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In this work we consider the notion of B-equivalence of pseudometrics. Two pseudometrics
d1 and d2 on a set X are called B-equivalent, where B is a subgroup of the group of all bijections
on X, if there exists an element b of B such that d1(x, y) = d2(b(x), b(y)) for every x, y ∈ X,
that is, d1 can be obtained from d2 by permutating elements of X with the aid of the bijection
b. The group B generates the group B̂ of transformations of the set of all pseudometrics on X,
elements of which act as d(·, ·) 7→ d(b(·), b(·)), where d is a pseudometrics on X and b ∈ B. A
function f on the set of all pseudometrics on X is called B̂-symmetric if f is invariant under
the action on its argument of elements of the group B̂. If two pseudometrics d1 and d2 are
B-equivalent, then f(d1) = f(d2) for every B̂-symmetric function f.

In general, the technique of symmetric functions is well-developed for the case of symmetric
continuous polynomials and, in particular, for the case of symmetric continuous linear functi-
onals on Banach spaces. To use this technique for the construction of B̂-symmetric functions
on sets of pseudometrics, we map these sets to some appropriate Banach space V , which is
isometrically isomorphic to the Banach space ℓ1 of all absolutely summing real sequences. We
investigate symmetric (with respect to an arbitrary group of symmetry, elements of which map
the standard Schauder basis of ℓ1 into itself) linear continuous functionals on ℓ1. We obtain the
complete description of the structure of these functionals. Also we establish analogical results
for symmetric linear continuous functionals on the space V. These results are used for the
construction of B̂-symmetric functionals on the set of all pseudometrics on an arbitrary set X
for the following case: the group B of bijections on X, that generates the group B̂, is such that
the set of all x ∈ X, for which there exists b ∈ B such that b(x) ̸= x, is finite.

Introduction. Pseudometrics are a generalization of metrics that relaxes the non-degene-
racy requirement (i.e., distinct points are not necessarily separated by a positive distance).
The notion of pseudometrics is important in various fields of mathematics and applied
sciences. The possibility that distinct points can have zero distance between them gives
researchers the ability to apply pseudometrics to problems where the difference between disti-
nct but similar objects can be ignored. Note that the choice of an appropriate pseudometric
from the set of all pseudometrics on a given fixed set can play a decisive role in solving
theoretical or practical problems. Therefore, it is important to study the properties of the set
of all pseudometrics and certain subsets of this set (such as the set of all pseudoultrametrics)
on a fixed set (see [12, 13]).
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Among the wide variety of pseudometrics on a fixed set there are some similar pseudomet-
rics that can be obtained from one another by the action of some bijection on the underlying
set. In section 2 we establish some properties of such pseudometrics. In particular, we define
the notion of B-equivalence of pseudometrics. For the investigation of classes of B-equivalence
it is useful to construct functions of pseudometrics that take the same values on B-equivalent
pseudometrics. Such functions are symmetric (invariant) under the action of some group of
operators on the set of all pseudometrics, which is also constructed in section 2. In general,
the technique of symmetric functions is well-developed for the case of symmetric continuous
polynomials and, in particular, for the case of symmetric continuous linear functionals on
Banach spaces (see, e.g., [2,8,11]). Unfortunately, the set of all pseudometrics on a fixed set
with point-wise operations of addition and multiplication to scalars is not a vector space. So,
to use the above-mentioned technique to symmetric mappings on the set of pseudometrics,
we need to map this set to some appropriate Banach space and to construct the group of
operators on this space consistent with the above-mentioned group on the set of pseudometri-
cs. We use this approach in section 4, where we construct the appropriate Banach space and
establish the structure of symmetric continuous linear functionals on it. We show that this
Banach space is isometrically isomorphic to the Banach space ℓ1 of all absolutely summing
real sequences. This result gave us the opportunity to use the general result on the structure
of symmetric continuous linear functionals on ℓ1, which is established in section 3.

