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Let ζ = (ζn) be an arbitrary complex sequence such that 0 < |ζ1| ≤ |ζ2| ≤ . . . and ζn → ∞
as n → ∞, let nζ(r) and Nζ(r) be the counting function and the integrated counting function
of this sequence, respectively. By Eζ we denote the class of all entire functions whose zeros are
precisely the ζn, where a complex number that occurs m times in the sequence ζ corresponds
to a zero of multiplicity m. Suppose that Φ is a convex function on R such that Φ(σ)/σ → +∞
as σ → +∞. It is proved that there exists an entire function f ∈ Eζ such that

lim
r→+∞

ln lnMf (r)

Φ(ln r)
≤ lim

r→+∞

lnnζ(r)

Φ(ln r)
,

where Mf (r) denotes the maximum modulus of the function f , and it is shown that the above
inequality implies the inequality

lim
r→+∞

ln lnMf (r)

Φ(ln r)
≤ lim

r→+∞

lnNζ(r)

Φ(ln r)
+ lim

σ→+∞

lnΦ′
+(σ)

Φ(σ)
.

The formulated result is a consequence of the following more general statement: if the right-
hand derivative Φ′

+ of the function Φ assumes only integer values and
∑∞

n=1 e
−Φ(ln |ζn|) < +∞,

then there exists an entire function f ∈ Eζ such that lnMf (r) = o(eΦ(ln r)) as r → +∞.

1. Introduction and main results. We denote by H the class of all non-decreasing func-
tions h on R such that h(σ) → +∞ as σ → +∞, and let Ω be the class of all non-decreasing
convex functions Φ on R such that Φ(σ)/σ → +∞ as σ → +∞.

Suppose that Z is the class of all complex sequences ζ = (ζn) such that 0 < |ζ1| ≤ |ζ2| ≤
. . . and ζn → ∞ as n → ∞. For any sequence ζ = (ζn) from the class Z by Eζ we denote
the class of all entire functions whose zeros are precisely the ζn, where a complex number
that occurs m times in the sequence ζ corresponds to a zero of multiplicity m. Let nζ(r)
and Nζ(r) be the counting function and the integrated counting function of the sequence ζ,
respectively, that is

nζ(r) =
∑
|ζn|≤r

1, Nζ(r) =

∫ r

0

nζ(t)

t
dt, r ≥ 0.

The common value of the orders of the functions nζ(r) and Nζ(r) we denote by aζ .
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For a non-constant entire function f and each r ≥ 0, let Mf (r) = max{|f(z)| : |z| = r}
be the maximum modulus of the function f . We identify the growth of the function f with
the growth of the function lnMf (r). By ρf we denote the order of the function f .

Well-known classical results about the minimal growth of entire functions from the classes
Eζ , where ζ ∈ Z, are the Borel theorem on the order of a Weierstrass canonical product (see,
for example, [1, p. 57]) and the Lindelöf theorem on the description of the zero sets of entire
functions whose growth does not exceed normal type of a given order ρ > 0 (see, for example,
[2, p. 30]). In particular, the Borel theorem implies the following statement.

Теорема A. Let ζ ∈ Z. Then there exists an entire function f ∈ Eζ such that ρf = aζ .

Suppose that λ ∈ H is a continuous function on R. Generalizing the Lindelöf theorem,
L.A. Rubel and B.A. Taylor [3] found necessary and sufficient conditions on a sequence
ζ ∈ Z, under which there exist an entire function f ∈ Eζ and positive constants A and B
such that lnMf (r) ≤ Aλ(Br) for all r > 0.

