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In the article, we study structural, spectral, topological, metric and fractal properties of
distribution of complex-valued random variable τ =

∑∞
n=1

2ετ
3n ≡ ∆g

τ1...τn..., where (τn) is
a sequence of independent random variables taking the values 0, 1, · · · , 6 with the probabilities
p0n, p1n, · · · , p6n; ε6 = 0, ε0, ε1, · · · , ε5 are 6th roots of unity.

We prove that the set of values of random variable τ is self-similar six petal snowflake which
is a fractal curve G of spider web type with dimension log3 7. Its outline is the Koch snowflake.

We establish that τ has either a discrete or a singularly continuous distribution with respect
to two-dimensional Lebesgue measure. The criterion of discreteness for the distribution is found
and its point spectrum (set of atoms) is described. It is proved that the point spectrum is a
countable everywhere dense set of values of the random variable τ , which is the tail set of the
seven-symbol representation of the points of the curve G.

In the case of identical distribution of the random variables τn (namely: pkn = pk) we establi-
sh that the spectrum of distribution τ is a self-similar fractal and that the essential support of
density is the fractal Besicovitch-Eggleston type set. The set is defined by terms digits frequenci-
es and has the fractal dimension α0(E) =

ln p
p0
0 ···pp6

6

− ln 7 with respect to the Hausdorff-Billingsley
α-measure. The measure is a probabilistic generalization of the Hausdorff α-measure. In this
case, the random variables τ = ∆g

τ1···τn··· and τ ′ = ∆g
τ ′
1...τ

′
n...

defined by different probability
vectors (p0, · · · , p6) and (p′0, · · · , p′6) have mutually orthogonal distributions.

Introduction. Fractal curves (lines) is an important object of research in the modern fractal
geometry. The spider web-type curves with a branching index n > 2 play a significant
role in the theory of antenna modeling [5]. These curves are interesting to physicists and
engineers from the perspective of conserving valuable metals (materials). The curves with
fractal properties have infinite „length“, zero „area“, and the fractional Hausdorff-Besicovitch
dimension [8]. They are not easy to define analytically (they are defined by formulas involving
an infinite number of operations or by a limiting process [12, 13]). The idea of self-similarity
or the concept of auto-modeling as its generalization are fruitful for their study [14].

In theoretical researches, a little attention is paid to the probability measures whose
supports are plane curves with fractal properties, such as the Vicsek fractal, the Koch
snowflake [10], the Sierpinski triangle [7, 11], and so on.
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The aim of this paper is to fill partially this gap. It is devoted to the distribution of a unit
mass (probability) on a single plane curve G ⊂ R2 of the spider web type. We assume that
the curve has a maximum branching index of 6. It is closely related to the Koch snowflake.
The snowflake is a part (contour) of the curve G.

Let’s introduce the following notations used in the paper.
Let As = {0, 1, ..., s − 1} be an alphabet, Ls = As × As × . . . be a space of sequence

of elements of the alphabet, ∆s
α1(x)...αn(x)...

=
∑∞

n=1 s
−nαn(x) be a s-adic representation of

number x ∈ [0; 1].
Note that we use parentheses to indicate the period in the representation of a number.

There is a countable dense set of numbers in the segment [0; 1] that have two different s-adic
representations: ∆s

c1...cm−1c(0)
= ∆s

c1...cm−1[c−1](s−1). Such numbers are called s-adic-rational.
The rest of the numbers have a single representation and are called s-adic-irrational.

Let Nj(x, k) be the number of digits j ∈ As among the first k digits α1, α2, ..., αk of the
s-adic representation ∆s

α1α2...αn... of number x ∈ [0; 1]. The limit (if it exists)

lim
k→∞

Nj(x, k)

k
≡ νj(x)

is called the frequency of the digit j in the s-representation of the number x.
The well-known Borel theorem [3] states that almost all (in the sense of the Lebesgue

measure) numbers in the segment [0; 1] in the s-adic representation have frequencies of all
digits of the s-adic alphabet, and they are equal to 1

s
.

Theorem 1 ([1, 4], Besicovitch-Eggleston). The set of numbers of segment [0; 1]
E[s; p0, p1, ..., ps−1] =

{
x : νj(x) = pj, j =∈ {0, 1, . . . , s− 1}

}
has fractal the Hausdorff-Besicovitch dimension

α0(E) = ln pp00 pp11 ...p
ps−1

s−1 /(− ln s). (1)

The set E is called the Besicovitch-Eggleston set because its fractal properties for s = 2
were described by A.S. Besicovitch [1], and for s > 2 by Eggleston [4]. According to Borel’s
Theorem, its Lebesgue measure is either 0 or 1, and it is 1 only if pj = 1

s
for all j ∈ N .

