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This paper is devoted to analysis of an iterative method for solving nonlinear equations.
The method, inspired by the Kurchatov-type methods, is specifically designed to avoid the
need for derivative calculations or inverses of linear operators. By employing a sequence of
approximating operators and divided differences, the method achieves semilocal convergence.
Numerical experiments demonstrate the method’s efficiency and robustness, highlighting its
potential advantages over traditional methods like Newton’s method, especially in scenari-
os where derivative calculations are impractical and computationally expensive. The results
indicate that the method is a viable and efficient alternative for solving nonlinear equations,
especially in large-scale problems or scenarios, where derivative information is not readily avai-
lable. The robustness and efficiency of the method make it a valuable tool in various scientific
and engineering applications.

1. Introduction. Solving nonlinear equations is a fundamental problem in numerical ana-
lysis with widespread applications in science and engineering [1–13, 21–23]. The general
problem involves finding a solution x∗ ∈ X such that

F (x) = 0,

where F : D ⊆ X → Y is a nonlinear operator between Banach spaces X and Y , and D is
an open and convex subset of X.

Newton’s method is widely used for its quadratic convergence rate in solving such equa-
tions. However, it requires the computation and inversion of the Frechet derivative F ′(x)
at each iteration. It may not be not effective, when the derivative is difficult to obtain or
when inverting the linear operator is computationally intensive [14–17]. We are interested
in methods that are free of derivatives and inverses. By approximating the inverse operator
instead of computing it directly, we eliminate the need to calculate inverse operators. This
leads to a Newton-type method and does not require the computation of inverse operators.

A representative example of these methods is the iterative Moser-Secant method [2],
which combines ideas from Newton-like methods and the Secant method to avoid the com-
putation of Jacobians and their inverses. This method approximates the inverse of the di-
vided difference operator without explicitly computing inverses, making it computationally
attractive, when derivatives are unavailable or difficult to compute.
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Building upon the Moser-Secant method [2], we propose an enhanced iterative method
that improves its properties, leading to better performance in practice. In this paper, we
analyze the Moser-Kurchatov method [12, 13, 18–20], an iterative technique that combines
elements of the secant and quasi-Newton methods to solve nonlinear equations without
derivative computations. The method is defined by the following iterative scheme

xm+1 = xm − AmF (xm),

ym+1 = xm + pm(xm+1 − xm), pm ∈ [0, 1],

Km+1 = [2ym+1 − xm+1, xm+1;F ],

Am+1 = 2Am − AmKm+1Am,

(1)

where Am are approximations of the inverse of F ′, pm are relaxation parameters, and [v, w;F ]
denotes the divided difference operator of F at points v and w.

Our objective is to analyze the semilocal convergence of the method (1). We establish
conditions under which the iterative sequence {xm} converges to a solution x∗ of the equation
F (x) = 0. The convergence analysis is based on certain assumptions about the operator F
and utilizes properties of the divided differences and approximating operators.

The main contributions of this paper are:

– Establishing semilocal convergence results for the Moser-Kurchatov iterative method under
specific conditions on F and the initial approximation x0.

– Providing explicit bounds on the convergence and error estimates, demonstrating the
efficiency of the method without requiring derivative computations.

– Presenting numerical experiments that illustrate the practical performance of proposed
iterative method on several benchmark nonlinear systems.

The structure of the paper is organized as follows. In Section 2, we provide a detailed
analysis of the convergence of the method (1), including necessary conditions and supporting
lemmas that lead to the main convergence theorem. In Section 3, we present numerical
experiments that demonstrate the effectiveness of the method on various nonlinear problems.
Finally, in Section 4, we conclude with a summary of our findings and discuss potential
directions for future research.

By researching the Moser-Kurchatov method, we aim to contribute to the understanding
of derivative-free iterative methods for solving nonlinear equations, offering insights into
their convergence properties and practical performance.

2. Analysis of convergence. The semilocal convergence of the method (1) relies on
certain conditions.

(C1) There exists λ ≥ 0 such that ∥[v1, v2;F ] − [v3, v4;F ]∥ ≤ λ(∥v1 − v3∥ + ∥v2 − v4∥) for
each v1, v2, v3, v4 ∈ D with v1 ̸= v2 and v3 ̸= v4. It is worth noting that if v1 = v2, v3 = v4
and the Frechet derivative exists in D, then F ′(v1) = [v1, v2;F ].

