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We consider the class A(φ, β) of random analytic functions in the unit disk C = {z : |z| < 1}
of the form f(z, ω) = f(z, ω1, ω2) =

∑+∞
n=0 Rn(ω1)ξn(ω2)anz

n, where an ∈ C : lim
n→+∞

n
√

|an| =

1,
(
Rn(ω)

)
is the Rademacher sequence,

(
ξn(ω)

)
is a sequence of complex-valued random

variables (denote by ∆φ) such that there exists a constant β > 0 and a function φ(N, β) : N×
R+ → [1; +∞) non-decreasing by N and β for which(

E
(

max
0≤n≤N

|ξn|β
))1/β

≍ φ(N, β), N → +∞, α = lim
N→+∞

lnφ(N, β)

lnN
< +∞,

(∃γ > 0)(∃n0 ∈ N) : sup{E|ξn|−γ : n ≥ n0} < +∞.

By A1(φ, β) we denote the class of random analytic functions in D of the form f(z, ω) =∑+∞
n=0 ξn(ω)anz

n, where a sequence
(
ξn(ω)

)
∈ ∆φ and, in particular, may be not sub-gaussian

and not independent. In the paper, there are proved the following statements:
Let δ > 0. 1) Theorem 3: For f ∈ A(φ, β) there exist r0(ω) > 0, a set E(δ) ⊂ (0; 1) of finite
logarithmic measure such that for all r ∈ (r0(ω); 1)\E we have with probability p ∈ (0; 1)

Mf (r, ω) ≤
µf (r)

(1− p)1/β
φ(N(r), β)

(
(1− r)−2 · ln µf (r)φ(N(r), β)

(1− p)(1− r)

)1/4+δ

.

2) Theorem 4: For a function f ∈ A1(φ, β) there exist r0(ω) > 0, a set E(δ) ⊂ (0; 1) of finite
logarithmic measure such that for all r ∈ (r0(ω); 1)\E we get with probability p ∈ (0; 1)

Mf (r, ω) ≤
µf (r)

(1− p)1/β
φ(N(r), β)

(
(1− r)−2 · ln µf (r)φ(N(r), β)

(1− p)(1− r)

)1/2+δ

.

1. Introduction. Let us consider the class A of an analytic function f in the disc D :=
{z : |z| < 1} of the form

f(z) =
+∞∑
n=0

anz
n. (1)

Let Mf (r) = max{|f(z)| : |z| = r}, µf (r) = max{|an|rn : n ≥ 0}, r > 0, be the maximum
modulus and the maximal term of series (1), respectively.

The analogues of Wiman’s inequality for analytic functions in the unit disc D one can
find in [1, 2]. From results proved in [2] follows such statement.
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Theorem 1 ([2]). Let f ∈ A be an analytic function of form (1). Then for eveery δ > 0
there exists a set Ef (δ) ⊂ (0; 1) of finite logarithmic measure (f.l.m.), i.e.

∫
Ef (δ)

dr
1−r

< +∞,
such that for all r ∈ (0; 1)\Ef (δ) we have

Mf (r) ≤
µf (r)

(1− r)1+δ
ln1/2+δ µf (r)

1− r
. (2)

For an analytic function g(z) =
∑+∞

n=1 exp{nε}zn, ε ∈ (0; 1), we have ([2])

Mg(r) ≥ C
µg(r)

1− r
ln1/2 µg(r)

1− r
(r ∈ [r0, 1)), C > 0.

Therefore, inequality (2) is sharp in the class of analytic functions in the unit disc D. But
this inequality can be improved in some subclasses of random analytic functions ([3, 4, 5]).

Denote by K(f, Y ) the class of random analytic functions of the form

f(z, ω) =
+∞∑
n=0

anYn(ω)z
n, (3)

where {Yn(ω)} is a sequence of random variables on the Steinhaus probability space (Ω,A, P ),
and the sequence (an) satisfies the condition lim

n→+∞
n
√
|an| = 1.

Let Y = (Yn(ω)) be multiplicative system (MS) uniformly bounded by the number 1.
That is, for all n ∈ N we have |Yn(ω)| ≤ 1 almost surely (a.s.) and

∀(j1, j2, . . . , jk) ∈ Nk, 1 ≤ j1 < j2 < · · · < jk : E(Yj1Yj2 · · ·Yjk) = 0,

where Eη =
∫
Ω
η(ω)P (dω) is the expectation of a random variable η.