1. Preliminaries.
1.1. Symmetric mappings. Let A,B be arbitrary nonempty sets. Let S be an arbitrary
fixed set of mappings that act from A to itself. A mapping f : A → B is called S-symmetric
if f(s(a)) = f(a) for every a ∈ A and s ∈ S.

1.2. The space ℓ1. Let ℓ1 be the Banach space of all absolutely summing sequences of real
numbers with the norm

∥x∥1 =
∞∑

m=1

|xm|,

where x = (x1, x2, . . .) ∈ ℓ1. Let
em = (0, . . . , 0︸ ︷︷ ︸

m−1

, 1, 0, . . .) for m ∈ N.

It is well-known that the set {em}∞m=1 is a Schauder basis in ℓ1. Also it is well-known that
the mapping

f ∈ ℓ′1 7→
(
f(e1), f(e2), . . .

)
∈ ℓ∞

is an isometrical isomorphism, where ℓ′1 is the Banach space of all continuous linear functi-
onals on ℓ1 and ℓ∞ is the Banach space of all bounded sequences of real numbers with
norm

∥x∥∞ = sup{|xm| : m ∈ N},
where x = (x1, x2, . . .) ∈ ℓ∞. For every f ∈ ℓ′1 and x = (x1, x2, . . .) ∈ ℓ1, by the continuity
and the linearity of f,

f(x) =
∞∑

m=1

xmf(em). (1)

2. B-equivalence of pseudometrics. Let X be a nonempty set. Let Ps(X) be the set of
all pseudometrics on X. Let B be some subgroup of the group of all bijections on X. Let us
call two pseudometrics d1, d2 ∈ Ps(X) B-equivalent if there exists b ∈ B such that

d1(x, y) = d2(b(x), b(y)) (2)
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for every x, y ∈ X. Since B is the group, it follows that the relation of B-equivalence is an
equivalence relation on Ps(X). Also note that the equality (2) can be interpreted in the
following way: d1 can be obtained from d2 by “renaming” or “permutating” of elements of X
with the aid of the bijection b.

Let a function f : Ps(X) → A, where A is some set, has the following property:

if d1, d2 ∈ Ps(X) are B-equivalent, then f(d1) = f(d2). (3)

In other words, the restriction of f to every class of B-equivalence is constant. Functions
with the property (3) are important in the investigations of B-equivalence. Let us rephrase
the property (3) in terms of symmetric mappings. For b ∈ B and d ∈ Ps(X), let us define
the pseudometrics b̂(d) on X by

b̂(d)(x, y) = d(b(x), b(y)) (4)

for every x, y ∈ X. Let the mapping b̂ be defined by

b̂ : d ∈ Ps(X) 7→ b̂(d) ∈ Ps(X), (5)

where b̂(d) is defined by (4). Let
B̂ =

{
b̂ : b ∈ B

}
. (6)

It can be checked that B̂ is a group with respect to the operation of composition. Note that
d and b̂(d) are B-equivalent for every d ∈ Ps(X).

Lemma 1. A function f : Ps(X) → A, where A is some set, has the property (3) if and
only if f has the following property:

f
(̂
b(d)

)
= f(d) for every b̂ ∈ B̂ and d ∈ Ps(X). (7)

Proof. Suppose f has the property (3). Let b̂ ∈ B̂ and d ∈ Ps(X). Let us show that
f
(̂
b(d)

)
= f(d). Let d1 = d and d2 = b̂(d). Since d1 and d2 are B-equivalent, by the property

(3), f(d1) = f(d2), i.e., f(d) = f
(̂
b(d)

)
. So, f has the property (7).

Suppose f has the property (7). Let d1, d2 ∈ Ps(X) be B-equivalent. Let us show that
f(d1) = f(d2). Since d1 and d2 are B-equivalent, there exists b ∈ B such that the equality
(2) holds. Consequently, taking into account (4), d1 = b̂(d2). Therefore, taking into account
(7), f(d1) = f

(̂
b(d2)

)
= f(d2). So, f has the property (3).

