УДК 517.53

P. V. FILEVYCH

ASYMPTOTIC ESTIMATES FOR ENTIRE FUNCTIONS OF MINIMAL GROWTH WITH GIVEN ZEROS

P. V. Filevych. Asymptotic estimates for entire functions of minimal growth with given zeros, Mat. Stud. **62** (2024), 54–59.

Let $\zeta = (\zeta_n)$ be an arbitrary complex sequence such that $0 < |\zeta_1| \leq |\zeta_2| \leq \ldots$ and $\zeta_n \to \infty$ as $n \to \infty$, let $n_{\zeta}(r)$ and $N_{\zeta}(r)$ be the counting function and the integrated counting function of this sequence, respectively. By \mathcal{E}_{ζ} we denote the class of all entire functions whose zeros are precisely the ζ_n , where a complex number that occurs m times in the sequence ζ corresponds to a zero of multiplicity m. Suppose that Φ is a convex function on \mathbb{R} such that $\Phi(\sigma)/\sigma \to +\infty$ as $\sigma \to +\infty$. It is proved that there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that

$$\overline{\lim_{d \to +\infty}} \frac{\ln \ln M_f(r)}{\Phi(\ln r)} \le \overline{\lim_{r \to +\infty}} \frac{\ln n_{\zeta}(r)}{\Phi(\ln r)}$$

where $M_f(r)$ denotes the maximum modulus of the function f, and it is shown that the above inequality implies the inequality

$$\lim_{r \to +\infty} \frac{\ln \ln M_f(r)}{\Phi(\ln r)} \le \lim_{r \to +\infty} \frac{\ln N_{\zeta}(r)}{\Phi(\ln r)} + \lim_{\sigma \to +\infty} \frac{\ln \Phi'_+(\sigma)}{\Phi(\sigma)}.$$

The formulated result is a consequence of the following more general statement: if the righthand derivative Φ'_+ of the function Φ assumes only integer values and $\sum_{n=1}^{\infty} e^{-\Phi(\ln |\zeta_n|)} < +\infty$, then there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that $\ln M_f(r) = o(e^{\Phi(\ln r)})$ as $r \to +\infty$.

1. Introduction and main results. We denote by H the class of all non-decreasing functions h on \mathbb{R} such that $h(\sigma) \to +\infty$ as $\sigma \to +\infty$, and let Ω be the class of all non-decreasing convex functions Φ on \mathbb{R} such that $\Phi(\sigma)/\sigma \to +\infty$ as $\sigma \to +\infty$.

Suppose that \mathcal{Z} is the class of all complex sequences $\zeta = (\zeta_n)$ such that $0 < |\zeta_1| \leq |\zeta_2| \leq \ldots$ and $\zeta_n \to \infty$ as $n \to \infty$. For any sequence $\zeta = (\zeta_n)$ from the class \mathcal{Z} by \mathcal{E}_{ζ} we denote the class of all entire functions whose zeros are precisely the ζ_n , where a complex number that occurs m times in the sequence ζ corresponds to a zero of multiplicity m. Let $n_{\zeta}(r)$ and $N_{\zeta}(r)$ be the counting function and the integrated counting function of the sequence ζ , respectively, that is

$$n_{\zeta}(r) = \sum_{|\zeta_n| \le r} 1, \quad N_{\zeta}(r) = \int_0^r \frac{n_{\zeta}(t)}{t} dt, \quad r \ge 0.$$

The common value of the orders of the functions $n_{\zeta}(r)$ and $N_{\zeta}(r)$ we denote by a_{ζ} .

© P. V. Filevych, 2024

²⁰²⁰ Mathematics Subject Classification: 30D15, 30D20, 30D35.

 $[\]label{eq:keywords:entire function; maximum modulus; order; zero; counting function; integrated counting function. doi:10.30970/ms.62.1.54-59$

For a non-constant entire function f and each $r \ge 0$, let $M_f(r) = \max\{|f(z)| : |z| = r\}$ be the maximum modulus of the function f. We identify the growth of the function f with the growth of the function $\ln M_f(r)$. By ρ_f we denote the order of the function f.