(C2) There exist x0 ∈ D and A0 ∈ L(X,X) such that ∥F (x0)∥ ≤ µ, ∥A0∥ ≤ b, 2λbν < 1, and
∥I − [2y0 − x0, x0;F ]A0∥ = δ < 1 provided that ν = δµ, and for x0, x0 ∈ D it follows that
2y0 − x0 ∈ D.

(C3) There exist x−1 ∈ D and p−1 ∈ (0, 1) such that (1+δ+4λbν)ν
1−2λbν

< α = ∥x−1 − x0∥ and
y0 = x−1 + p−1(x0 − x−1) ∈ D.

We assume without loss of generality that F (x0) ̸= 0. Otherwise, xm = x0 for each
n ∈ {0, 1, 2, . . .}. In this case, F (x0) = 0 and lim

m→∞
xm = x0.
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It is convenient to introduce the operators

Km = [2ym − xm, xm;F ] and Sm = [xm−1, xm;F ] .

The iterate x1 exists by the first substep of the method (1) and by the condition (C2)

∥x1 − x0∥ = ∥A0F (x0)∥ ≤ βµ = ν.

If x1 ∈ D, and from the existence of [x0, x1;F ], the definition of the divided difference and
the method (1), we can write in turn

F (x1) = F (x0)− [x0, x1;F ](x0 − x1) = (I − [x0, x1;F ]A0)F (x0).

Consequently,
∥F (x1)∥ ≤ ∥I − S1A0∥∥F (x0)∥. (2)

An upper bound is needed for the first norm at the right hand side of (2). Let us consider
the operator K0 = [2y0 − x0, x0;F ] provided that y0 ∈ D and 2y0 − x0 ∈ D. Notice that

I − S1A0 = (I −K0A0) + (K0 − S1)A0.

But by (C1), we get in turn

∥K0 − S1∥ = ∥ [2y0 − x0, x0;F ]− [x0, x1;F ] ∥ ≤ λ(∥y0 − x0∥+ ∥x0 − x1∥) ≤
≤ λ(2∥y0 − x0∥+ ∥x0 − x1∥) ≤ λ (2(1− p−1)∥x0 − x−1∥+ ∥x0 − x−1∥) ≤

≤ λ(2∥x0 − x−1∥+ ∥x1 − x0∥)

leading to

∥I − S1A0∥ ≤ ∥I −K0A0∥+ ∥K0 − S1∥∥A0∥ ≤ δ + λ(2bα + bν) = δ + λ(2a0 + b0) := c0.

So, we have
∥F (x1)∥ ≤ c0∥F (x0)∥.

Moreover, by A1 = 2A0−A0[2y1−x1, x1;F ]A0 and the triangle inequality ∥A1∥ ≤ ∥A0∥(1+
∥I −K0A0∥). We can also write

I −K1A0 = I − S1A0 + (S1 −K1)A0.

Then, for the second term at the right hand side and (C1) we have in turn the estimates

∥S1 −K1∥ = ∥[x0, x1;F ]− [2y1 − x1, x1;F ]∥ ≤ λ(∥2y1 − x1 − x0∥) ≤
≤ λ(2∥y1 − x0∥+ ∥x1 − x0∥) ≤ λ(2p0∥x1 − x0∥+ ∥x1 − x0∥) ≤ λ(3∥x1 − x0∥),

so
∥I −K1A0∥ ≤ ∥I − S1A0∥+ ∥S1 −K1∥∥A0∥ ≤ c0 + 3λb0 := d0

and
∥A1∥ ≤ (1 + d0)∥A0∥.

Next, as in [2] we define some nonnegative real sequences {an}, (bn), (cn), (dn)
for n ∈ {1, 2, . . .} that play a role in the convergence of the method (1) as

an = (1 + dn−1)bn−1, bn = (1 + dn−1)bn−1,

cn = d2n−1 + λ(2an + bn), dn = cn + 3λbn.
(3)

A convergence criterion is needed for these sequences.
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Lemma 1. Suppose that
c1 < c0 and c0(1 + d0)

2 < 1. (4)

Then, the following items hold:
(a) c0 < 1 and c0(1 + d0)

2 < 1,
(b) The sequences {an}, {bn}, {cn}, and {dn} are strictly decreasing.