Note that the property (7) is the property of B̂-symmetry of f. Thus, by Lemma 1, a
function f on Ps(X) has the property (3) if and only if f is B̂-symmetric.

3. Symmetric linear functionals on ℓ1. Let us construct the reordering of the representa-
tion (1), connected to some partition of the set N of positive integers.

Lemma 2. Let f be a continuous linear functional on ℓ1. Let M be a partition of N. Let
us have some linear order on M. Then

f(x) =
∑
M∈M

∑
m∈M

xmf(em) (8)

for every x = (x1, x2, . . .) ∈ ℓ1.
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Proof. Let M ∈ M. Consider the sum
∑

m∈M xmf(em). In the case |M | < ∞, this sum is
finite. Consider the case |M | = ∞. Let us show that, in this case, the series

∑
m∈M xmf(em)

is convergent. For k ∈ N, let

hk =

{
f(ek), if k ∈ M ;

0, otherwise.

Let h = (h1, h2, . . .). Since (f(e1), f(e2), . . .) ∈ ℓ∞, it follows that h ∈ ℓ∞. Consequently,
the functional fM : ℓ1 → R, defined by fM(x) =

∑∞
m=1 xmhm, where x = (x1, x2, . . .) ∈ ℓ1,

belongs to ℓ′1. On the other hand,
∑∞

m=1 xmhm =
∑

m∈M xmf(em), that is,∑
m∈M

xmf(em) = fM(x) (9)

for every x = (x1, x2, . . .) ∈ ℓ1. Consequently, since fM is well defined, it follows that the
series

∑
m∈M xmf(em) is convergent for every x = (x1, x2, . . .) ∈ ℓ1.

Let us show that the equality (8) holds.
Consider the case |M| < ∞. For definiteness, let M = {M1, . . . ,Ms}. In this case, taking

into account (9), ∑
M∈M

∑
m∈M

xmf(em) = fM1(x) + . . .+ fMs(x) (10)

for every x = (x1, x2, . . .) ∈ ℓ1. On the other hand,

fM1(x) + . . .+ fMs(x) = f(x) (11)

for every x = (x1, x2, . . .) ∈ ℓ1. Thus, by (10) and (11), the equality (8) holds.
Consider the case |M| = ∞. For definiteness, let M = {M1,M2, . . .}. Fix some element

x = (x1, x2, . . .) ∈ ℓ1. The right-hand side of the equality (8) can be rewritten in the form

∞∑
j=1

∑
m∈Mj

xmf(em). (12)

Let us show that the series (12) converges to f(x). Let ε > 0. By (1), there exists r0 ∈ N
such that ∣∣∣∣∣f(x)−

r∑
k=1

xkf(ek)

∣∣∣∣∣ < ε/2

for every r ≥ r0. On the other hand, since x ∈ ℓ1 and (f(e1), f(e2), . . .) ∈ ℓ∞, it follows that
∞∑
k=1

|xkf(ek)| ≤ ∥(f(e1), f(e2), . . .)∥∞
∞∑
k=1

|xk| = ∥f∥∥x∥1.

Thus, the series
∑∞

k=1 |xkf(ek)| is convergent. Consequently, there exists l0 ∈ N such that∑∞
k=l+1 |xkf(ek)| < ε/2 for every l ≥ l0. Let k0 = max{r0, l0}. Then

∣∣∣f(x)− k0∑
k=1

xkf(ek)
∣∣∣ < ε/2 and

∞∑
k=k0+1

|xkf(ek)| < ε/2. (13)

Let j0 ∈ N be such that M1 ∪ . . . ∪Mj0 ⊃ {1, . . . , k0}. Let J ≥ j0. Then M1 ∪ . . . ∪MJ ⊃
{1, . . . , k0}. Consequently,
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J∑
j=1

∑
m∈Mj

xmf(em) =

k0∑
k=1

xkf(ek) +
∑

k∈M1∪...∪MJ\{1,...,k0}

xkf(ek).

