
Математичнi Студiї. Т.62, №2 Matematychni Studii. V.62, No.2

УДК 511.7, 519.213

O. P. Makarchuk, D. M. Karvatskyi

ON THE LEBESGUE MEASURE OF ONE GENERALISED SET OF

SUBSUMS OF GEOMETRIC SERIES

O. P. Makarchuk, D. M. Karvatskyi. On the Lebesgue measure of one generalised set of subsums
of geometric series, Mat. Stud. 62 (2024), 115–120.

In the present paper, we study a set that can be treated as a generalised set of subsums for
a geometric series. This object was discovered independently in various mathematical aspects.
For instance, it is closely related to various systems of representation of real numbers. The main
object of this paper was particularly studied by R. Kenyon, who brought up a question about
the Lebesgue measure of the set and conjectured that it is positive. Further, Z. Nitecki confirmed
the hypothesis by using nontrivial topological techniques. However, the aforementioned result
is quite limited, as this particular case should satisfy a rigid condition of homogeneity. Despite
the limited progress, the problem remained understudied in a general framework.

The study of topological, metric, and fractal properties of the set of subsums for a numerical
series is a separate research direction in mathematics. On the other hand, the topic is related to
another modern mathematical problem, namely, deepening of the Jessen-Wintner theorem for
infinite Bernoulli convolutions and their generalisations. The essence of the problem is to reveal
the necessary and sufficient conditions for the probability distribution of a random subsum of
a geometric series to be absolutely continuous or singular.

The Jessen-Wintner theorem guarantees that the distribution is pure (pure discrete, pure
singular, or pure absolutely continuous). Meanwhile, the Lévy theorem gives us the necessary
and sufficient condition for the distribution to be discrete. Since the set of subsums for an
absolutely convergent series coincides with the set of possible outcomes of the corresponding
probability distribution, under certain conditions, it allows us to apply various probability
techniques for its further investigation. In particular, some techniques help us to prove that the
above sets have a positive Lebesgue measure and allow to deepen the Jessen-Wintner theorem
under certain conditions.

1. Introduction. Let γ ∈ (0; 1), 1 < s be a fixed positive integer, and ||dij|| be an infinite
matrix with s rows and real elements. In addition, let the inequality

|dij| ≤ L (∀i ∈ {0, 1, . . . , s− 1},∀j ∈ N), (1)

hold for some L > 0. In what follows, we consider a set

M =

{
+∞∑
n=1

xnγ
n : xn ∈ {d0n, d1n, . . . , d(s−1)n} (∀n ∈ N)

}
. (2)

Topological, metric, and fractal properties of the set M for some values of γ and matrices
||dij|| were studied in [5, 8, 10, 11]. In particular, [5] is concerned with case γ = 1

s
, djn = dj
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for each j ∈ {0, 1, . . . , s− 1}, n ∈ N, whereas (d0, d1, . . . , ds−1) is a complete residue system
modulo s. The aforementioned paper also conjectures that λ(M) > 0. This hypothesis was
further confirmed in paper [8].

We are interested in finding less rigid conditions for the matrix ||dij|| under which M
has a positive Lebesgue measure. We introduce a probabilistic approach to solve the above
problem.

Let (ψk) be a sequence of independent random variables, where every ψk takes values
d0k, d1k, . . . , d(s−1)k with probabilities p0k, p1k, . . . , p(s−1)k, respectively. We consider a random
variable ψ defined by

ψ =
∞∑
k=1

ψkγ
k.

It is easy to see that M is the set of all possible outcomes of ψ. In the case the probability
distribution of ψ contains an absolutely continuous component (or ψ has a pure absolutely
continuous distribution), the set M has a positive Lebesgue measure.

According to the Jessen-Wintner theorem [3], ψ has a pure probability distribution. From
Lévy’s theorem [6], we get that the distribution of ψ is discrete if and only if

W ≡
+∞∏
n=1

max(p0n; p1n; . . . ; p(s−1)n) > 0.

A large number of papers are devoted to the study of the Lebesgue structure of the
distribution of ψ, depending on various restrictions for ψ [1, 7, 9, 12, 13]. In particular,
some necessary and sufficient conditions for ψ to have a singular or absolutely continuous
distribution, provided that γ = 1

s
, djn = j for each j ∈ {0, 1, . . . , s− 1}, n ∈ N, were found

in [2, 5, 7, 14]. In the present paper, we generalise the results of [5] and [8].

2. Some condition under which λ(M) > 0.

Theorem 1. Let (d0n; d1n; . . . ; d(s−1)n) be a set of integer numbers that forms a complete
residue system modulo s, for each n ∈ N. If γ = 1

s
and condition (1) holds, then λ(M) > 0.