Proof. (a) The second condition in (4) and (1 + b0) > 1 give c0(1 + d0) < 1, so the second
item in (a) holds. Similarly, the first item in (a) holds.

The item (b) is shown by induction. We first check if a1 ≤ a0. By the definition of these
sequences and the choice of α in the condition (C3) we must show

a1 = (1 + d0)b0 = (1 + c0 + 3λb0)b0 ≤ a0

or
(1 + c0 + 3λbn)bn < b0α

or
(1 + δ + λ(2a0 + b0))ν + 3λbν < bα

or
(1 + δ + 3λbν + λbν + 2λbα)ν < α,

which is true by the choice of α.
Then, by the second condition in (4) one has b1 < b0. Moreover, by the first condition in

(4), we have d1 < d0.
Next, suppose these sequences decrease up to an integer m. Then, we obtain in turn that

am+1 = (1 + dm)bm < (1 + dm−1)bm−1 = am,

bm+1 = (1 + dm)
2bmcm < (1 + dm−1)

2bm−1cm−1 = bm,

cm+1 = d2m + λ(2am+1 + bm+1) < d2m−1 + λ(2am + bm) = cm,

dm+1 = cm+1 + 2λbm+1 < cm + 3λbm = dm.

The induction is completed. Thus, the item (b) is true.

Lemma 2. Let {xm} be the sequence generated by the method (1). Suppose that xm, ym,
2ym − xm ∈ D for each m ∈ {1, 2, . . .}. Then, the following items hold:
(a) ∥Km − Sm+1∥ ≤ λ(2∥xm − xm−1∥+ ∥xm+1 − xm∥),
(b) ∥I −KmAm∥ ≤ ∥I −KmAm−1∥2,
(c) ∥Sm+1 −Km+1∥ ≤ 3λ∥xm+1 − xm∥,
(d) ∥I − Sm+1Am∥ ≤ ∥I −KmAm∥+ ∥Km − Sm+1∥∥Am∥.

Proof. (a) Using the condition (C1) and the definition of the operators Km and Sm+1, we
have in turn

∥Km − Sm+1∥ = ∥[xm − xm, xm;F ]− [xm, xm+1;F ]∥ ≤ λ(2∥ym − xm∥+ ∥xm+1 − xm∥) ≤
≤ λ(2(1− pm−1)∥xm − xm−1∥+ ∥xm+1 − xm∥) ≤ λ(2∥xm − xm−1∥+ ∥xm+1 − xm∥).

Thus, (a) holds.
(b) Notice that I −KmAm = I − 2KmAm−1 +KmAm−1KmAm−1 = I −KmAm−1)

2. By
taking norms we show (b).
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(c) As in (a) we have in turn

∥Sm+1 −Km+1∥ = ∥[xm, xm+1;F ]− [ym+1 − xm+1, xm+1;F ]∥ ≤ λ∥2ym+1 − xm+1 − xm∥.

But 2ym+1 − xm+1 − xm = 2(ym+1 − xm) + (xm − xm+1), so

∥2ym+1 − xm+1 − xm∥ ≤ 2∥ym+1 − xm∥+ ∥xm − xm+1∥ ≤
≤ 2pm∥xm+1 − xm∥+ ∥xm+1 − xm∥ ≤ 2∥xm+1 − xm∥+ ∥xm+1 − xm∥ = 3∥xm+1 − xm∥,

which shows (c).
(d) We can write I − Sm+1Am = (I − KmAm) + (Km − Sm+1)Am from which item (d)

follows.

Lemma 3. Under the hypotheses of the Lemma 1 further suppose that xm, ym, 2ym−xm ∈ D
for each m ∈ {1, 2, . . .}. Then, the following items hold:
(Im) ∥xm+1 − xm∥ ≤ (1 + dm−1)cm−1∥Am−1∥∥F (xm−1)∥,
(IIm) ∥xm − x0∥ ≤ 1

1−q
∥A0∥∥F (x0)∥ provided that q = (1 + d0)c0 < 1,

(IIIm) ∥Am∥∥xm − xm−1∥ ≤ ∥Am∥∥Am−1∥∥F (xm−1)∥ ≤ am,
(IVm) ∥Am∥∥xm+1 − xm∥ ≤ ∥Am∥2∥F (xm)∥ ≤ bm,
(Vm) ∥Km − Sm+1∥ ≤ λ(2am + bm),
(VIm) ∥I − Sm+1Am∥ = cm,
(VIIm) ∥F (xm+1)∥ ≤ cm∥F (xm)∥,
(VIIIm) ∥Sm+1 −Km+1∥ ≤ λbm,
(IXm) ∥I −Km+1Am∥ = dm,
(Xm) ∥Am+1∥ ≤ (1 + dm−1)∥Am−1∥.