1. Main object. Let ε0, ε1, ε2, ε3, ε4, ε5 be an 6th roots of unity, i.e. εk = cos πk
6
+i sin πk

6
, ε6 =

0, (τn) be a sequence of independent random variables taking the values 0, 1, 2, 3, 4, 5, 6 with
the probabilities p0n, p1n, p2n, p3n, p4n, p5n, p6n, respectively (pkn ≥ 0, p0n+p1n+...+p6n = 1).

Let us consider the complex-valued random variable

τ = 2
∞∑
n=1

3−nετn . (2)

It is evident that the properties of random variable τ are defined by series
∑∞

n=1 2 · 3−n and
an infinite seven-row matrix ||pkn||. We are interested in the Lebesgue structure (that is, the
content of the discrete and continuous components, and in the case of continuity, singular
and absolutely continuous components of the probability measure) and spectral properties
of distribution of the random variable τ (topological, metric and fractal properties of its
point and continuous spectra), and as well as the essential support of the probability density
function.

2. The set of values of the random variable τ . The set Eτ of values of the random
variable τ is the set of complex numbers, which are images of the mapping from the sequence
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space L7 to the set of complex numbers, which is analytically expressed by the formula
g((αn)) = 2

∑∞
n=1 3

−nεαn .
Let us consider the function g(t) defined by the equation

g(t = ∆7
α1α2...αn...) = 2

∞∑
n=1

3−nεαn(t) = ∆g
α1α2...αn.... (3)

The definition of the function g at the seven-rational point is not well-defined, because
Equation (3) gives different values for two different representations of the argument. This
drawback can be easily eliminated by agreeing to use only one of the argument representati-
ons (let’s say the one containing the period (0)).

Remark 1. The set of values of the random variable τ is the set of values of the function
g, supplemented by the countable set of values of the expressions

g(∆7
c1...cm−1cm(6)) =

m∑
k=1

2εck
3k

+ 0, (c1, ..., cm−1, cm) ∈ Am
7 .

An alternative construction is the following. If we assume that the seven-rational point
z = ∆7

c1...cm−1c(0)
= ∆7

c1...cm−1[c−1](6) has two components: z− = ∆7
c1...cm−1[c−1](6) and z+ =

∆7
c1...cm−1c(0)

, then we get the extension [0; 1]∗ of the segment [0; 1] with double points. Then
the set of values of the random variable τ is the set of values of the complex-valued function
g(t) = 2

∑∞
n=1

εαn(t)

3n
of the real argument t = ∆7

α1α2...αn... ∈ [0; 1]∗ defined on the set [0; 1]∗.

Theorem 2. The function g, well-defined by Equation (3), is continuous on the set of seven-
irrational points and discontinuous at each seven-rational point, where the function has a
non-removable discontinuity. The value of the discontinuity at the point ∆7

c1c2...cm(0) is equal
to 2

3m
.

Proof. Let ∆7
c1c2...cn...

= t0 be a seven-irrational point, i.e., it has a single representation;
t0 ̸= t be a point close to t0. Then t = ∆7

c1c2...cmαm+1αm+2...
.

Let us consider the difference module

|g(t)− g(t0)| = 2

∣∣∣∣∣
∞∑

k=m+1

εαk

3k
−

∞∑
k=m+1

εck
3k

∣∣∣∣∣= 2

∣∣∣∣∣
∞∑

k=m+1

εαk
− εck
3k

∣∣∣∣∣=
= 2

∞∑
k=m+1

|εαk
− εck |
3k

≤ 2
∞∑

k=m+1

2

3k
→ 0(m → ∞).

Therefore lim
t→t0

g(t) = g(t0). Hence, the function g is continuous at the point t0.

Let t0 = ∆7
c1...cm−1cm(0) be a seven-rational point, t0 ̸= t be a point close enough to t.

There are possible cases:
1) t0 < t = ∆7

c1...cm−1cm0...0αm+k+1αm+k+2...
;

2) t0 > t = ∆7
c1...cm−1cm6...6αm+k+1αm+k+2...

