c∥∗ ≤ ∥φ1∥∗ + ∥

◦
Hφ2∥∗ ≤ Ã2(∥φ1∥∞ + ∥φ2∥∞), where

Ã2 = 1 + ∥
◦
H∥ℓ∞→BMO(Z). Therefore, ∥φ∥∗ ≤ 2Ã2∥φ∥△, φ ∈ BMO(Z), and thus, the norm

∥ · ∥△ is equivalent to the norm ∥ · ∥∗.

5. Proof of Theorem 1. First, we prove that Y ∼ BMO(Z). Consider the linear operator
Y ∋ y 7→ Wy := {y + c : c ∈ C}.

Let us show that W is a homeomorphism between the space Y and BMO(Z). Let φ ∈
BMO(Z). Then there exist the functions φ0, φ1 ∈ ℓ∞ such that φ = φ0 +

◦
Hφ1 + c, c ∈ C,

and ∥φ∥△ ≤ ∥φ0∥∞ + ∥φ1∥∞ ≤ 2∥φ∥△.
Note that the projector P0 (see Remark 3) projects ℓ∞ onto Y0 and

◦
Hx =

◦
HP0x = P0

◦
Hx, x ∈ ℓ∞.

Thus, φ = P0φ0 +
◦
HP0φ1 + c, c ∈ C. Since the elements P0φj belong to the space Y0,

the element y = P0φ0 +
◦
HP0φ1 belongs to the space Y , it means that φ = Wy. From the

arbitrariness of the element φ, it follows that W maps Y onto BMO(Z). Additionally,

∥y∥Y ≤ ∥P0φ0∥Y0 + ∥
◦
HP0φ0∥Y1 = ∥P0φ0∥Y0 + ∥P0φ1∥Y0 .

According to Remark 3 ∥P0∥ℓ∞→ℓ∞ ≤ 2. Therefore, ∥y∥Y ≤ 2(∥φ0∥∞ + ∥φ1∥∞) ≤ 4∥φ∥△,
which means ∥Wy∥△ ≥ 1

4
∥y∥Y . According to Theorem 5 the norm ∥ · ∥△ is equivalent to

the norm ∥ · ∥∗. Therefore, the operator W is bounded below. This implies that the operator
W : Y → BMO(Z) is a linear bijection, and the operator W−1 continuously maps BMO(Z)
to Y. Hence, by the Banach inverse operator theorem, W is a homeomorphism of the space
Y onto BMO(Z), meaning Y ∼ BMO(Z).

To complete the proof, it is sufficient to show that L1 ∼ X. Indeed, in that case, L′
1 ∼ X ′

and in view of Theorem 3 we have
L′

1 ∼ X ′ ∼ Y ∼ BMO(Z).
Thus, we prove that L1 ∼ X. Let the operator J : L1 → CZ be defined by formula (1). From
the results of [1], it follows that JL1 = {x ∈ ℓ1 : Hx ∈ ℓ1}. And by Lemma 2,

{x ∈ ℓ1 : Hx ∈ ℓ1} = {x ∈ ℓ1 : Hx ∈ ℓ1, Fd(x) = Fd(Hx) = 0} = X0 ∩X1,

i.e., JL1 = X. In [7], it is proved that for all f ∈ L1 the following inequality holds

4−1(∥Jf∥1 + ∥HJf∥1) ≤ ∥f∥L1 ≤ ∥Jf∥1 + ∥HJf∥1. (33)

Take into account (12), we have
∥Jf∥X = max{∥Jf∥1, ∥HJf∥1} ≤ ∥Jf∥1 + ∥HJf∥1,

∥Jf∥1 + ∥HJf∥1 ≤ 2max{∥Jf∥1, ∥HJf∥1} = 2∥Jf∥X .
Therefore, from (33) it follows that 4−1∥Jf∥X ≤ ∥f∥L1 ≤ 2∥Jf∥X . Thus, J is an isomorphism
between the spaces L1 and X, i.e., L1 ∼ X.
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Appendix. Some definitions and facts of the theory of Banach space. Banach spaces
A andB are called isomorphic (abbreviated asA ∼ B) if there exists a linear homeomorphism
from space A to B. If additionally this homeomorphism is an isometry, then spaces A and
B are called isometrically isomorphic (abbreviated as A ≃ B).

Let A and B be Banach spaces that are algebraically and topologically embedded in some
Hausdorff linear topological space. The Banach space A∩B, consisting of elements common
to A and B, with the norm

∥x∥A∩B = max(∥x∥A, ∥x∥B), x ∈ A ∩B,
is called the intersection of Banach spaces A and B.

The Banach space A+B, consisting of elements of the form x = u+v, where u ∈ A, v ∈ B,
and endowed with the norm

∥x∥A+B = inf{∥u∥A + ∥v∥B},
where the infimum is taken over all elements u ∈ A, v ∈ B such that x = u+ v, is called the
sum of Banach spaces A and B.

In the theory of Banach spaces, the following theorem is well-known (see, for example, [8]).

Theorem 6. Let A and B be Banach spaces that are algebraically and topologically embed-
ded in some Hausdorff linear topological space, and if the intersection A∩B is dense in spaces
A and B, then the dual spac (A∩B)′ of the intersection of A and B is isometrically isomorphic
to the sum A′ +B′.
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