Proof. Mathematical induction is used on the integer m to show all the items starting from
m = 1. Items (I1) , (II1) , (III1) , and (IV1) are shown in Lemma 2.3 [2]. By hypothesis
x2 ∈ D. Then, by (1) we can write in turn that

F (x2) = F (x1)− S2(x1 − x2) = F (x1)− S2A1F (x1) = (I − S2A1)F (x1),
so

∥F (x2)∥ ≤ ∥I − S2A1∥∥F (x1)∥.
By Lemma 2, we have

∥I − S2A1∥ = ∥I −K1A1∥+ ∥K1 − S2∥∥A1∥ ≤ ∥I −K1A0∥2 + ∥K1 − S2∥∥A1∥,
and

∥K1 − S2∥∥A1∥ ≤ λ(2∥y1 − x1∥+ ∥x2 − x1∥)∥A1∥ ≤ λ(2(1− p0)∥x1 − x0∥+ ∥x2 − x1∥)∥A1∥ ≤
≤ λ

[
2(1 + d0)b0 + a0(1 + d0)

2c0b0
]
= λ(2a1 + b1).

Hence, we get ∥I − S2A1∥ ≤ ∥I − K1A0∥2 + ∥K1 − S2∥∥A1∥ ≤ d20 + λ(2a1 + b1) = c2. So,
∥F (x2)∥ ≤ c1∥F (x1)∥ and the items (V1) , (VI1) , and (VII1) hold.

Notice that A2 = 2A1 − A1K2A1 = A1(I + (I −K2A1)), leading to

∥A2∥ ≤ (1 + ∥I −K2A1∥)∥A1∥.
We need an upper bound of the right-hand side of the preceding estimate

∥S2 −K2∥∥A1∥ = ∥[x1, x2;F ]− [2y2 − x2, x2;F ]∥∥A1∥ ≤ 3λp1∥x2 − x1∥∥A1∥ ≤
≤ 3λ∥A1∥∥x2 − x1∥ ≤ 3λb1.

Furthermore,
∥I −K2A1∥ = ∥I − S2A1∥+ ∥S2 −K2∥∥A1∥ ≤ c1 + 3λb1 = d1,

∥A2∥ ≤ (1 + d1)∥A1∥,
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showing (VIII1), (IX1), and (X1). The induction is completed for m = 1.
Suppose that (Ik)− (Xk) hold for k ∈ {1, 2, . . . , n− 1}. Then, the preceding calculations

can be repeated with k replacing m = 1.

Next, we present the main semilocal convergence of the method (1) based on the preceding
lemmas.

Theorem 1. Suppose that conditions (C1)–(C3) hold, c1 < c0, c0(1 + d0)
2 < 1, and U0 =

U(x0, 3r + 2ν) ⊆ D for r = ν/(1− q). Then the sequence, {nm} generated by (1), is well
defined in U0, remains in U0 for each n ∈ {0, 1, 2, . . .}, and converges to a solution x⋆ ∈ U0

of the equation F (x) = 0.

Proof. Using the triangle inequality, we get for k ∈ {1, 2, . . .} in turn that

∥xm+k − xm∥ ≤ ∥xm+k − xm+k−1∥+ ∥xm+k−1 − xm+k−2∥+ · · ·+ ∥xm+1 − xm∥ ≤
≤ (1 + dm+k−2)cm+k−2(1 + dm+k−3)cm+k−3 · · · (1 + dm+1)cm+1(1 + dm)cm∥Am∥∥F (xm)∥+

+(1 + dm+k−3)Cm+k−3 · · · (1 + dm+1)cm+1(1 + dm)cm∥Am∥∥F (xm)∥+ . . .