In 1997 P.V. Filevych proved the following theorem.

Theorem 2 ([3]). Let f(z, ω) be random analytic function of the form (3), Yn ∈ MS and
|Yn(ω)| ≤ 1 for almost all ω ∈ [0; 1]. Then a.s. in K(f, Y ) for any δ > 0 there exists a set
E = E(f, ω, δ) ⊂ (0; 1) f.l.m. such that for all r ∈ (0; 1)\E we get

Mf (r, ω) ≤ µf (r)
(
(1− r)−2 · ln µf (r)

1− r

)1/4+δ

. (4)

The constant 1/4 in the previous inequality cannot be replaced by a smaller number.
This is indicated by another statement from [3].

Let
(
Rn(ω)

)
be the Rademacher sequence, i.e. a sequence of independent random vari-

ables defined on Steinhaus probability space (Ω,A, P ), such that for any n ∈ Z+ we have
P{ω : Rn(ω) = −1} = P{ω : Rn(ω) = 1} = 1

2
.

Remark that for random entire function of the form f(z, ω) =
∑+∞

n=0Rn(ω)anz
n the

above-mentioned theorems from [3] are valid.
Suppose that (Zn) is a sequence of real independent centered sub-gaussian random vari-

ables, that is for any n ∈ Z+ we have EZn = 0 and there exist a constant C1 > 0 such that
for any t ∈ [0; +∞) we have P{ω : |Zn(ω)| ≥ t} ≤ 2 exp

(
−t2/C1

)
. For such random variables

we have (see [9]):
1) there exists D > 0 such that E(eλ0Zk) ≤ eDλ2

0 for any k ∈ N and all λ0 ∈ R;
2) for any k ∈ N : EZk = 0 and sup{E(Z2

k) : k ∈ N} = sup{DZk : k ∈ N} ≤ 2D, where DZk

is the variance of random variable Zk.
Consider the class of random functions of the form
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K(f,Z) =

{
f(z, ω) =

+∞∑
n=0

anZn(ω)z
n : ω ∈ [0; 1]

}
,

where Z = (Zn) is a sequence of real centered independent sub-gaussian random variables
such that (∃γ > 0)(∃n0 ∈ N) : sup{E|Zn|−γ : n ≥ n0} < +∞. Analogues of inequality (2)
for random analytic functions from class K(f,Z) was considered in [5].

Remark, that in all above-mentioned statements about random analytic functions the
obtained inequalities valid with probability 1 and only for sequences of random variables
which are independent or MS and sub-gaussian in general (see also [3, 4, 5, 7, 8]).

In this regard Prof. O. B. Skaskiv formulated the following problem: to obtain estimates
of maximum modulus of random analytic functions: a) with probability p ∈ (0; 1); b) in case
of sequence (Zn(ω)): 1) is not sub-gaussian; 2) may not be independent.

In this paper we give answer to all this questions. Similar question was considered for
random entire functions in [6].

2. Notations. Here φ(N) ≍ ψ(N), N → +∞, means the equivalence of functions up to
constant factors. Precisely, φ(N) ≍ ψ(N) means that there exist positive constants c, C such
that the inequality cf(N) ≤ g(N) ≤ Cf(N) holds for for all sufficiently large N .

Consider the random analytic functions of the form

f(z, ω) = f(z, ω1, ω2) =
+∞∑
n=0

Rn(ω1)ξn(ω2)anz
n, (5)

where an ∈ C : lim
n→+∞

n
√
|an| = 1,

(
Rn(ω)

)
is the Rademacher sequence,

(
ξn(ω)

)
is a sequence

of complex-valued random variables (denote by ∆φ) such that there exists a constant β > 0
and a function φ(N, β) : N× R+ → [1; +∞) non-decreasing by N and β such that(

E
(
max

0≤n≤N
|ξn|β

))1/β

≍ φ(N, β), N → +∞, α = lim
N→+∞

lnφ(N, β)

lnN
< +∞, (6)

(∃γ > 0)(∃n0 ∈ N) : sup{E|ξn|−γ : n ≥ n0} < +∞. (7)

Such class of random analytic functions we denote by A(φ, β). Remark that by conditions
(6)–(7) radius of convergence of series (5) R(ω) = 1 almost surely ([5]).