Let ζ ∈ Z. A.A. Gol’dberg [4] proposed another approach to describing the minimal
growth of entire functions from the class Eζ . The essence of this approach is to establish the
best possible estimates from above on the growth of functions f ∈ Eζ by nζ(r) or Nζ(r). This
approach is used in many works. In particular, estimates from above for lnMf (r) by nζ(r),
which describe the minimal growth of entire functions f ∈ Eζ and hold along some increasing
to +∞ sequences of values of r, were established in [5, 6, 7, 8, 9]. Similar estimates from
above for lnMf (r) by Nζ(r) are found in [10, 11]. Best possible, in a certain sense, estimates
from above on the growth of functions f ∈ Eζ by nζ(r) or Nζ(r), that hold outside small
exceptional sets of values of r, were obtained in [1, 6, 10, 12, 13]. M.M. Sheremeta [14] found
upper estimates for lnMf (r), where f ∈ Eζ , which hold for all sufficiently large values of r
(see Theorems B and C below).

For any function Φ ∈ H, a non-constant entire function f , and a sequence ζ ∈ Z, we put

ρΦ,f = lim
r→+∞

ln lnMf (r)

Φ(ln r)
, aΦ,ζ = lim

r→+∞

lnnζ(r)

Φ(ln r)
, AΦ,ζ = lim

r→+∞

lnNζ(r)

Φ(ln r)
.

The main results of this article are the following two theorems, the first of which follows
from the second and is an analogue of Theorem A for ρΦ,f and aΦ,ζ instead of ρf and aζ ,
respectively.

Theorem 1. Let ζ ∈ Z and Φ ∈ Ω. Then there exists an entire function f ∈ Eζ such that
ρΦ,f ≤ aΦ,ζ .

Theorem 2. Let ζ = (ζn) be a sequence from the class Z and let Ψ ∈ Ω be a function such
that Ψ′

+ assumes only integer values. If

∞∑
n=1

1

eΨ(ln |ζn|)
< +∞, (1)

then there exists an entire function f ∈ Eζ such that

lnMf (r) = o(eΨ(ln r)), r → +∞. (2)
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2. Proof of main results. For each z ∈ C and an arbitrary integer p ≥ 0, we denote by
E(z, p) the Weierstrass primary factor, i.e.

E(z, p) =

1− z, if p = 0;

(1− z) exp

(
p∑

n=1

zn

n

)
, if p ≥ 1.

The following statement is well known (see, for example, [4]).

Lemma 1. Let ζ = (ζn) be a sequence from the class Z and let (pn) be a sequence of
non-negative integers. If the series

∞∑
n=1

(
r

|ζn|

)pn+1

(3)

converges for every r > 0, then the product
∞∏
n=1

E

(
z

ζn
, pn

)
(4)

converges absolutely and uniformly in any boundend subset of C to an entire function f(z)
such that f ∈ Eζ and lnMf (r) ≤ G(r) for all r ≥ 0, where G(r) is the sum of series (3).

Proof of Theorem 2. Let ζ = (ζn) be a sequence from the class Z and let Ψ ∈ Ω be a function
such that Ψ′

+ assumes only integer values and (1) holds. Note that Ψ′
+ ∈ H. We put n0 =

min{n ∈ N : Ψ′
+(ln |ζn|) ≥ 1}. Let pn = Ψ′

+(ln |ζn|)− 1 for all integers n ≥ n0 and let pn = 0
if n ∈ N and n < n0. Consider series (3). Since Ψ(σ)/σ → +∞ as σ → +∞, there exists a
function l ∈ H such that ∑

n≤l(r)

(
r

|ζn|

)pn+1

= o(eΨ(ln r)), r → +∞. (5)

In addition, for any r > 0 and every integer n ≥ 1, we have

Ψ(ln r)−Ψ(ln |ζn|) =
∫ r

|ζn|

Ψ′
+(ln t)

t
dt ≥ Ψ′

+(ln |ζn|)(ln r − ln |ζn|).