Proof. Let pjn = 1
s

for each j ∈ {0, 1, . . . , s− 1} and n ∈ N. In this case, the distribution of
ψ is continuous (W = 0). It is clear that two random variables ψ and

ψ +
+∞∑
j=1

an
sn

=
+∞∑
j=1

ψn + an
sn

have the same type of probability distribution for an arbitrary bounded sequence of integer
numbers (an). Without loss of generality, let

0 = d0n < d1n < . . . < d(s−1)n ≤ L, (3)

hold for every n ∈ N. For an integer parameter r and natural parameter n we define

S(r;n) =
∑

(j1;j2;...;jn)

n∏
k=1

pjkk,

where summation is taken over all possible tuples (j1; j2; . . . ; jn) such that jk ∈ {0; 1; . . . ;
s− 1} for each k ∈ {1; . . . ;n}, and

r

sn
=

n∑
k=1

djkk
sk

. (4)

If identity (4) does not hold over all possible tuples (j1; j2; . . . ; jn), we put S(r;n) = 0.
Let us consider the function
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fn(t) =
n∏
k=1

s−1∑
j=0

pjkt
djks

−k

.

It is easy to see that fn(t) =
∑

r S(r;n)t
rs−n

. Next, we define a polynomial hn(t), depending
on fn(t) as follows

hn(t) = fn(t
sn) =

∑
r

S(r;n)tr.

By mathematical induction on n, we attempt to show that

S(r;n) ≤ 1

sn
(∀r ∈ Z, ∀n ∈ N). (5)

For n = 1, inequality (5) is obviously true. Further, let (5) hold for n = k, i.e.,

S(r; k) ≤ 1

sk
(∀r ∈ Z).

Let us demonstrate that the inequality is correct for n = k + 1. It is clear that

hk+1(t) = hk(t
sk)

s−1∑
j=0

pj(k+1)t
dj(k+1) ,

hence, for an assigned r, there exists an integer j such that dj(k+1) ≡ r (mod s) and

S(r; k + 1) = S(r; k)pj(k+1) ≤
1

sk
· 1
s
=

1

sk+1
.

In what follows, we denote Wn+1 ≡
∑+∞

k=n+1

ψk
sk
, and calculate

Fψ

(r + 1

sn

)
− Fψ

( r
sn

)
= P

(
ψ ∈

[ r
sn

;
r + 1

sn

])
for positive integers n and r + 1 such that rs−n ∈ M, where Fψ is the distribution function
of the random variable ψ and P is the probability. Taking into account (3), it is not difficult
to see that ψ ∈ [rs−n; (r + 1)s−n] if and only if

n∑
k=1

ψk
sk

=
r − l

sn
, Wn+1 ∈

[ l
sn

;
l + 1

sn

]
,

where l ∈ {0; 1; . . . ; [ L
s−1

]}. By (5), we obtain

Fψ

(r + 1

sn

)
− Fψ

( r
sn

)
=
∑
l

P

(
n∑
k=1

ψk
sk

=
r − l

sn

)
P
(
Wn+1 ∈

[ l
sn

;
l + 1

sn

])
=

=
∑
l

S(r − l;n)P
(
Wn+1 ∈

[ l
sn

;
l + 1

sn

])
≤
∑
l

1

sn
P
(
Wn+1 ∈

[ l
sn

;
l + 1

sn

])
=

1

sn
.

For positive integers m, k + 1 and n such that m > k, m
sn

∈M, k
sn

∈M we have

Fψ

(m
sn

)
− Fψ

( k
sn

)
=

m−k∑
j=1

(
Fψ

(k + j

sn

)
− Fψ

(k + j − 1

sn

))
≤ m

sn
− k

sn
.

Taking into account the above inequality and continuity of Fψ(x), it is easy to check that
Fψ(x) satisfies the Lipschitz condition |Fψ(x1) − Fψ(x2)| ≤ |x1 − x2| (∀x1, x2 ∈ R). That
means the distribution of ψ is absolutely continuous. According to P(ψ ∈M) = 1, we draw
a conclusion that λ(M) > 0.
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3. The Lebesgue structure of distribution of ψ.

Theorem 2. Let (d0n; d1n; . . . ; d(s−1)n) be a set of integer numbers that forms a complete
residue system modulo s, for each n ∈ N. If γ = 1/s and

Q ≡
+∞∏
n=1

s−1∑
j=0

√
pjn
s
> 0, (6)

then the distribution of ψ is absolutely continuous.

Proof. Without loss of generality, let condition (3) hold. Let (ξk) be a sequence of independent
random variables that take values d0n, d1n, . . . , d(s−1)n with equivalent probability 1

s
. Further,

we define a random variable ξ by the following equality

ξ =
∞∑
k=1

ξks
−k.

According to theorem 1, ξ has an absolutely continuous probability distribution. We
define two sequences of probability spaces {(Ωk, Ak, µk)} and {(Ωk, Ak, νk)} in the following
way: let Ωk = {d0k; d1k; . . . ; d(s−1)k}, σ-algebra Ak is defined on the power set of Ωk,

µk(d0k) = p0k, µk(d1k) = p1k, . . . , µk(1) = p(s−1)k,

νk(d0k) =
1

s
, νk(d1k) =

1

s
, . . . , νk(d(s−1)k) =

1

s
.

