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This paper discusses the asymptotic behavior of the stochastic evolutionary system under
the Markov-modulated Poisson perturbations in an averaging schema. Such a perturbation
process combines the Poisson process with the Markov process that modulates the intensi-
ty of jumps. This allows us to model systems with transitions between different modes or
rare but significant jumps. Initially, the asymptotic properties of the Markov-modulated Poi-
sson perturbation are investigated. For this purpose, we build the generator for the limit
process solving the singular perturbation problem for the original process. Then we introduce
a compensated Poisson process with a zero mean value, and it is used to center the jumps.
The stochastic evolutionary system perturbed by the compensated Poisson process with an
additional jump size function is described. We build the generator for an evolution process and
investigate its asymptotic properties. Solving the singular perturbation problem we obtain the
form of the limit process and its generator. This allows us to formulate and prove the theorem
about weak convergence of the evolution process to the averaged one. The limit process for
the stochastic evolutionary system at increasing time intervals is determined by the solution
of a deterministic differential equation. The obtained result makes it possible to study the
rate of convergence of the perturbed process to the limit one, as well as to consider stochastic
approximation and optimization procedures for problems in which the system is described by
an evolutionary equation with the Markov-modulated Poisson perturbation.

Introduction. The study of stochastic evolutionary systems is becoming increasingly im-
portant in various fields of science, including network traffic modeling, financial modeling,
modeling of service and reliability systems [1], epidemiology [2], etc., since these systems can
effectively describe the randomness and uncertainty inherent in the real-world phenomena.
One important aspect of stochastic evolutionary systems is their asymptotic behavior, which
can exhibit various dynamical patterns, from stable equilibrium to complex oscillations and
even chaos.

This work investigates the asymptotic behavior of stochastic evolutionary systems under
the influence of perturbations caused by the Markov-modulated Poisson process (MMPP) [3]
in the averaging schema. This type of perturbation is a combination of the Poisson process
with the Markov process that modulates the intensity of jumps. This allows us to model
systems with the transitions between the different modes or rare but significant jumps. They
are often observed in the natural and technical processes.
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MMPP Properties. Let us consider MMP as a two-component process (x(t), N(t)), where
x(t), t ≥ 0 is a uniformly ergodic Markov process in the standard phase space (X, X) defined
by the generator [4]

Qφ(x) = q(x)

∫
X

P (x, dy)
(
φ(y)− φ(x)

)
, φ ∈ B(X), (1)

where B(X) is the Banach space of bounded functions with the sup-norm

∥φ∥ = max{|φ(x)| : x ∈ X}.

Stochastic kernel P (x,B), x ∈ X,B ∈ X defines a uniformly ergodic embedded Markov
chain xn = x(τn), n ≥ 0, with the stationary distribution ρ(B), B ∈ X . Stationary distri-
bution π(B), B ∈ X of the Markov process x(t), t ≥ 0, is defined by the representation

π(dx)q(x) = qρ(dx), q =

∫
X

π(dx)q(x).

Let us denote by R0 the potential operator of the generator Q, which is defined by equality

R0 = Π− (Π +Q)−1,

where Πφ(x) =
∫
X
π(dy)φ(y) is the projector onto the subspace of zeros NQ = {φ : Qφ = 0}

of the operator Q.
The Poisson process N(t) is the process of counting the number of events that have

occurred up to time t. The rate of arrival of events at the moment t is defined as λ(x(t)),
that is, the intensity parameter is modulated by the Markov process of the state.

The probability that the random variable N(t) is equal to k is defined by [5]

P
(
N(t) = k

)
=

Λk(t)

k!
e−Λ(t),

where Λ(t) =
∫ t

0
λ(x(s))ds is a measure describing the intensity and distribution of the jumps

to time t, where λ(x(t)) is the rate of arrival of events at the moment t, when the Markov
process is in the state x(t). Such a process has the following properties:

P
(
N(t+ h)−N(t) = 0

)
= 1− Λ(h) + o(h),

P
(
N(t+ h)−N(t) = 1

)
= Λ(h) + o(h),

P
(
N(t+ h)−N(t) > 1

)
= o(h), h → 0.