Well-known classical results about the minimal growth of entire functions from the classes \mathcal{E}_{ζ} , where $\zeta \in \mathcal{Z}$, are the Borel theorem on the order of a Weierstrass canonical product (see, for example, [1, p. 57]) and the Lindelöf theorem on the description of the zero sets of entire functions whose growth does not exceed normal type of a given order $\rho > 0$ (see, for example, [2, p. 30]). In particular, the Borel theorem implies the following statement.

Теорема А. Let $\zeta \in \mathbb{Z}$. Then there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that $\rho_f = a_{\zeta}$.

Suppose that $\lambda \in H$ is a continuous function on \mathbb{R} . Generalizing the Lindelöf theorem, L.A. Rubel and B.A. Taylor [3] found necessary and sufficient conditions on a sequence $\zeta \in \mathbb{Z}$, under which there exist an entire function $f \in \mathcal{E}_{\zeta}$ and positive constants A and Bsuch that $\ln M_f(r) \leq A\lambda(Br)$ for all r > 0.

Let $\zeta \in \mathcal{Z}$. A.A. Gol'dberg [4] proposed another approach to describing the minimal growth of entire functions from the class \mathcal{E}_{ζ} . The essence of this approach is to establish the best possible estimates from above on the growth of functions $f \in \mathcal{E}_{\zeta}$ by $n_{\zeta}(r)$ or $N_{\zeta}(r)$. This approach is used in many works. In particular, estimates from above for $\ln M_f(r)$ by $n_{\zeta}(r)$, which describe the minimal growth of entire functions $f \in \mathcal{E}_{\zeta}$ and hold along some increasing to $+\infty$ sequences of values of r, were established in [5, 6, 7, 8, 9]. Similar estimates from above for $\ln M_f(r)$ by $N_{\zeta}(r)$ are found in [10, 11]. Best possible, in a certain sense, estimates from above on the growth of functions $f \in \mathcal{E}_{\zeta}$ by $n_{\zeta}(r)$ or $N_{\zeta}(r)$, that hold outside small exceptional sets of values of r, were obtained in [1, 6, 10, 12, 13]. M.M. Sheremeta [14] found upper estimates for $\ln M_f(r)$, where $f \in \mathcal{E}_{\zeta}$, which hold for all sufficiently large values of r(see Theorems B and C below).

For any function $\Phi \in H$, a non-constant entire function f, and a sequence $\zeta \in \mathbb{Z}$, we put

$$\rho_{\Phi,f} = \lim_{r \to +\infty} \frac{\ln \ln M_f(r)}{\Phi(\ln r)}, \quad a_{\Phi,\zeta} = \lim_{r \to +\infty} \frac{\ln n_{\zeta}(r)}{\Phi(\ln r)}, \quad A_{\Phi,\zeta} = \lim_{r \to +\infty} \frac{\ln N_{\zeta}(r)}{\Phi(\ln r)}.$$

The main results of this article are the following two theorems, the first of which follows from the second and is an analogue of Theorem A for $\rho_{\Phi,f}$ and $a_{\Phi,\zeta}$ instead of ρ_f and a_{ζ} , respectively.

Theorem 1. Let $\zeta \in \mathcal{Z}$ and $\Phi \in \Omega$. Then there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that $\rho_{\Phi,f} \leq a_{\Phi,\zeta}$.

Theorem 2. Let $\zeta = (\zeta_n)$ be a sequence from the class \mathcal{Z} and let $\Psi \in \Omega$ be a function such that Ψ'_+ assumes only integer values. If

$$\sum_{n=1}^{\infty} \frac{1}{e^{\Psi(\ln|\zeta_n|)}} < +\infty,\tag{1}$$

then there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that

$$\ln M_f(r) = o(e^{\Psi(\ln r)}), \quad r \to +\infty.$$
⁽²⁾

2. Proof of main results. For each $z \in \mathbb{C}$ and an arbitrary integer $p \ge 0$, we denote by E(z, p) the Weierstrass primary factor, i.e.

$$E(z,p) = \begin{cases} 1-z, & \text{if } p = 0; \\ (1-z) \exp\left(\sum_{n=1}^{p} \frac{z^{n}}{n}\right), & \text{if } p \ge 1. \end{cases}$$

The following statement is well known (see, for example, [4]).