Therefore, taking into account (13),∣∣∣∣∣f(x)−
J∑

j=1

∑
m∈Mj

xmf(em)

∣∣∣∣∣ =
∣∣∣∣∣f(x)−

k0∑
k=1

xkf(ek)−
∑

k∈M1∪...∪MJ\{1,...,k0}

xkf(ek)

∣∣∣∣∣ ≤
≤

∣∣∣∣∣f(x)−
k0∑
k=1

xkf(ek)

∣∣∣∣∣+ ∑
k∈M1∪...∪MJ\{1,...,k0}

|xkf(ek)| ≤

∣∣∣∣∣f(x)−
k0∑
k=1

xkf(ek)

∣∣∣∣∣+
+

∞∑
k=k0+1

|xkf(ek)| < ε/2 + ε/2 = ε.

Thus, for every ε > 0 there exists j0 ∈ N such that∣∣∣∣∣f(x)−
J∑

j=1

∑
m∈Mj

xmf(em)

∣∣∣∣∣ < ε

for every J ≥ j0. So, the series (12) converges to f(x). Therefore the equality (8) holds.

Let A be a nonempty set, A0 be some nonempty subset of A and

BA0(A) =
{
b : A → A : b is a bijection and b(A0) = A0

}
. (14)

Lemma 3. The set BA0(A), defined by (14), with the operation of composition is a group.

Proof. The proof is straightforward.

Let us describe the structure of continuous linear functionals on ℓ1 that are symmetric
with respect to a group of symmetry, elements of which map the basis of ℓ1 into itself.

Theorem 1. Let S be a subgroup of the group B{em}∞m=1
(ℓ1), where B{em}∞m=1

(ℓ1) is defined
by (14). Then
1) the relation “∼” on N, defined as

i ∼ j ⇔ there exists s ∈ S such that s(ei) = ej, (15)

is an equivalence relation;
2) every continuous linear S-symmetric functional f on ℓ1 can be represented as

f(x) =
∑

M∈N/∼

γM
∑
m∈M

xm (16)

for every x = (x1, x2, . . .) ∈ ℓ1, where the relation “∼” is defined by (15) and γM = f(em)
for m ∈ M (the value f(em) does not depend on the choice of m ∈ M).

Proof. Let us show that the relation “∼”, defined by (15), is an equivalence relation on N.
Since S is a subgroup of the group B{em}∞m=1

(ℓ1), it follows that S has the following properties:

1. S contains the identity mapping on ℓ1;

2. s−1 ∈ S for every s ∈ S;
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3. s ◦ t ∈ S for every s, t ∈ S.

Properties 1, 2 and 3 imply the reflexivity, the symmetry and the transitivity of the relation
“∼” resp. So, the relation “∼” is an equivalence relation.

Fix some linear order on N/∼. For example, let M ≺ N if minM ≤ minN for M,N ∈
N/∼. Let f be a continuous linear S-symmetric functional on ℓ1. By Lemma 2,

f(x) =
∑

M∈N/∼

∑
m∈M

xmf(em) (17)

for every x = (x1, x2, . . .) ∈ ℓ1.

Let M ∈ N/∼. Let i, j ∈ M. Since i ∼ j, there exists s ∈ S such that s(ei) = ej.
Consequently, taking into account that f is S-symmetric, f(ei) = f(s(ei)) = f(ej). So,
f(em) does not depend on the choice of m ∈ M. Let γM = f(em), where m ∈ M. Then∑

m∈M

xmf(em) = γM
∑
m∈M

xm. (18)

Equalities (17) and (18) imply the equality (16).

4. Symmetric linear functionals on the space generated by pseudometrics. Let us
construct the Banach space, elements of which have similar structure as pseudometrics. Let
V be the set of all mappings a : N× N → R such that

1. a(i, i) = 0 for every i ∈ N;

2. a(i, j) = a(j, i) for every i, j ∈ N;

3. The series
∑

i,j∈N |a(i, j)| is convergent.

We endow V with point-wise operations of addition and scalar multiplication and with norm

∥a∥ =
∑

(i,j)∈N (+)
2

|a(i, j)|,

where a ∈ V and N (+)
2 = {(i, j) ∈ N2 : i < j}. It can be checked that V is a normed space.