Lemma 1. Generator of the two-component process (x(t), N(t)) has the form:

Lφ(x,N) = Qφ(x,N) + λ(x)
(
R+ − I

)
φ(x,N), (2)

where R+φ(x,N) = φ(x,N + 1) and Iφ(x,N) = φ(x,N).

Proof. Similar to [6], the process generator definition is used. Then the conditional expectati-
on is calculated using the properties of the Poisson process and the definition of the generator
of the Markov process (1), and thus the resulting formula (2) is obtained.

To study the asymptotic properties of the MMPP, we will consider the process with a
small parameter scheme (x(t/ε), N ε(t)). Here N ε(t) is a Poisson process with the intensity
λ(x(t/ε)).



104 S. A. SEMENYUK, Ya. M. CHABANYUK

Lemma 2. The generator of two-component process (x(t/ε), N ε(t)) has the form

Lεφ(x,N) = ε−1Qφ(x,N) + λ(x)
(
R+ − I

)
φ(x,N). (3)

Proof. It is carried out similarly to the generator (2) in Lemma 1.

Lemma 3. The singular perturbation problem for the operator (3) on the test functions
φε(x,N) = φ(N) + εφ0(x,N)

has the solution in the form

Lεφε(x,N) = LNφ(N) + εθN(x)φ(N), (4)

where the remaining term θN(x) is uniformly bounded on x.
Limit operator LN is defined by

LNΠ = ΛΠΠ(R+ − I)Π, (5)

where ΛΠ = Πλ(x) =
∫
X
π(dx)λ(x).

Proof. Let us conduct the similar terms with respect to ε to proof equality (4)
Lεφε(x,N) = ε−1Qφ(N) +

(
Qφ0(x,N) + λ(x)(R+ − I)φ(N)

)
+ ελ(x)(R+ − I)φ0(x,N).

Since φ(N) doesn’t depend on x, then Qφ(N) = 0 ⇐⇒ φ(N) ∈ NQ.
Next term would be written in the form

Qφ0(x,N) + λ(x)(R+ − I)φ(N) = LNφ(N).

We can obtain limit process LN in the form (5) using the solution condition of the last
equation. Then

φ0(x,N) = R0

(
λ(x)(R+ − I)− LN

)
φ(N), (6)

and taking into account that R0LN = 0, we obtain φ0(x,N) = R0λ(x)(R+ − I)φ(N).
Using (6) we can bring the last term to the form
ελ(x)(R+ − I)φ0(x,N) = ελ(x)(R+ − I)R0

(
λ(x)(R+ − I)

)
φ(N) = εθN(x)φ(N).

We can prove that the operator θN(x) on the functions φ(N) is bounded using the form
of operators R+ and R0.

Let us consider the compensated Poisson process Ñ(t) defined as

Ñ(t) = N ε(t)− Λ(t) = N ε(t)−
∫ t

0

λ(x(s))ds. (7)

The compensated Poisson process is used to center the jumps, i.e. E
(
Ñ(t)

)
= 0.

Lemma 4. The generator of the process Ñ(t) (7) has the form
L̃εφ(N) = λ(x)

(
R+ − I

)
φ(N)− λ(x)φ′(N).

Proof. For a Poisson process in a small interval
(
0, t

)
, the probability of more than one jump

is o(t2) so we consider only scenarios with 0 or 1 jump. In this case we can write

Ñ(t) =

{
−Λ(t) with probability (1− Λ(t) + o(t2)), t → 0;

1− Λ(t) with probability Λ(t).
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Let ∆Ñ(t) = Ñ(t)− Ñ(0), when there are no jumps. That is,

∆Ñ(t) = (Ñ(t)− Ñ(0))|Nε(t)=0 = −
∫ t

0

λ(x(s))ds.

So that E
(
∆Ñ(t)

)
= −Λ(t) and E

(
∆Ñ(t)

)k
= 0, when k > 1. Now we can rewrite both

cases using Taylor’s series,

φ(Ñ(t))|Nε(t)=0 = φ(Ñ(0)) + φ′(Ñ(0))∆Ñ(t) +
1

2
φ′′(Ñ(0))(∆Ñ(t))2 + . . . ,

and

φ(Ñ(t))|Nε(t)=1 = φ(Ñ(0) + 1) + φ′(Ñ(0) + 1)∆Ñ(t) +
1

2
φ′′(Ñ(0) + 1)(∆Ñ(t))2 + . . . .