. . .+ (1 + dm+1)am∥Am∥∥F (xm)∥+ ∥Am∥∥F (xm)∥ = γm∥Am∥∥F (xm)∥,

where γm =
∏m+k−2

i=m (1 + di)ci +
∏m+k−3

i=m (1 + di)ci + · · ·+ (1 + dm)cm + 1. Hence,

∥xm+k − xm∥ <
(
qk−1 + qk−2 + · · ·+ 1

)
qm∥A0∥∥F (x0)∥ ≤ qm(1− qk)

1− q
∥A0∥∥F (x0)∥.

Next, we show xm, ym, 2ym − xm ∈ D for each m ∈ {1, 2, . . .}. We have in turn that

∥xk − x0∥ ≤ 1− qk

1− q
∥A0∥∥F (x0)∥ <

ν

1− q
≤ r,

∥ym − x0∥ ≤ ∥ym − xm∥+ ∥xm − x0∥ ≤ (1− pm)∥xm+1 − xm∥+ ∥xm − x0∥ ≤
≤ r + qm∥A0∥∥F (x0)∥ < r + ν,

and
∥2ym − xm − x0∥ ≤ 2∥ym − x0∥+ ∥xm − x0∥ ≤ 2(r + ν) + r = 3r + 2ν,

showing that xm ∈ U(x0, r), ym ∈ U(x0, r + ν), and 2ym − xm ∈ U(x0, 3r + 2ν).
Moreover, the sequence {xm} is complete in the Banach space X and as such it converges

to some x⋆ ∈ U(x0, r).
Finally, by the continuity of the operator F , the condition (C1) , a0 < 1 and the estimate

∥F (xm)∥ ≤
m−1∏
i=0

ci∥F (x0)∥ ≤ cm0 ∥F (x0)∥

we obtain F (x⋆) = 0 by letting m → ∞.

Remark 1.
(a) The R-order 1+

√
5

2
of convergence for the method (1) is as given in the Lemma 2.5,

Lemma 2.6 and Theorem 2.7 in [2].
(b) The sequence {Am} converges to A⋆, which is the right inverse of F ′(x⋆) = [x⋆, x⋆;F ]
(see section 2.3 in [2]).
(c) As in the Remark 2.8 [2], a possible choice of {pn} is to select it as an increasing sequence
of real numbers converging to 1. So, we consider

a0 = (1− p−1)bα, b0 = 6ν, c0 = δ + λ(2a0 + b0), d0 = c0 + 3λb0,

am = (1− pm−1)(1 + dm−1)bm−1, bm = (1 + dm−1)
2bm−1cm−1,

cm = d2m−1 + λ(2am + bm), dm = cm + 3λbm.
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The sequence {am} converges faster to zero, making {cm} and {dm} behave similarly. Thus,
the sequence {∥xm+1−xm∥} decreases faster, forcing a higher speed of convergence for {xm}.

3. Numerical Results. In this section, we present the numerical results of applying the
Moser-Secant method 

xm+1 = xm − AmF (xm),

ym+1 = xm + pm(xm+1 − xm),

Km+1 = [ym+1, xm+1;F ],

Am+1 = 2Am − AmKm+1Am,

(5)

and the Moser-Steffensen-Kurchatov method
xm+1 = xm − AmF (xm),

ym+1 = xm + (1− pm)(xm+1),

Km+1 = [2ym+1 − xm+1, xm+1;F ],

Am+1 = 2Am − AmKm+1Am

(6)

as a baseline for comparison. These methods combine secant and quasi-Newton techniques
to approximate solutions efficiently.

3.1. Example 1: Academic example. In this example, we consider a basic nonlinear
system, which is defined by the following set of equations{

(2x− x2) + (y − y2

2
) = 0,

x+ y = 0.

The solution to this system is known to be x∗ = (0, 0). We started with an initial guess of
x0 = (0.1,−0.3), and an initial approximation of A0 = (F ′(x0))

−1 was used for the iterative
method. The stopping criteria was set with a tolerance of tolu = 10−8 and a parameter
pm = 0.15. The results from the iterations and their convergence are detailed in the Table 1.

m ∥F(xm)∥ (5) ∥F(xm)∥ (1) ∥F(xm)∥ (6)
... ... ... ...
6 6.083968e-03 2.01025e-03 1.391648e-07
7 5.437738e-04 6.468644e-05 1.813980e-11
8 8.621826e-06 3.235434e-07 7.264144e-18
9 8.183577e-09 6.178086e-11 -
10 9.737637e-14 4.870678e-17 -
11 1.029824e-21 - -

Table 1: Residual’s norms for iterations of Example 1 using method (5), method (1) and
method (6).