.
In the first case, one has lim

t→t0
|g(t)− g(t0)| = 0, and in the second case

lim
t→t0

|g(t)− g(t0)| =
2|εcm−1|

3m
=

2

3m
.

Thus, at the point t0, the function g has a discontinuity with a jump of 2
3m

.
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Corollary 1. The function g has unbounded variation.

Theorem 3. The set Eτ of values of the random variable τ is a self-similar fractal curve
G of the space R2 (complex plane) with the self-similarity structure G =

⋃6
k=0Gk, G

1/3∼
Gk, Gk = φk(G), where

φk(z) =
2εk
3

+
1

3
z.

It is the set of values of the function g of the real argument t = ∆7
α1α2...αn... ∈ [0; 1]∗, which

is analytically expressed by Equation (3).

Proof. 1. Boundedness of the set Eτ . If t0 = ∆7
(0) then g(t0) = 0. Since

|g(t)− g(t0)| = 2

∣∣∣∣∣
∞∑
n=1

εαn

3n

∣∣∣∣∣≤ 2
∞∑
n=1

|εαn|
3n

≤
∞∑
n=1

2

3n
= 1,

all the values of the function g are concentrated in a closed circle of the radius 1 with the
center z0 = 0 + i · 0.

Indeed, g(∆7
(j)) = εj

∑∞
n=1

2
3n

= εj, |εj| = 1, j = 0, 5. If t ̸= ∆7
(j), then |g(t)| < 1, i.e.

exactly six values of the function are distant from the point z0 = 0 by a distance of 1, the
rest by a distance less than 1.

2. Self-similarity of a set Eτ . If αn is the nth digit of the argument of seven-digit
representation, then

g(∆7
α1...αn...) =

2εα1

3
+

1

3
g(∆7

α2...αn...),

and it is obvious that the set of values of the function has the structure G =
⋃6

k=0Gk,

G
1/3∼ Gk. Moreover, Gk = φk(G), k = 0, 6.
3. Closedness of the set. The set G is closed, because it is the limit of a monotonic

sequence of nested closed sets (unions of non-overlapping circles: 7, 72, 73, etc.). Thus, G is
a compact of R2.

4. Null set. The set G belongs to a circle of radius 1. Thus, the Lebesgue measure is
λ2(G) ≤ π · 12. Given the self-similarity, it is easy to see that G belongs to 7 circles of radius
1
3
. So, λ2(G) ≤ 7 · π(1

3
)2. Similarly, G belongs to the union of 72 circles of radius 3−2. So,

λ2(G) ≤ 72 · π · (1
3
)2 = 72π

34
. And so on λ2(G) ≤ 7n · π · ( 1

3n
)2 = (7

9
)nπ → 0 (n → ∞). So,

λ(G) = 0.
5. Connectivity of the set. Each of the six sets Gj, j = 0, 5, has three points in common

with the curves of Gj+1 if j < 5, and G5 ∩G0 = ∆g
5(1) = ∆g

0(4).
The connectivity of a set G is a consequence of its self-similarity, closure, and the fact

that (see Fig. 1))
G6 ∩Gj = B6j = ∆g

6(j) = ∆g
(|j−3|), j = 0, 5;

G0 ∩G1 = ∆g
0(2) = ∆g

1(5), G1 ∩G2 = ∆g
1(3) = ∆g

2(0), G2 ∩G3 = ∆g
2(4) = ∆g

3(1),

G3 ∩G4 = ∆g
3(5) = ∆g

4(2), G4 ∩G5 = ∆g
4(0) = ∆g

5(3), G5 ∩G0 = ∆g
5(1) = ∆g

0(4).

Let us prove that G belongs to the whole segment [z0; εj], j ∈ A5 and do it for j = 0,
because it is done in the same way for other values of j. In addition to the ends of the
segment [z0; ε0], the set G contains the points dividing the segment by three equal parts:
B60 = ∆g

6(0); A0 = ∆g
0(6). In view of the self-similarity of the figure G, the points dividing
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[z0;B60] by three equal parts also belong to G. For the same reason, the points dividing the
segment [A0; ε0] by three equal parts also belong to G. Similarly, the points dividing the
segment [B60;A0] by three equal parts, namely ∆g

03(0), ∆
g
06(3) belong to G. Thus, we have

identified 10 points of the segment dividing it into 9 equal parts and belong to G. Given
the self-similarity of G, the points that divide 9 resulting segments by three equal parts
also belong to G, and so on. In view of the closedness of G, we conclude that the whole
segment [z0; ε0] belongs to G. Thus, the figure “spider„formed by the six segments [z0; εj]
belongs entirely to G. The six similar shapes that belong to the shapes Gj, j = 0, 6 due to
the self-similarity of G also belong to G, etc. Thus, the figure G is connected.