It is clear that µk ≪ νk for any k ∈ N. Let us consider infinite products of probabilistic
spaces given by

(Ω, A, µ) =
∞∏
k=1

(Ωk, Ak, µk), (Ω, A, ν) =
∞∏
k=1

(Ωk, Ak, νk).

Due to Kakutani’s theorem [4], µ≪ ν if and only if
∞∏
k=1

∫
Ωk

√
dµk
dνk

dνk > 0 ⇐⇒
+∞∏
n=1

s−1∑
j=0

√
pjn
s
> 0.

According to the theorem statement, the last inequality holds. Let us consider a measurable
map φ : Ω →M defined as

(∀ω ∈ Ω): φ(ω) =
∞∑
k=1

ωk
sk
.

We define images µ∗ and ν∗ of measures µ and ν under map φ in a natural way:
µ∗(E) = µ(φ−1(E)), ν∗(E) = ν(φ−1(E)),

for an arbitrary Borel subset E.
Measure µ∗ coincides with probability measure Pψ, while measure ν∗ coincides with

probability measure Pξ. The last one is equivalent to the Lebesgue measure. From the
absolutely continuity of measure µ with respect to ν follows the absolutely continuity of
measure µ∗ with respect to ν∗. Since ν∗ ∼ λ, then (6) implies absolutely continuity of the
distribution of ψ.

Theorem 3. Let matrix ||dij|| satisfy condition (1). If γ = 1
s

and the identity W = 0 = Q
holds, then the distribution of ψ is singular.

Proof. Without loss of generality, let condition (3) hold. Further, let

τk =
k∑
j=1

ψj
sj
, ηk =

+∞∑
n=1

ψk+n
sn

.
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It is not difficult to see that ψ = τk +
ηk
sk

for any positive integer k. Obviously that the
random variable τk is taking values c1, c2, . . . , csk with probabilities q1, q2, . . . , qsk , respecti-
vely. Moreover, for an arbitrary j ∈ {1; 2; . . . ; sk} there exists a finite sequence (α1, α2, . . . , αk)
with αi ∈ {0, 1, . . . , s− 1}, i ∈ {1, 2, . . . , k}, such that qj = pα11pα22 . . . pαkk.

Next, we have

Fψ(x) = P
(
τk +

ηk
sk

< x
)
=

sk∑
j=1

qj ·P
(
cj +

ηk
sk

< x
)
=

=
sk∑
j=1

qj ·P(ηk < sk · (x− cj)) =
sk∑
j=1

qj · Fηk(sk · (x− cj)). (7)

Assume further that Fψ(x) is absolutely continuous. Then, for any positive integer k, the
function Fηk(x) must be absolutely continuous as well. Taking into account (7), we get

pψ(x) =
sk∑
j=1

qjs
kpηk(s

k · (x− cj))

almost everywhere. We will use the following notations

A =

∫ +∞

−∞

√
pψ(x)dx and Bk =

∫ +∞

−∞

√
pηk(x)dx.

Since
√
a+ b ≤

√
a+

√
b for any non-negative numbers a and b, we get

A =

∫ +∞

−∞

√√√√ sk∑
j=1

qjskpηk(s
k(x− cj))dx ≤

sk∑
j=1

√
qjsk

∫ +∞

−∞
pηk · (sk · (x− cj))dx =

=
sk∑
j=1

√
qjsk

sk
Bk = Bk

k∏
n=1

s−1∑
j=0

√
pjn
s
.

One can check that
+∞∑
n=1

d(s−1)n

sn
≤

+∞∑
n=1

L

sn
=

L

s− 1
,

for any k ∈ N. It implies that P(ηk /∈ [0; L
s−1

]) = 0, and thus∫ +∞

−∞

√
pηk(x)dx =

∫ L
s−1

0

√
pηk(x)dx ≤

∫ L
s−1

0

1 + pηk(x)

2
dx =

L
s−1

+ 1

2
.

Further, we observe that

A ≤
k∏

n=1

s−1∑
j=0

√
pjn
s

·
L
s−1

+ 1

2
→ 0 (k → ∞),

hence A = 0. It follows that pψ(x) = 0 almost everywhere, contrary to the above assumption.

Taking into account Theorems 1 and 2, we can deepen the main result of [7] as follows:

Corollary 1. Let (d0n; d1n; . . . ; d(s−1)n) be a set of integer numbers that forms a complete
residue system modulo s, for each n ∈ N. If γ = 1

s
, then the random variable ψ has a pure

distribution, moreover:

1) the distribution is discrete if and only if W > 0;

2) the distribution is singular if and only if W = 0 = Q;

3) the distribution is absolutely continuous if and only if Q > 0.
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