Lemma 1. Let $\zeta = (\zeta_n)$ be a sequence from the class \mathcal{Z} and let (p_n) be a sequence of non-negative integers. If the series

$$\sum_{n=1}^{\infty} \left(\frac{r}{|\zeta_n|}\right)^{p_n+1} \tag{3}$$

converges for every r > 0, then the product

$$\prod_{n=1}^{\infty} E\left(\frac{z}{\zeta_n}, p_n\right) \tag{4}$$

converges absolutely and uniformly in any boundend subset of \mathbb{C} to an entire function f(z) such that $f \in \mathcal{E}_{\zeta}$ and $\ln M_f(r) \leq G(r)$ for all $r \geq 0$, where G(r) is the sum of series (3).

Proof of Theorem 2. Let $\zeta = (\zeta_n)$ be a sequence from the class \mathcal{Z} and let $\Psi \in \Omega$ be a function such that Ψ'_+ assumes only integer values and (1) holds. Note that $\Psi'_+ \in H$. We put $n_0 = \min\{n \in \mathbb{N} : \Psi'_+(\ln |\zeta_n|) \ge 1\}$. Let $p_n = \Psi'_+(\ln |\zeta_n|) - 1$ for all integers $n \ge n_0$ and let $p_n = 0$ if $n \in \mathbb{N}$ and $n < n_0$. Consider series (3). Since $\Psi(\sigma)/\sigma \to +\infty$ as $\sigma \to +\infty$, there exists a function $l \in H$ such that

$$\sum_{n \le l(r)} \left(\frac{r}{|\zeta_n|}\right)^{p_n+1} = o(e^{\Psi(\ln r)}), \quad r \to +\infty.$$
(5)

In addition, for any r > 0 and every integer $n \ge 1$, we have

$$\Psi(\ln r) - \Psi(\ln |\zeta_n|) = \int_{|\zeta_n|}^r \frac{\Psi'_+(\ln t)}{t} dt \ge \Psi'_+(\ln |\zeta_n|)(\ln r - \ln |\zeta_n|).$$

Taking into account this fact, for any r > 0 and every integer $m \ge n_0$, we obtain

$$\sum_{n \ge m} \left(\frac{r}{|\zeta_n|}\right)^{p_n+1} = e^{\Psi(\ln r)} \sum_{n \ge m} \frac{1}{e^{\Psi(\ln r) - \Psi'_+ (\ln |\zeta_n|)(\ln r - \ln |\zeta_n|)}} \le e^{\Psi(\ln r)} \sum_{n \ge m} \frac{1}{e^{\Psi(\ln |\zeta_n|)}}.$$
 (6)

From (6) and (1) we see that series (3) converges for every r > 0, and therefore by Lemma 1 product (4) converges absolutely and uniformly in any boundend subset of \mathbb{C} to an entire function f(z) such that $f \in \mathcal{E}_{\zeta}$ and $\ln M_f(r) \leq G(r)$ for all $r \geq 0$, where G(r) is the sum of series (3). In addition, from (6) and (1) we obtain

$$\sum_{n>l(r)} \left(\frac{r}{|\zeta_n|}\right)^{p_n+1} = o(e^{\Psi(\ln r)}), \quad r \to +\infty.$$
(7)

It follows from (5) and (7) that $G(r) = o(e^{\Psi(\ln r)})$ as $r \to +\infty$, and hence (2) holds.

Proof of Theorem 1. Let $\zeta = (\zeta_n)$ be a sequence from the class $\mathcal{Z}, \Phi \in \Omega$ and $a = a_{\Phi,\zeta}$. We suppose that $a \in [0, +\infty)$, since otherwise there is nothing to prove. From the definition of the quantity $a_{\Phi,\zeta}$ it follows that there exist a function ε decreasing to a on \mathbb{R} and a number $r_0 \geq |\zeta_0|$ such that

$$\ln(n_{\zeta}(r)\ln^2 n_{\zeta}(r)) \le \varepsilon(\ln r)\Phi(\ln r), \quad r \ge r_0.$$
(8)

Without loss in generality we can assume that $\Phi'_{+}(\ln r_0) > 0$ and, in the case when a = 0, that for all $r \ge r_0$ the inequality $\varepsilon(\ln r) \ge 1/\sqrt{\Phi'_{+}(\ln r)}$ holds.