Let us show that V is isometrically isomorphic to ℓ1.

Let κ : N (+)
2 → N be defined by

κ((i, j)) =
(j − 2)(j − 1)

2
+ i, (19)

where (i, j) ∈ N (+)
2 . It can be checked that κ is a bijection.

Let us define the mapping J : V → ℓ1 by

J(a) =
∑

(i,j)∈N (+)
2

a(i, j)eκ((i,j)). (20)

Proposition 1. The mapping J, defined by (20), is an isometrical isomorphism.
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Proof. Since, for every a ∈ V, the series
∑

i,j∈N |a(i, j)| is convergent, it follows that J(a)
belongs to ℓ1. Moreover,

∥J(a)∥1 = ∥a∥ (21)

for every a ∈ V. It can be checked that J is linear. Consequently, taking into account
(21), J is injective. Also it can be checked that J is surjective. Thus, J is an isometrical
isomorphism.

For (i, j) ∈ N (+)
2 , let cij ∈ V be defined by

cij(k, l) =

{
1, if (k, l) = (i, j) or (l, k) = (i, j);

0, otherwise,
(22)

where k, l ∈ N. Note that
J(cij) = eκ((i,j)) (23)

for every (i, j) ∈ N (+)
2 . Let

C = {cij : (i, j) ∈ N (+)
2 }, (24)

where cij is defined by (22). Since κ is a bijection, it follows that

J(C) = {em}∞m=1 and J−1
(
{em}∞m=1

)
= C. (25)

Consequently, taking into account that {em}∞m=1 is the Schauder basis in ℓ1 and J is an
isometrical isomorphism, it follows that C is the Schauder basis in V.

Theorem 1 and Proposition 1 imply the following theorem.

Theorem 2. Let S be a subgroup of the group BC

(
V
)
, where C is defined by (24) and

BC

(
V
)

is defined by (14). Then
1) the relation “∼” on N (+)

2 , defined as

(i1, j1) ∼ (i2, j2) ⇔ there exists s ∈ S such that s(ci1j1) = ci2j2 , (26)

is an equivalence relation;
2) every continuous linear S-symmetric functional f on V can be represented as

f(a) =
∑

M∈N (+)
2 /∼

γM
∑

(i,j)∈M

a(i, j) (27)

for every a ∈ V, where the relation “∼” is defined by (26) and γM = f(cij) for (i, j) ∈ M
(the value f(cij) does not depend on the choice of (i, j) ∈ M).

Proof. Let
S̃ = {J ◦ s ◦ J−1 : s ∈ S},

where J is defined by (20). Since S is a group, it follows that S̃ is a group too. For every
s ∈ S, by (25), taking into account that S is a subgroup of BC

(
V
)
,(

J ◦ s ◦ J−1
)(
{em}∞m=1

)
=

(
J ◦ s

)
(C) = J(C) = {em}∞m=1.

Consequently, S̃ is a subgroup of B{em}∞m=1
(ℓ1).
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Let “≃” be the equivalence relation on N, defined by (15), where we set S̃ instead of S.
Let us prove the following properties:

a) if (i1, j1) ∼ (i2, j2) with respect to the relation (26), then κ((i1, j1)) ≃ κ((i2, j2)),
where κ is defined by (19);

b) if i ≃ j, then κ−1(i) ∼ κ−1(j) with respect to the relation (26).
Let us prove the property a). Let (i1, j1) ∼ (i2, j2) with respect to the relation (26). Then

there exists s ∈ S such that s(ci1j1) = ci2j2 . Let s̃ = J ◦ s ◦ J−1. Note that s̃ ∈ S̃ and, taking
into account (23),

s̃
(
eκ((i1,j1))

)
=

(
J ◦ s ◦ J−1

)(
eκ((i1,j1))

)
=

(
J ◦ s

)
(ci1j1) = J(ci2j2) = eκ((i2,j2)).