Remark, that for any sequence
(
ξn(ω)

)
function ψ(N, β) =

(
E
(
max

0≤n≤N
|ξn|β

))1/β is non-

decreasing by N and β.
Also class of random analytic functions of the form f(z, ω) =

∑+∞
n=0 ξn(ω)anz

n we denote
by A1(φ, β).

In this paper we will use the following notations.

WN(r, ω) =
+∞∑

n=N(r)

|Rn(ω1)||ξn(ω2)||an|rn, N(r) =
[ 1

1− r
ln
µf (r)

1− r

]m
, m =

[
α +

2

β

]
+4,

where [x] means integer part of x.

3. Main results. We obtain the asymptotic estimates for maximum modulus of functions
f ∈ A(φ, β). Here sequence

(
ξn(ω)

)
may not be sub-gaussian and may be dependent. The

main result of this paper is the following theorem.
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Theorem 3. Let δ > 0. For f ∈ A(φ, β) there exist r0(ω) > 0, a set E(δ) ⊂ (0; 1) of f.l.m.
such that for all r ∈ (r0(ω); 1)\E we have with probability p ∈ (0; 1)

Mf (r, ω) ≤
µf (r)

(1− p)1/β
φ(N(r), β)

(
(1− r)−2 · ln µf (r)φ(N(r), β)

(1− p)(1− r)

)1/4+δ

.

Also we get the asymptotic estimates for maximum modulus of functions f ∈ A1(φ, β).

Theorem 4. Let δ > 0. For f ∈ A1(φ, β) there exist r0(ω) > 0, a set E(δ) ⊂ (0; 1) of f.l.m.
such that for all r ∈ (r0(ω); 1)\E we get with probability p ∈ (0; 1)

Mf (r, ω) ≤
µf (r)

(1− p)1/β
φ(N(r), β)

(
(1− r)−2 · ln µf (r)φ(N(r), β)

(1− p)(1− r)

)1/2+δ

.

4. Some corollaries. If
(
ξn(ω)

)
is sub-exponential random variables (see [12]), i.e. there

exist a constant C2 > 0 such that for any t ∈ [0; +∞) : P (ω : |Zn(ω)| ≥ t) ≤ 2 exp
(
− t

C2

)
,

and suppose that for any n ∈ N such that there exists n ∈ N : Eξn = 0, then we can choose
β = 1 and prove that φ(N, 1) = E

(
max

0≤n≤N
|ξn|

)
≤ C3 lnN, C3 > 0.

Corollary 1. Let δ > 0 and
(
ξn(ω)

)
is centered sub-exponential random variables. Then for

f ∈ A(φ, β) there exist r0(ω) > 0, a set E(δ) ⊂ (0; 1) f.l.m. such that for all r ∈ (r0(ω); 1)\E
we have with probability p ∈ (0; 1)

Mf (r, ω) ≤
µf (r)

1− p

(
(1− r)−2 · ln µf (r)

(1− p)(1− r)

)1/4+δ

.

If
(
ξn(ω)

)
satisfies the condition supn∈N E|ξn|a < +∞ for some a > 0, then we can choose

φ(N, a) ≤ C4N
1/a, C4 > 0.

Corollary 2. Let δ > 0 and
(
ξn(ω)

)
is such that (∃a > 0) : supn∈NE|ξn|a < +∞. Then for

random entire function f of form (5) there exist r0(ω) > 0, a set E(δ) ⊂ (0; 1) f.l.m. such
that for all r ∈ (r0(ω); 1)\E we obtain with probability p ∈ (0; 1)

Mf (r, ω) ≤
µf (r)

(1− p)1/a(1− r)m/a+1/2+δ
lnm/a+1/4+δ µf (r)

(1− p)(1− r)
.

5. Auxiliary lemmas. Similarly to [11] one can prove the following lemma.

Lemma 1. Let l(r) be a continuous increasing to +∞ function on (0; 1), E ⊂ (0; 1) be a
open set such that its complement E is such that E ∩ (y; 1) ̸= ∅ for any y ∈ (0; 1). Then
there is an infinite sequence 0 < r1 ≤ ... ≤ rn ↑ 1 (n→ +∞) such that 1) (∀n ∈ N) : rn /∈ E;
2) (∀n ∈ N) : ln l(rn) ≥ n

2
; 3) if (rn; rn+1) ∩ E ̸= (rn, rn+1), then l(rn+1) ≤ el(rn); 4) the set

of indices, for which 3) holds, is unbounded.