Let $\sigma_0 = \ln r_0$. We put $\gamma(x) = 0$ for all $x < \sigma_0$ and let

$$\gamma(x) = \sup\{\varepsilon(t)\Phi'_+(t) : t \in [\sigma_0, x]\}, \quad x \ge \sigma_0.$$

It is easy to show that $\gamma \in H$, $\gamma(x)/\Phi'_+(x) \to a$ as $x \to +\infty$, and $\gamma(x) \ge \varepsilon(x)\Phi'_+(x)$ for all $x \ge \sigma_0$. Therefore, taking $\Gamma(\sigma) = \int_{\sigma_0}^{\sigma} \gamma(x)dx + \varepsilon(\sigma_0)\Phi(\sigma_0)$ for all $\sigma \in \mathbb{R}$, we see that $\Gamma \in \Omega$, $\Gamma(\sigma)/\Phi(\sigma) \to a$ as $\sigma \to +\infty$, and

$$\Gamma(\sigma) \ge \varepsilon(\sigma) \int_{\sigma_0}^{\sigma} \Phi'_+(x) dx + \varepsilon(\sigma_0) \Phi(\sigma_0) \ge \varepsilon(\sigma) \Phi(\sigma), \quad \sigma \ge \sigma_0.$$
(9)

We put $\Psi(\sigma) = \int_{\sigma_0}^{\sigma} ([\Gamma'_+(x)] + 1)dx + \Gamma(\sigma_0)$ for all $\sigma \in \mathbb{R}$. Then $\Psi \in \Omega$, Ψ'_+ assumes only integer values, $\Psi(\sigma) \sim \Gamma(\sigma)$ as $\sigma \to +\infty$, and $\Psi(\sigma) \ge \Gamma(\sigma)$ for all $\sigma \ge \sigma_0$. From (8) and (9) we have $\ln(n \ln^2 n) \le \Psi(\ln |\zeta_n|)$ for all integers $n \ge n_0$, and therefore condition (1) holds. By Theorem 2, there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that (2) is satisfied. Taking into account the above estimates and using (2), we obtain $\rho_{\Phi,f} \le a$.

3. Some consequences. Let $\zeta = (\zeta_n)$ be a sequence from the class \mathcal{Z} . We put $\Gamma_{\zeta}(\ln r) = 0$ for all $r \in (0, |\zeta_0|)$ and let

$$\Gamma_{\zeta}(\ln r) = \int_{|\zeta_0|}^r \frac{\ln n_{\zeta}(t)}{t} dt, \quad r \ge |\zeta_0|.$$

It is clear that $\Gamma_{\zeta} \in \Omega$.

We denote by Ω' the class of all continuously differentiable on \mathbb{R} functions $\Phi \in \Omega$ such that Φ' is a positive function on \mathbb{R} . For each $\Phi \in \Omega'$ we put

$$\Phi_0(\sigma) = \sigma - \frac{\Phi(\sigma)}{\Phi'(\sigma)}, \quad \sigma \in \mathbb{R}.$$

Note that Φ_0 is a continuously function on \mathbb{R} increasing to $+\infty$ (see, for example, [15]).

As we have already noted above, M.M. Sheremeta [14] proved the following two theorems.

Теорема В ([14]). Let $\zeta \in \mathbb{Z}$. Then for every q > 1 there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that

$$\ln \ln M_f(r) = O(\Gamma_{\zeta}(\ln(qr))), \quad r \to +\infty.$$

Теорема С ([14]). Let $\zeta = (\zeta_n)$ be a sequence from the class $\mathcal{Z}, \Phi \in \Omega'$, and $\delta \in (0, 1)$. If

$$\ln n \le \Phi'(\Phi_0^{-1}((\delta + o(1))\ln|\zeta_n|)) \ln|\zeta_n|, \quad n \to \infty,$$
(10)

then there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that $\rho_{\Phi,f} \leq 1/(1-\delta)$.

P. V. FILEVYCH

In [14] it is noted that the number q > 1 in Theorem B, generally speaking, cannot be replaced by 1. This fact also follows from the following result.