So, by (15), κ((i1, j1)) ≃ κ((i2, j2)).
Let us prove the property b). Let i ≃ j. Then there exists s̃ ∈ S̃ such that s̃(ei) = ej.

Since s̃ ∈ S̃, it follows that there exists s ∈ S such that s̃ = J ◦ s ◦ J−1. Consequently,
s = J−1 ◦ s̃ ◦ J. Therefore, taking into account (23),

s(cκ−1(i)) =
(
J−1 ◦ s̃ ◦ J

)(
cκ−1(i)

)
=

(
J−1 ◦ s̃

)
(ei) = J−1

(
s̃(ei)

)
= J−1(ej) = cκ−1(j).

So, by (26), κ−1(i) ∼ κ−1(j).
The reflexivity, the symmetry and the transitivity of the relation “≃” and the properties

a) and b) imply the reflexivity, the symmetry and the transitivity of the relation “∼.” So,
“∼” is an equivalence relation.

Let f be a continuous linear S-symmetric functional on V. Let f̃ : ℓ1 → R be defined by

f̃ = f ◦ J−1. (28)

Since mappings f and J−1 are continuous and linear, it follows that f̃ is continuous and
linear. Let us show that f̃ is S̃-symmetric. Let s̃ ∈ S̃ and x ∈ ℓ1. Let s ∈ S be such that
s̃ = J ◦ s ◦ J−1. Then, taking into account that f is S-symmetric,

f̃
(
s̃(x)

)
=

(
f ◦J−1

)(
(J ◦s◦J−1)(x)

)
=

(
f ◦s◦J−1

)
(x) = f

(
s
(
J−1(x)

))
= f

(
J−1(x)

)
= f̃(x).

So, f̃ is S̃-symmetric. Thus, f̃ is a continuous linear S̃-symmetric functional on ℓ1. Con-
sequently, by Theorem 1,

f̃(x) =
∑

N∈N/≃

βN

∑
m∈N

xm (29)

for every x = (x1, x2, . . .) ∈ ℓ1, where

βN = f̃(em) (30)

for m ∈ N, and f̃(em) does not depend on the choice of m.
Since f̃ = f ◦ J−1, it follows that f = f̃ ◦ J. Consequently, taking into account (29),

f(a) = f̃(J(a)) =
∑

N∈N/≃

βN

∑
m∈N

a
(
κ−1(m)

)
=

∑
N∈N/≃

βN

∑
(i,j)∈κ−1(N)

a(i, j) (31)

for every a ∈ V. By the properties a) and b), κ−1(N) ∈ N (+)
2 /∼ for every N ∈ N/≃ and

κ(M) ∈ N/≃ for every M ∈ N (+)
2 /∼. Consequently, by (31),

f(a) =
∑

M∈N (+)
2 /∼

βκ(M)

∑
(i,j)∈M

a(i, j)
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for every a ∈ V, where γM = βκ(M). Fix some m ∈ κ(M). Let (i, j) = κ−1(m). Note that
(i, j) ∈ M. By (30), βκ(M) = f̃(em). Consequently, taking into account equalities (28) and
(23),

βκ(M) = f
(
J−1(em)

)
= f

(
cκ−1(m)

)
= f(cij).

Since f is S-symmetric, f(ci1j1) = f(cij) for every (i1, j1) ∼ (i, j), that is, for every (i1, j1) ∈
M. Let γM = f(cij). Then βκ(M) = γM and, consequently,

f(a) =
∑

M∈N (+)
2 /∼

γM
∑

(i,j)∈M

a(i, j)

for every a ∈ V.

Thus, the isomorphism of the spaces ℓ1 and V gave us the opportunity to obtain the
complete description of the structure of symmetric continuous linear functionals on V ana-
logical to the description of the structure of symmetric continuous linear functionals on ℓ1,
obtained in Theorem 1. Similar results on isomorphisms of algebras of symmetric polynomials
and analytic functions on Banach spaces were established in [17–19].