Taking into account this fact, for any r > 0 and every integer m ≥ n0, we obtain∑
n≥m

(
r

|ζn|

)pn+1

= eΨ(ln r)
∑
n≥m

1

eΨ(ln r)−Ψ′
+(ln |ζn|)(ln r−ln |ζn|)

≤ eΨ(ln r)
∑
n≥m

1

eΨ(ln |ζn|)
. (6)

From (6) and (1) we see that series (3) converges for every r > 0, and therefore by Lemma 1
product (4) converges absolutely and uniformly in any boundend subset of C to an entire
function f(z) such that f ∈ Eζ and lnMf (r) ≤ G(r) for all r ≥ 0, where G(r) is the sum of
series (3). In addition, from (6) and (1) we obtain∑

n>l(r)

(
r

|ζn|

)pn+1

= o(eΨ(ln r)), r → +∞. (7)

It follows from (5) and (7) that G(r) = o(eΨ(ln r)) as r → +∞, and hence (2) holds.
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Proof of Theorem 1. Let ζ = (ζn) be a sequence from the class Z, Φ ∈ Ω and a = aΦ,ζ . We
suppose that a ∈ [0,+∞), since otherwise there is nothing to prove. From the definition of
the quantity aΦ,ζ it follows that there exist a function ε decreasing to a on R and a number
r0 ≥ |ζ0| such that

ln(nζ(r) ln
2 nζ(r)) ≤ ε(ln r)Φ(ln r), r ≥ r0. (8)

Without loss in generality we can assume that Φ′
+(ln r0) > 0 and, in the case when a = 0,

that for all r ≥ r0 the inequality ε(ln r) ≥ 1/
√
Φ′

+(ln r) holds.
Let σ0 = ln r0. We put γ(x) = 0 for all x < σ0 and let

γ(x) = sup{ε(t)Φ′
+(t) : t ∈ [σ0, x]}, x ≥ σ0.

It is easy to show that γ ∈ H, γ(x)/Φ′
+(x) → a as x → +∞, and γ(x) ≥ ε(x)Φ′

+(x) for all
x ≥ σ0. Therefore, taking Γ(σ) =

∫ σ

σ0
γ(x)dx+ ε(σ0)Φ(σ0) for all σ ∈ R, we see that Γ ∈ Ω,

Γ(σ)/Φ(σ) → a as σ → +∞, and

Γ(σ) ≥ ε(σ)

∫ σ

σ0

Φ′
+(x)dx+ ε(σ0)Φ(σ0) ≥ ε(σ)Φ(σ), σ ≥ σ0. (9)

We put Ψ(σ) =
∫ σ

σ0
([Γ′

+(x)] + 1)dx+ Γ(σ0) for all σ ∈ R. Then Ψ ∈ Ω, Ψ′
+ assumes only

integer values, Ψ(σ) ∼ Γ(σ) as σ → +∞, and Ψ(σ) ≥ Γ(σ) for all σ ≥ σ0. From (8) and (9)
we have ln(n ln2 n) ≤ Ψ(ln |ζn|) for all integers n ≥ n0, and therefore condition (1) holds.
By Theorem 2, there exists an entire function f ∈ Eζ such that (2) is satisfied. Taking into
account the above estimates and using (2), we obtain ρΦ,f ≤ a.

3. Some consequences. Let ζ = (ζn) be a sequence from the class Z. We put Γζ(ln r) = 0
for all r ∈ (0, |ζ0|) and let

Γζ(ln r) =

∫ r

|ζ0|

lnnζ(t)

t
dt, r ≥ |ζ0|.

It is clear that Γζ ∈ Ω.
We denote by Ω′ the class of all continuously differentiable on R functions Φ ∈ Ω such

that Φ′ is a positive function on R. For each Φ ∈ Ω′ we put

Φ0(σ) = σ − Φ(σ)

Φ′(σ)
, σ ∈ R.

Note that Φ0 is a continuously function on R increasing to +∞ (see, for example, [15]).
As we have already noted above, M.M. Sheremeta [14] proved the following two theorems.

Теорема B ([14]). Let ζ ∈ Z. Then for every q > 1 there exists an entire function f ∈ Eζ
such that

ln lnMf (r) = O(Γζ(ln(qr))), r → +∞.

Теорема C ([14]). Let ζ = (ζn) be a sequence from the class Z, Φ ∈ Ω′, and δ ∈ (0, 1). If

lnn ≤ Φ′(Φ−1
0 ((δ + o(1)) ln |ζn|)) ln |ζn|, n → ∞, (10)

then there exists an entire function f ∈ Eζ such that ρΦ,f ≤ 1/(1− δ).
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In [14] it is noted that the number q > 1 in Theorem B, generally speaking, cannot be
replaced by 1. This fact also follows from the following result.