3.2. Example 2: Freudenstein and Roth Function. In this example, we consider
the Freudenstein and Roth function, a classic nonlinear system often used to evaluate the
performance of numerical methods. The system is defined by the following set of equations{

−13 + x1 + ((5− x2)x2 − 2)x2 = 0,

−29 + x1 + ((x2 + 1)x2 − 14)x2 = 0.
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The known solution for this system is x∗ = (5, 4). To approach this solution, we began
with an initial guess of x0 = (0.5, 3.4) and used an initial estimate of A0 = (F ′(x0))

−1. The
parameters were set with a tolerance of tolu = 10−8 and pm = 0.9. The iterative results and
their convergence behavior are shown in the Table 2.

m ∥F(xm)∥ (5) ∥F(xm)∥ (1) ∥F(xm)∥ (6)
... ... ... ...
5 7.53000e+00 4.49947e+00 1.159506e-04
6 6.43237e+00 2.30754e+00 4.357130e-09
7 4.51643e+00 6.56425e-01 8.881784e-15
8 6.31642e+00 6.12237e-02 -
9 6.79762e-01 6.49258e-04 -
10 6.39402e-02 1.08621e-07 -
11 8.85630e-04 3.16273e-14 -
12 8.85630e-07 8.88178e-16 -
13 3.16273e-14 - -
14 8.81784e-16 - -

Table 2: Residual’s norms for iterations of Example 2 using method (5), method (1) and
method (6).

3.3. Example 3: Coupled oscillator system.
(3x1 − x2) +

(
x2 − x2

2

3

)
+
(
x3 − x3

3

4

)
= 0,

x1 + x2 + x3 = 1,

x2
1 + x2

2 + x2
3 = 1.

This system models the interaction between multiple oscillators, with each equation balanc-
ing various contributions from the variables x1, x2, and x3. To solve this system, we used
an initial guess of x0 = (−0.4, 1.0, 1.6) and an initial approximation of the inverse Jacobian
matrix, A0 = (F ′(x0))

−1. The parameters for the iterative method were set to tolu = 10−8

and pm = 0.7. The results of the numerical solution are provided in Table 3.

m ∥F(xm)∥ (5) ∥F(xm)∥ (1) ∥F(xm)∥ (6)
... ... ... ...
15 3.712782e-04 1.476267e-04 3.446419e-07
16 8.940192e-05 1.940265e-05 5.587108e-10
17 1.892783e-05 7.066557e-07 4.082210e-14
18 1.440488e-06 2.593621e-09 -
19 1.594533e-08 2.445511e-13 -
20 5.942390e-12 1.570092e-16 -
21 1.110223e-16 - -

Table 3: Residual’s norms for iterations of Example 3 using method (5), method (1) and
method (6).

3.4. Example 4: Benchmarking example. In this section, we solve the following system
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of nonlinear equations 
3x1 − cos(x2x3)− 1

2
= 0,

x2
1 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

e−x1x2 + 20x3 +
10π−3

3
= 0.

This system is serves as a benchmark for testing numerical algorithms that solve nonlinear
systems of equations. It incorporates polynomial, trigonometric, and exponential functions,
making it a challenging and comprehensive test case.

We applied two methods to solve the system using a pm = 0.94, tolu = 10−8 and an initial
guess of [−1.8, 0.1, 0.9]. The known solution vector is x = [0.5, 0.0,−0.523...].

m ∥F(xm)∥ (5) ∥F(xm)∥ (1) ∥F(xm)∥ (6)
... ... ... ...
8 1.354285e-01 3.197802e-03 5.520144e-05
9 9.972021e-02 6.896170e-05 1.189791e-07
10 5.500205e-02 4.398313e-08 3.548948e-12
11 1.749767e-02 1.312284e-13 -
12 1.934708e-03 - -
13 2.704585e-05 - -
14 6.881804e-09 - -
15 4.373771e-15 - -

Table 4: Residual’s norms for iterations of Example 4 using method (5), method (1) and
method (6).

The final solution after 15 iterations for all methods is presented in Table 4.
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