Let B be some subgroup of the group of all bijections on N. For every b ∈ B and a ∈ V,
let sb(a) : N× N → R be defined by

sb(a)(i, j) = a(b(i), b(j)), (32)

where i, j ∈ N. Note that sb(a) ∈ V. For b ∈ B, let us define sb : V → V by

sb : a 7→ sb(a), (33)

where a ∈ V and sb(a) is defined by (32). It can be checked that sb is an isometrical
isomorphism. Let

SB = {sb : b ∈ B}. (34)

Note that SB is a group.
Let us consider the equivalence relation (26), where we set SB instead of S. Let b ∈ B

and (i, j) ∈ N (+)
2 . For k, l ∈ N, by (32) and (22), taking into account that b is a bijection,

sb(cij)(k, l) = cij(b(k), b(l)) =

{
1, if (b(k), b(l)) = (i, j) or (b(l), b(k)) = (i, j);

0, otherwise
=

=

{
1, if (k, l) =

(
b−1(i), b−1(j)

)
or (l, k) =

(
b−1(i), b−1(j)

)
;

0, otherwise
= cuv(k, l),

where u = min{b−1(i), b−1(j)} and v = max{b−1(i), b−1(j)}. Therefore, by (26), (i, j) ∼
(u, v). It can be checked that the class of equivalence that contains (i, j) ∈ N (+)

2 has the
following form [(i, j)] =

{(
min{b−1(i), b−1(j)},max{b−1(i), b−1(j)}

)
: b ∈ B

}
or, equivalently,

taking into account that B is a group,

[(i, j)] =
{(

min{b(i), b(j)},max{b(i), b(j)}
)
: b ∈ B

}
. (35)

Consider some examples.
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Example 1. Let B be the group of all bijections on N. This group is widely used in investi-
gations of symmetric polynomials and symmetric analytic functions on Banach spaces of
sequences with symmetric Schauder basis (see [1, 5, 14]). Taking into account (35), [(i, j)] =
N (+)

2 for every (i, j) ∈ N (+)
2 . That is, (i1, j1) ∼ (i2, j2) for every (i1, j1), (i2, j2) ∈ N (+)

2 .
Therefore, by Theorem 2, every SB-symmetric continuous linear functional on V can be
represented in the form

f(a) = γ
∑

(i,j)∈N (+)
2

a(i, j), (36)

where a ∈ V and γ ∈ R.

Example 2. Let P be a partition of N. Let B be the group of all bijections b : N → N
such that b(E) = E for every E ∈ P . Let (i, j) ∈ N (+)

2 . By (35), if there exists E ∈ P
such that i, j ∈ E, then [(i, j)] = E2 ∩ N (+)

2 , else [(i, j)] = (Ei × Ej ∪ Ej × Ei) ∩ N (+)
2 ,

where Ei, Ej ∈ P are such that i ∈ Ei and j ∈ Ej. Consequently, by Theorem 2, every
SB-symmetric continuous linear functional on V can be represented in the form

f(a) =
∑
E∈P

γE
∑

(i,j)∈E2∩N (+)
2

a(i, j) +
∑

{E1,E2}∈E

γ{E1,E2}
∑

i∈E1,j∈E2

a(i, j),

where a ∈ V, γE, γ{E1,E2} ∈ R and E =
{
{E1, E2} : E1, E2 ∈ P , E1 ̸= E2

}
.

Example 3. Let n ∈ N. Let Bn be the group of all bijections b : N → N such that b(j) = j for
every j > n. This example can be considered as a partial case of the previous example, where
we set P =

{
{1, . . . , n}, {n + 1}, {n + 2}, . . .

}
. Therefore every SBn-symmetric continuous

linear functional on V can be represented in the form

f(a) = γ
∑

1≤i<j≤n

a(i, j) +
∞∑

j=n+1

γj

n∑
i=1

a(i, j) +
∞∑

i,j=n+1

γija(i, j),

where a ∈ V and γ, γj, γij ∈ R.