Теорема D ([12]). Let $l \in H$ be a continuously function on \mathbb{R} . Then there exists a sequence $\zeta \in \mathcal{Z}$ such that $\ln n_{\zeta}(r) \geq l(\ln r)$ for all $r \geq r_0$, $\ln n_{\zeta}(r-0) = l(\ln r)$ on an unbounded from above set of values r, and for any entire function $f \in \mathcal{E}_{\zeta}$ we have

$$l^{-1}(\ln n_{\zeta}(r))\ln n_{\zeta}(r) = o(\ln \ln M_f(r)), \quad r \in F_f, \ r \to +\infty,$$

where $F_f \subset [1, +\infty)$ is a set of infinite logarithmic measure.

We show that Theorems B and C follow from Theorem 1.

Let $\zeta = (\zeta_n)$ be a sequence from the class \mathcal{Z} and q > 1. Then for all $r \geq |\zeta_0|$ we have

$$\ln n_{\zeta}(r) \leq \frac{1}{\ln q} \int_{r}^{qr} \frac{\ln n_{\zeta}(t)}{t} dt \leq \frac{1}{\ln q} \Gamma_{\zeta}(\ln(qr)),$$

and therefore, by Theorem 1, the following more precise version of Theorem A is true.

Theorem 3. Let $\zeta \in \mathbb{Z}$. Then for every q > 1 there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that

$$\overline{\lim_{r \to +\infty}} \frac{\ln \ln M_f(r)}{\Gamma_{\zeta}(\ln(qr))} \le \frac{1}{\ln q}$$

Let $\Phi \in \Omega'$, $\eta \in (0, 1)$, and $p = 1/\eta$. Then for all $\sigma \in \mathbb{R}$ we have

$$\Phi(p\Phi_0(\sigma)) = \int_{\sigma}^{p\Phi_0(\sigma)} \Phi'(x) dx + \Phi(\sigma) \ge (p\Phi_0(\sigma) - \sigma)\Phi'(\sigma) + \Phi(\sigma) = (p-1)\Phi'(\sigma)\Phi_0(\sigma).$$

Making the substitution $y = p\Phi_0(\sigma)$ and noting that $\sigma = \Phi_0^{-1}(\eta y)$, for all $y \ge y_0$ we get $\Phi(y) \ge (p-1)\Phi'(\Phi_0^{-1}(\eta y))\eta y = (1-\eta)\Phi'(\Phi_0^{-1}(\eta y))y$. Now it is easy to see that condition (10) implies the condition $a_{\Phi,\zeta} \le 1/(1-\delta)$, and therefore Theorem 1 implies Theorem C.

In view of Theorem 1, the following question arises: is it possible to replace the quantity $a_{\Phi,\zeta}$ in this theorem with the quantity $A_{\Phi,\zeta}$? The negative answer to this question follows from the following result.

Teopema E ([10]). Let $h \in H$. Then there exists a sequence $\zeta \in \mathcal{Z}$ such that for every entire function $f \in \mathcal{E}_{\zeta}$ we have

$$\overline{\lim_{r \to +\infty} \frac{\ln \ln M_f(r)}{h(\ln N_\zeta(r))}} = +\infty.$$

Suppose, for example, that $h(\sigma) = e^{2\sigma}$ for all $\sigma \in \mathbb{R}$. Let $\zeta \in \mathcal{Z}$ be a sequence whose existence for a given h is guaranteed by Theorem E. Put $\Phi(\ln r) = N_{\zeta}(r)$ for all r > 0. Then $\Phi \in \Omega$, $A_{\Phi,\zeta} = 0$, but $\rho_{\Phi,f} = +\infty$ for every entire function $f \in \mathcal{E}_{\zeta}$.

For any function $\Phi \in \Omega$ we put

$$\Delta_{\Phi} = \lim_{\sigma \to +\infty} \frac{\ln \Phi'_{+}(\sigma)}{\Phi(\sigma)}$$

The following result shows that in the case when $\Delta_{\Phi} = 0$ the answer to the above question is positive, that is in this case the inequality $\rho_{\Phi,f} \leq a_{\Phi,\zeta}$ in Theorem 1 can be replaced by the equality $\rho_{\Phi,f} = A_{\Phi,\zeta}$. **Theorem 4.** Let $\zeta \in \mathbb{Z}$ and $\Phi \in \Omega$. Then there exists an entire function $f \in \mathcal{E}_{\zeta}$ such that $\rho_{\Phi,f} \leq A_{\Phi,\zeta} + \Delta_{\Phi}$.