Lemma 2. Let f ∈ A(φ, β). For any δ > 0 there exist r0(ω) > 0, a set E(δ) ⊂ (0; 1) f.l.m.
such that for all r ∈ (r0(ω); 1)\E we have WN(r, ω) ≤ µf (r).

Proof. Let fk(z) =
∑+∞

n=0 n
kanz

n, Mfk(r) =
∑+∞

n=0 n
k|an|rn, k ∈ N. For δ > 0 we denote

E1 =
{
r : r ∂

∂r
lnMf (r) >

1
1−r

ln1+δ Mf (r), lnMf (r) > e
}
. Then∫

E1

dr

1− r
<

∫
E1

dr

r(1− r)
<

∫
E1

∂
∂r

lnMf (r)dr

ln1+δ Mf (r)
<

∫ +∞

1

du

u1+δ
< +∞.
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So, for r ̸∈ E1 we get Mf1(r) =
∑+∞

n=0 n|an|rn ≤ 1
1−r

Mf (r) ln
1+δ Mf (r).

Also for r ̸∈ E2 (
∫
E2
(1− r)−1dr < +∞) we obtain

Mf2(r) ≤
1

1− r
Mf1(r) ln

1+δ Mf1(r) ≤
1

(1− r)2+δ
Mf (r) ln

2+3δ Mf (r).

Similarly for r ̸∈ Ek we have

Mfk(r) ≤
1

(1− r)k+δ2
Mf (r) ln

k+δ2 Mf (r), (8)

where the set Ek is a set of f.l.m., δ2 > 0.
For n ≥ N(r) denote Bn = {ω : |ξn(ω)|β ≥ nαβ+2+δ1}, δ1 > 0. Then probabilities of these

events we can estimate using Markov’s inequality and (6). For some C1 > 0 we have

P(Bn) = P{ω : |ξn|β ≥ nαβ+2+δ1} ≤ E|ξn|β

nαβ+2+δ1
≤ 1

nαβ+2+δ1
E
(
max
0≤k≤n

|ξk|β
)
≤ C1

φβ(n, β)

nαβ+2+δ1

as r ↑ 1. So,
+∞∑

n=N(r)

P(Bn) ≤ C1

+∞∑
n=N(r)

φβ(n, β)

nαβ+2+δ1
≤ C1

+∞∑
n=N(r)

1

n2+δ1/2
≤ 1

N1+δ1/3(r)
, r ↑ 1.

Let B =
⋃+∞

n=N(r)Bn. Then P(B) ≤ 1
N1+δ1/3(r)

, r ↑ 1. For ω ̸∈ B we get

WN(r, ω) =
+∞∑

n=N(r)

|Rn(ω1)||ξn(ω2)||an|rn ≤
+∞∑

n=N(r)

nα+(2+δ1)/β
n

N(r)
|an|rn ≤

≤ 1

N(r)

+∞∑
n=0

nα+1+(2+δ1)/β|an|rn ≤ 1

N(r)

+∞∑
n=0

n[α+2/β]+2|an|rn, r ↑ 1, (r ̸∈ E).

Then using (8), definition ofN(r) and Theorem 1, from [5] (in the case of h(r) = (1−r)−1)
we obtain

WN(r, ω) ≤
1

N(r)

1

(1− r)[α+2/β]+2+δ2
Mf (r) ln

[α+2/β]+2+δ2 Mf (r) ≤

≤ 1

N(r)

µf (r)

(1− r)[α+2/β]+3+3δ2
ln[α+2/β]+5/2+3δ2

µf (r)

1− r
≤ µf (r)

e

as r ↑ 1, (r ̸∈ E). Therefore, for r ↑ 1 we obtain

P

{
ω :

+∞∑
n=N(r)

|Rn(ω)||ξn(ω2)||an|rn ≥ µf (r)/e

}
≤ N−1−δ1/3(r).

Let us choose l(r) =
µf (r)

1−r
, and a set E and a sequence {rk} from Lemma 1. We put

Fk := {ω : WN(rk, ω) ≥ µf (rk)/e}. By the definition of N(r) we get P (Fk) ≤ N−1−δ1/3(rk) ≤
ln−1−δ1/3 µf (rk)

1−rk
≤ k−1−δ1/3, thus

∑+∞
k=1 P (Fk) ≤

∑+∞
k=1 k

−1−δ1/3 < +∞. Then by Borel-
Cantelli’s lemma for almost all ω ∈ [0, 1] and for k ≥ k0(ω) we obtain WN(rk, ω) <

µf (rk)

e
.