6. The outer boundary K of the curve G is the classical Koch snowflake. Let S be the
Koch snowflake inscribed in a unit disk (circle), one of its vertices coinciding with the point
ε0 = 1 + 0 · i. Then all points of εi are common to S and G.

As we can see from Item 5 of this proof, the points Bjk are the points of the peripheral
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boundary K of the curve G that are closest to the center z0 of the curve G. They also belong
to S. Given this, the self-similarity and closedness of the set S, we conclude that G∩S = S.
Thus, the outer boundary of the curve G is the classic Koch snowflake (see Fig. 5,6))

Note that the curve G is the residual set of the space R2. It is obtained as a result of
an infinite sequence of removing parts of a circle according to an invariant procedure: the
complement of the union of seven “inscribed„ circles of three times smaller radius is removed
from the closed circle (see Fig. 1)–4))

Recall that the part of the plane bounded by the Koch snowflake is called the Koch island
(see Fig. 5)). It is a self-similar figure. The peripheral contours of the curve G and the Koch
island coincide. At the same time, the set G is nowhere dense on Koch island, i.e. every open
circle belonging to the island contains a circle free of points of the set G.

Definition 1. The representation ∆g
α1α2...αn... of a point (number) z ∈ G is called a g-

representation, and αn is called its nth digit.

As it follows from the proof of the previous theorem, there exist points of G (we call
them g-binary) having two g-representations:

∆g
6(j) = ∆g

j(|j−3|), i ∈ A6; ∆
g
c1...cmj(j+2) = ∆g

c1...cm[j+1](j−1), j = 1, 2, 3

∆g
c1...cm0(2) = ∆g

c1...cm1(5), ∆
g
c1...cm4(0) = ∆g

c1...cm5(3), ∆
g
c1...cm5(1) = ∆g

c1...cm0(4).

The set of g-binary points is countable and dense in G. The rest of the points in G have
a single g-representation and are called g-unary.

A cylinder (g-cylinder) of rank m with base c1...cm on the curve G is a set

∆g
c1...cm

= {z : z = ∆g
c1...cmα1α2...

, (αn) ∈ A7}.

It follows directly from the definition that

1) ∆g
c1...cm

=
6⋃

j=0

∆g
c1...cmj;
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2) ∆g
c1...cm

1⧸3∼ ∆g
c1...cmj i G 1⧸3m∼ ∆g

c1...cm
.

As we can see from the proof of the theorem

3) ∆g
c1...cmk ∩∆g

c1...cmj =

{
∅, k ̸= 6 ̸= j ∧ |k − j| ≠ 1,

point, |k − j| = 1 ∨ k = 6.

The diameter of the cylinder ∆g
c1...cm

is calculated by the formula
4) d(∆g

c1...cm
) = 2 · 3−m;

For any sequence (cn) ∈ L7, the following equality holds
5)
⋂∞

n=1∆
g
c1...cn

= ∆g
c1...cn...

,
that is, a point of G is a g-cylinder of infinite rank.

At first, let us define the measure m on the curve G on the g-cylinders by the equation
m(∆g

c1...cm...) = 7−m

and extend it to the minimal σ-algebra containing all Borel subsets of the curve G.

Theorem 4. A set of the Besicovitch-Eggleston type M ⊂ G, where
M = M [g; p0, p1, ..., p6] = {x : x = ∆g

α1α2...αn..., νj(x) = pj, j = 0, 6},
1) is the set of full measure m, if pj = 1

7
, j = 0, 6;

2) is the set of zero measure m, if there exists pj ̸= 1
7
.

Its fractal Hausdorff-Billingsley dimension [2] with respect to the probability measure m and
coverings of g-cylinders is calculated by Equation (1).

Proof. Since the probability measure m on the curve G is a complete analogue of the
Lebesgue measure on the segment [0; 1], which is a self-similar set like the curve G with the
same self-similarity structure, then this theorem is a complete analogue of the Besicovitch-
Eggleston Theorem.

An independent proof of this statement by means of analysis alone can be carried out in
the same way as in [9] for Q2-representation and G2-representation of numbers.