Theorem 4 is a direct consequence of Theorem 1 and the following lemma applied with $\Psi(\sigma) = N_{\zeta}(e^{\sigma})$ for all $\sigma \in \mathbb{R}$.

Lemma 2 ([16]). Let $\Psi, \Phi \in \Omega$. Then

$$\overline{\lim_{\sigma \to +\infty}} \frac{\ln \Psi'_+(\sigma)}{\Phi(\sigma)} \le \overline{\lim_{\sigma \to +\infty}} \frac{\ln \Psi(\sigma)}{\Phi(\sigma)} + \Delta_{\Phi}.$$

REFERENCES

- A.A. Gol'dberg, I.V. Ostrovskii, Value distribution of meromorphic functions. Transl. Math. Monogr. Vol. 236. Amer. Math. Soc., Providence, RI, 2008.
- 2. A.A. Kondratyuk, Fourier series and meromorphic functions. Vyshcha Shkola, Lviv, 1988. (in Russian)
- L.A. Rubel, B.A. Taylor, A Fourier series method for meromorphic and entire functions, Bull. Soc. Math. France, 96 (1968), 53–96. doi.org/10.24033/bsmf.1660
- 4. A.A. Gol'dberg, The representation of a meromorphic function in the form of a quotient of entire functions, Izv. Vyssh. Uchebn. Zaved. Mat., **10** (1972), 13–17. (in Russian)
- W. Bergweiler, Canonical products of infinite order, J. Reine Angew. Math., 430 (1992), 85–107. doi.org/10.1515/crll.1992.430.85
- W. Bergweiler, A question of Gol'dberg concerning entire functions with prescribed zeros, J. Anal. Math., 63 (1994), №1, 121–129. doi.org/10.1007/BF03008421
- J. Miles, On the growth of entire functions with zero sets having infinite exponent of convergence, Ann. Acad. Sci. Fenn. Math., 27 (2002), 69–90.
- 8. I.V. Andrusyak, P.V. Filevych, The growth of entire function with zero sets having integer-valued exponent of convergence, Mat. Stud., **32** (2009), №1, 12–20. (in Ukrainian)
- I.V. Andrusyak, P.V. Filevych, The minimal growth of entire functions with given zeros along unbounded sets, Mat. Stud., 54 (2020), №2, 146–153. doi.org/10.30970/ms.54.2.146-153
- I.V. Andrusyak, P.V. Filevych, The growth of an entire function with a given sequence of zeros, Mat. Stud., 30 (2008),№2, 115–124.
- I.V. Andrusyak, P.V. Filevych, Comparative growth of an entire function and the integrated counting function of its zeros, Carpathian Math. Publ., 16 (2024), №1, 5–15. doi.org/10.15330/cmp.16.1.5-15
- I.V. Andrusyak, P.V. Filevych, The minimal growth of an entire function with given zeros, Nauk. Visn. Chernivets'kogo Univ. Mat., 421 (2008), 13–19. (in Ukrainian)
- I.V. Andrusyak, P.V. Filevych, O.H. Oryshchyn, Minimal growth of entire functions with prescribed zeros outside exceptional sets, Mat. Stud., 58 (2022), №1, 51–57. doi.org/10.30970/ms.58.1.51-57
- M.M. Sheremeta, A remark to the construction of canonical products of minimal growth, Mat. Fiz. Anal. Geom., 11 (2004), №2, 243–248.
- M.M. Sheremeta, S.I. Fedynyak, On the derivative of a Dirichlet series, Siberian Math. J., 39 (1998), №1, 181–197. doi.org/10.1007/BF02732373
- P.V. Filevych, The growth of entire and random entire functions, Mat. Stud., 30 (2008), №1, 15–21. (in Ukrainian)

Lviv Polytechnic National University Lviv, Ukraine p.v.filevych@gmail.com petro.v.filevych@lpnu.ua

> Received 05.12.2023 Revised 05.09.2024