Let r ≥ rk0(ω) be an arbitrary number outside set the E, r ∈ (rp, rp+1). By Lemma 1
µf (rp+1)

1−rp+1
≤ e

µf (rp)

1−rp
≤ e

µf (r)

1−r
and then µf (rp+1) ≤ eµf (r). Therefore for almost all ω ∈ [0; 1]

and r ≥ r0(ω) outside a set of f.l.m. E we have WN(r, ω) < WN(rp+1, ω) ≤ µf (rp+1)/e ≤
µf (r).
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6. Proofs.

Proof of Theorem 3. By Theorem 2, ω1-almost surely there exists a set E := E(ε, ω, f) ⊂
(0; 1) of f.l.m. such that for all r ∈ (0; 1) \ E we have

Mf (r, ω) =Mf (r, ω1, ω2) ≤ µf (r, ω2)
(
(1− r)−2 · ln µf (r, ω2)

1− r

)1/4+δ

. (9)

Then by Lemma 2 we get

µf (r, ω2) ≤ max
{

max
0≤n≤N(r)

|ξn(ω2)||an|rn; sup
N(r)<n<+∞

|ξn(ω2)||an|rn
}
≤

≤ max
{

max
0≤n≤N(r)

|ξn(ω2)| · µf (r);µf (r)
}
= max

{
η(ω2)µf (r);µf (r)

}
, r ↑ 1, (r ̸∈ E),

where η(ω2) = max
0≤n≤N(r)

|ξn(ω2)| is non-negative random variable. Then by Markov’s inequa-

lity we obtain P
{
ω : ηβ(ω) < Eηβ

1−p

}
≥ p, P

{
ω : η(ω) <

(
Eηβ

1−p

)1/β}≥ p.

Remark that there exist δ > 0 and a set E ⊂ (0; 1) of f.l.m. such that for all r ∈ (0; 1)\E
we have (Eηβ)1/β ≤ φ(N(r), β) and

µf (r, ω2) ≤ max
{( Eηβ

1− p

)1/β

µf (r);µf (r)
}
≤

≤ max
{ µf (r)

(1− p)1/β
φ(N(r), β);µf (r)

}
=

µf (r)

(1− p)1/β
φ(N(r), β). (10)

Finally, it remains use inequalities (9) and (10).

Proof of Corollary 1. It is enough to prove that we can choose β = 1 and φ(N, 1) =

E
(
max

0≤n≤N
|ξn|

)
≤ C3 lnN, C3 > 0. Remark that for sub-exponential random variables ([12,

p.32]) there exists b > 0 such that for all λ ∈ [0, 1/b] we have E(eλ|ξn|) ≤ ebλ. Then, for
λ = 1/b by Jensen’s inequality we obtain

e
λE
(

max
0≤n≤N

|ξn|
)
≤ E

(
e
λ max

0≤n≤N
|ξn|)

= E
(
max

0≤n≤N
eλ|ξn|

)
≤ E

( N∑
n=0

eλ|ξn|
)
≤ (N + 1)ebλ,

λE
(
max

0≤n≤N
|ξn|

)
≤ ln (N + 1) + bλ, E

(
max

0≤n≤N
|ξn|

)
≤ ln (N + 1)

λ
+ b ≤ (b+ 2) lnN, N → +∞.

Proof of Corollary 2. Here we can choose β = a. Then

φ(N, a) =
(
E
(
max{|ξn|a : 0 ≤ n ≤ N}

))1/a

≤
(
E
( N∑

n=0

|ξn|a
))1/a

=

=
( N∑

n=0

E|ξn|a
)1/a

= (N + 1)1/a(E|ξn|a)1/a ≤ C(a)N1/a (N → +∞), C(a) > 0.

Proof of Theorem 4. By Theorem 1, there exists a set E := E(ε, f) ⊂ (0; 1) f.l.m. such that
for all ω ∈ [0; 1] and all r ∈ (0; 1) \ E we have Mf (r, ω) ≤ µf (r,ω)

(1−r)1+δ ln
1/2+δ µf (r,ω)

1−r
.

It remans to use (10).
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