3. Discrete distributions. Point spectrum. We say that the g-representations of the
points (numbers) z1 = ∆g

α1α2...αn... and z2 = ∆g
β1β2...βn...

of the curve G have the same tail
(z1 ∼ z2) if there exist numbers k and m such that αk+j = βm+j for any j ∈ N .

The binary relation „have the same tail“ is an equivalence relation. The set of all points
of a curve G that have the same tail of the g-representation is called the tail set. Each tail
set is countable and everywhere dense in G.

Note that the point spectrum of a distribution is the set of its atoms.

Theorem 5. The random variable τ has pure discrete distribution if and only if

M ≡
∞∏
n=1

max
k

{pkn} > 0. (4)

When the distribution is discrete, the point spectrum of the distribution τ is the tail set,
which is represented by the atom z0 = ∆g

a1a2...an...
, where pann = maxk pkn with the maximum

mass M .

Proof. We interpret the event {τ = ∆g
α1α2

...} as {τn = αn∀n ∈ N}. In this context,
the g-binary point z with the representations: ∆g

c1c2...cmi(i+2) = ∆g
c1...cm[i+1](i−1) has two

components (it is paired). However, only one of the two events: {τ = ∆g
c1c2...cmi(i+2)} and

{τ = ∆g
c1c2...cm[i+1](i−1)} can have a positive probability.
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Given the above, at M = 0 we have
P{τ = ∆g

α1α2...αn...} ≤ P{τ = z0} = M = 0 ∀z = ∆g
α1α2...αn... ∈ G.

Thus, the distribution of the random variable τ is continuous.
Let M > 0 and let z = ∆g

α1α2...αn... be a point belonging to the tail set Wz0 , to which the
atom z0 belongs, and pαnn > 0 for j ≤ m and αj = aj for j > m. Then

P{τ = z} =
( m∏

n=1

pαnn

) ∞∏
n=m+1

pann > 0.

So, z ∈ Dτ .
It remains to prove that the sum of the masses of all such atoms of distribution τ is 1.

The condition M > 0 implies that the necessary condition for the convergence of an infinite
product is satisfied, i.e.

∏∞
n=m+1 pann → 1 as m → ∞. Let Bm be the set of all such points

z ∈ Eτ whose g-representation differs from the g-representation of z0 by no more than first
m digits. Then B0 = {z0}, B0 ⊂ B1 = {z = ∆g

α1α2...
, α1+j = a1+j ∀j ∈ N} etc. We have

Bn ⊂ Bn+1 (n ≥ 1),

P (Bn) =

(
6∑

α1=0

...
6∑

αm=0

m∏
j=1

pαjj

)
·

∞∏
n=m+1

pann =
∞∏

n=m+1

pann,

The value of the expression in the parentheses is 1. Then P (Bm) → 1 as m → ∞, and the
distribution τ is purely discrete with the point spectrum belonging to the tail set Wz0 .

Corollary 2. A distribution of the random variable τ is continuous if and only if M = 0.

Corollary 3. The continuous distribution of the random variable τ , being centered on the
Lebesgue zero set, is singular (orthogonal to the two-dimensional Lebesgue measure).

Corollary 4. If M > 0 and there are no zeros among the elements of the matrix ||pkn||,
then the point spectrum of the distribution τ is everywhere dense in the set of values of the
distribution of the random variable τ .

Remark 2. Note that the first part of Theorem 5 is a consequence of the well-known
Theorem of P. Levy [6].

4. The full spectrum of the distribution of a random variable τ Recall that the
spectrum of the distribution of the random variable τ is a subset Sτ of the set of values Eτ

containing all points z whose ε-neighbourhood Oε(z) has a nonzero probability, i.e.
Sτ = {z ∈ Eτ : P{τ ∈ Oε(x)} > 0 ∀ε > 0}.

Theorem 6. A spectrum Sτ of the distribution of the random variable τ is the set

Q = {z ∈ Eτ : pαn(z)n > 0 ∀n ∈ N}. (5)

Proof. 1. Let ∆g
α1α2...αn... = z ∈ Sτ . Then according to the definition of the spectrum for any

n ∈ N we have

0 < P{τ ∈ ∆g
α1α2...αn

} =
n∏

j=1

pαjj.