Теорема D ([12]). Let l ∈ H be a continuously function on R. Then there exists a sequence
ζ ∈ Z such that lnnζ(r) ≥ l(ln r) for all r ≥ r0, lnnζ(r− 0) = l(ln r) on an unbounded from
above set of values r, and for any entire function f ∈ Eζ we have

l−1(lnnζ(r)) lnnζ(r) = o(ln lnMf (r)), r ∈ Ff , r → +∞,

where Ff ⊂ [1,+∞) is a set of infinite logarithmic measure.

We show that Theorems B and C follow from Theorem 1.
Let ζ = (ζn) be a sequence from the class Z and q > 1. Then for all r ≥ |ζ0| we have

lnnζ(r) ≤
1

ln q

∫ qr

r

lnnζ(t)

t
dt ≤ 1

ln q
Γζ(ln(qr)),

and therefore, by Theorem 1, the following more precise version of Theorem A is true.

Theorem 3. Let ζ ∈ Z. Then for every q > 1 there exists an entire function f ∈ Eζ such
that

lim
r→+∞

ln lnMf (r)

Γζ(ln(qr))
≤ 1

ln q
.

Let Φ ∈ Ω′, η ∈ (0, 1), and p = 1/η. Then for all σ ∈ R we have

Φ(pΦ0(σ)) =

∫ pΦ0(σ)

σ

Φ′(x)dx+ Φ(σ) ≥ (pΦ0(σ)− σ)Φ′(σ) + Φ(σ) = (p− 1)Φ′(σ)Φ0(σ).

Making the substitution y = pΦ0(σ) and noting that σ = Φ−1
0 (ηy), for all y ≥ y0 we get

Φ(y) ≥ (p − 1)Φ′(Φ−1
0 (ηy))ηy = (1 − η)Φ′(Φ−1

0 (ηy))y. Now it is easy to see that condition
(10) implies the condition aΦ,ζ ≤ 1/(1− δ), and therefore Theorem 1 implies Theorem C.

In view of Theorem 1, the following question arises: is it possible to replace the quantity
aΦ,ζ in this theorem with the quantity AΦ,ζ? The negative answer to this question follows
from the following result.

Теорема E ([10]). Let h ∈ H. Then there exists a sequence ζ ∈ Z such that for every
entire function f ∈ Eζ we have

lim
r→+∞

ln lnMf (r)

h(lnNζ(r))
= +∞.

Suppose, for example, that h(σ) = e2σ for all σ ∈ R. Let ζ ∈ Z be a sequence whose
existence for a given h is guaranteed by Theorem E. Put Φ(ln r) = Nζ(r) for all r >0. Then
Φ ∈ Ω, AΦ,ζ = 0, but ρΦ,f = +∞ for every entire function f ∈ Eζ .

For any function Φ ∈ Ω we put

∆Φ = lim
σ→+∞

lnΦ′
+(σ)

Φ(σ)
.

The following result shows that in the case when ∆Φ = 0 the answer to the above question
is positive, that is in this case the inequality ρΦ,f ≤ aΦ,ζ in Theorem 1 can be replaced by
the equality ρΦ,f = AΦ,ζ .
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Theorem 4. Let ζ ∈ Z and Φ ∈ Ω. Then there exists an entire function f ∈ Eζ such that
ρΦ,f ≤ AΦ,ζ +∆Φ.

Theorem 4 is a direct consequence of Theorem 1 and the following lemma applied with
Ψ(σ) = Nζ(e

σ) for all σ ∈ R.

Lemma 2 ([16]). Let Ψ,Φ ∈ Ω. Then

lim
σ→+∞

lnΨ′
+(σ)

Φ(σ)
≤ lim

σ→+∞

lnΨ(σ)

Φ(σ)
+ ∆Φ.
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