Example 4. Let B =
⋃∞

n=1Bn, where Bn is defined in Example 3. The group B is used
in investigations of the so-called finitely symmetric functions on infinite-dimensional spaces
[6, 7]. By (35), [(i, j)] = N (+)

2 for every (i, j) ∈ N (+)
2 . Consequently, every SB-symmetric

continuous linear functional on V can be represented in the form (36).

Example 5. Let n ∈ N. Let σ : N → N be a bijection. Let bσ : N → N be defined by

bσ(k) = nσ(q) + r, (37)

where q and r are the quotient and the remainder of the division of k by n resp. In other
words, bσ permutes “blocks” {1, 2, . . . , n}, {n + 1, n + 2, . . . , 2n}, . . . of the length n. For
example, let σ be defined by

σ(j) =


2, if j = 1;

1, if j = 2;

j, otherwise.

Then bσ
(
{1, 2, . . . , n}

)
= {n + 1, n + 2, . . . , 2n}, bσ

(
{n + 1, n + 2, . . . , 2n}

)
= {1, 2, . . . , n}

and bσ(j) = j for j > 2n.
Let B = {bσ : σ : N → N is a bijection}, where bσ is defined by (37). This group is

used for investigations of symmetric functions on Cartesian products of Banach spaces with
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symmetric Schauder basis or, equivalently, of the so-called block-symmetric functions on
these Banach spaces [3, 9, 10] (see also [4, 15, 16], where symmetric functions on Cartesian
products of rearrangement invariant Banach spaces were studied).

For i, j ∈ N such that 1 ≤ i < j ≤ n, let
Mij =

{
(n(k − 1) + i, n(k − 1) + j) : k ∈ N

}
.

By (35), [(i, j)] = Mij for every (i, j) ∈ N (+)
2 such that 1 ≤ i < j ≤ n. Since⋃

1≤i<j≤n

Mij = N (+)
2 ,

it follows that N (+)
2 /∼ = {Mij : 1 ≤ i < j ≤ n}. Consequently, by Theorem 2, every SB-

symmetric continuous linear functional on V can be represented in the form

f(a) =
∑

1≤i<j≤n

γij

∞∑
k=1

a
(
n(k − 1) + i, n(k − 1) + j

)
,

where a ∈ V and γij ∈ R.

Let us apply the results of this section to the construction of symmetric functions on sets
of pseudometrics. Let X be a nonempty set. Let B be some group of bijections on X such
that the set

XB =
{
x ∈ X : there exists b ∈ B such that b(x) ̸= x

}
is finite. Let us construct B̂-symmetric functionals on Ps(X), where the group B̂ is defined
by (6). Let X0 be an arbitrary finite set such that XB ⊂ X0 ⊂ X. Fix some bijection
h : X0 → {1, . . . , n}, where n = |X0|. Let us define the mapping ph : Ps(X) → V by

ph(d)(i, j) =

{
d
(
h−1(i), h−1(j)

)
, if i, j ∈ {1, . . . , n};

0, otherwise,

where d ∈ Ps(X) and i, j ∈ N. For b ∈ B, let σb : N → N be defined by

σb(j) =

{(
h ◦ b ◦ h−1

)
(j), if j ∈ {1, . . . , n};

j, otherwise,

where j ∈ N. It can be checked that σb is a bijection. Let B0 = {σb : b ∈ B}. Note that B0

is a group of bijections on N. It can be checked that ph
(̂
b(d)

)
= sσb

(ph(d)) for every b ∈ B,

where sσb
is defined by (33). Consequently, the function f ◦ ph is B̂-symmetric for every

SB0-symmetric function f on V, where SB0 is defined by (34). Indeed,

(f ◦ ph)
(̂
b(d)

)
= f(sσb

(ph(d))) = f(ph(d)) = (f ◦ ph)(d)

for every b ∈ B and d ∈ Ps(X). By Theorem 2, all SB0-symmetric continuous linear functi-
onals on V are given by (27). Let us denote by F the set of all such functionals. Then every
element of the set {f ◦ ph : f ∈ F} is a B̂-symmetric function on Ps(X).
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