Indeed, taking the ε-neighborhood Oε(z) of z, it is easy to specify the cylinder ∆g
α1...αk

, which
belongs entirely to the neighborhood Oε(z). If we assume that P{τ ∈ ∆g

α1...αk
} = 0, then for

ε1-neighborhood Oε1(z), where ε1 < ε, and Oε1(z)∩Eτ ⊂ ∆g
α1...αk

we have P{τ ∈ Oε1(z)} = 0,
which contradicts the condition τ ∈ Sτ . So, pαnn > 0 ∀n ∈ Z and Sτ ⊂ Q.
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2. Let z ∈ Q. Then z ∈ ∆g
α1...αn

and P{τ ∈ ∆g
α1...αn

} > 0 (∀n ∈ Z). Consider an arbitrary
number ε > 0. It is easy to point out the cylinder ∆g

α1...αn
, which belongs completely to Oε(z).

Then P{τ ∈ Oε(z)} ≥ P{τ ∈ ∆g
α1...αn

} > 0. Thus, z ∈ Sτ is by definition and Q ⊂ ofSτ .
Therefore, Sτ = Q.

Corollary 5. If there are no zeros among the elements of the matrix ||pkn||, then the distri-
bution spectrum of the random variable τ is the fractal curve G with dimension α0 = log3 7.

5. The Lebesgue structure of distribution τ . Next, we focus on the case of the continuity
of the distribution τ . In this situation, we can ignore countable sets, in particular, the set of
points having two g-representations.

Note that if pkn = 1
7

for any k ∈ A7 and n ∈ N , then the random variable τ have a
uniform distribution on the curve G, because P{τ ∈ ∆g

j} = 1
7
, P{τ ∈ ∆g

j1j2...jm
} = 1

7m
,

where G
7−m

∼ ∆g
j1j2...jm

. In this case, one has τ = g(ξ), where ξ is the random variable
with a uniform distribution on the segment [0; 1], i.e. a random variable with independent
identically distributed and uniform distributed digits of the seven-digits representation. In
this situation, the probability measure µτ on G is equivalent to the one-dimensional Lebesgue
measure λ on [0; 1], since µτ (Φ) = λ(g−1(Φ)) for ∀ Φ ⊂ G.

Next, we consider a special case where pkn = pk ∀n ∈ N .

Remark 3. Since the distribution of the random variable τ is equivalent to the distribution
of the random variable ξ = ∆7

ξ1ξ2...ξn...
with independent identically distributed digits of the

seven-digits representation: P{ξn = j} = pj, j = 0, 6, then the support of the distribution τ
is the set M [g; p0, p1, ..., p6] = {x : νi(x) = pi, i = 0, 6}.

Let m be a geometric probability measure on G (equivalent to the Hausdorff measure).
This class includes the measure that corresponds to the distribution of a random variable τ
with probabilities pkn = 1

7
.

Theorem 7. The distributions of the random variables τ and τ ′, defined by the stochastic
vectors p̄ = (p0, p1, ..., p6) and p̄′ = (p′0, p

′
1, ...., p

′
6), respectively, are mutually orthogonal if

p̄ ̸= p̄′ and equivalent if p = p′.

Proof. If p̄ = p̄′, then the equivalence of the distributions of random variables τ and τ ′ is
obvious.

Let p̄ ̸= p̄′. Taking into account Remark 3, the set M [g; p0, ..., p6] is the set of the complete
probability measure µτ corresponding to the distribution τ . In this case, M [g; p′0...p

′
6] is the

set of zero measure µτ , since p̄ ̸= p̄′.
Similarly, µτ ′(M [g; p′0...p

′
6]) = 1 and µτ ′(M [g; p0...p6]) = 0. Hence, µτ ⊥ µτ ′ .

Remark 4. The random variable τ , having a pure Lebesgue distribution, belongs to the
Jessen-Wintner family of random variables [14, 15].

6. Fractal properties of distribution τ . To summarize, the distribution of a random
variable τ has a number of structurally and metrically fractal properties, since

1) the set of values of a random variable is a self-similar plane curve G with a maximum
branching index of 6 and fractal dimension log3 7; the peripheral contour of the curve G is a
fractal curve a Koch snowflake;

2) in the case of identical distribution of digits of g-representation of a random variable
τ , its spectrum is a self-similar fractal, which is a subset of the set of its values Eτ ;
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3) if the continuous distribution of the random variable τ with independent equally distri-
buted digits of the g-image is not uniform, then the support of the distribution is a fractal set
of the Besicovitch-Eggleston type with fractional dimension of Hausdorff-Billingsley, which
is calculated by Equation (1).
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