Combining with jump probabilities, we get

E
(
φ(Ñ(t))|Ñ(0)=N

)
= (1− Λ(t) + o(t2))E

(
φ(Ñ(t))Nε(t)=0

)
+ Λ(t)E

(
φ(Ñ(t))Nε(t)=1

)
=

= E
(
φ(Ñ(t))Nε(t)=0

)
+ Λ(t){E

(
φ(Ñ(t))Nε(t)=1

)
− E

(
φ(Ñ(t))Nε(t)=0

)
}+ o(t2) =

= E
(
φ(Ñ(0))

)
+ φ′(N)E

(
∆Ñ(t)

)
+

1

2
φ′′(N)E

(
(∆Ñ(t))2

)
+ o(t2)+

+Λ(t)
{(

φ(N + 1)− φ(N)
)
+
(
φ′(N + 1)− φ′(N)

)
E
(
∆Ñ(t)

)
+

+
1

2

(
φ′′(N + 1)− φ′′(N)

)
E
(
∆Ñ(t)

)2
+ o(t2)

}
as t → 0. Thus, the calculation is completed knowing the conditional moments of the ∆Ñ(t)

E
(
φ(Ñ(t))− φ(Ñ(0))

)
= −Λ(t)φ′(N) + Λ(t)

(
φ(N + 1)− φ(N)

)
+

+Λ2(t)
(
φ′(N + 1)− φ′(N)

)
+ o(t2) (t → 0). (8)

In view of the following limits lim
t→0

Λ(t) = 0 and lim
t→0

Λ(t)
t

= λ(x) (using L’Hospital’s Rule) we
divide (8) by t and obtain as t → 0

L̃εφ(N) = λ(x)
(
R+ − I

)
φ(N)− λ(x)φ′(N).

Remark 1. Combining results of Lemma 2 and Lemma 4 it can be shown that the generator
of two-component process (x(t/ε), Ñ(t)) has the form

L̃εφ(x,N) = ε−1Qφ(x,N) + λ(x)
(
R+ − I

)
φ(x,N)− λ(x)φ′(N). (9)

Evolution system. A stochastic evolutionary system in an ergodic Markov environment is
given by the evolution equation

duε(t) = C(uε(t), x(t/ε))dt+ a(t)Ñ(t)dt, uε(t) ∈ R, (10)

where a(t) represents the size and effect of the jump at the time t.
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Lemma 5. The generator of three-component process (uε(t), Ñ(t), x(t/ε)), t ≥ 0 has the
form

Gε(x)φ(u,N, x) = ε−1Qφ(u,N, x) +
(
C(x) + A

)
φ(u,N, x)+

+λ(x)(R+ − I)φ(u,N, x)−W (x)φ(u,N, x), (11)

where
C(x)φ(u,N, x) = C(u, x)φ′

u(u,N, x), Aφ(u,N, x) = a(t)Nφ′
u(u,N, x),

W (x)φ(u,N, x) = λ(x)φ′
N(u,N, x).

Proof. Let us denote uε(t) = ut, Ñ(t) = wt, x(t/ε) = xt and then calculate the conditional
mathematical expectation

E
(
φ(uε(t+∆), Ñ ε(t+∆), x((t+∆)ε))− φ(uε(t), Ñ(t), x(t/ε))

∣∣
uε(t) = u, Ñ(t) = w, x(t/ε) = x

)
= E

(
φ(ut+∆, wt+∆, xt+∆)− φ(u,w, x)

)
=

= E
(
φ(ut+∆, wt+∆, xt+∆)− φ(u,wt+∆, xt+∆)

)
+ E

(
φ(u,wt+∆, xt+∆)− φ(u,w, x)

)
.

According to (10) and Taylor’s decomposition, u(t +∆) = u + C(u, x)∆ + a(t)w∆+ o(∆).
Therefore,

lim
∆→0

1

∆
E
(
φ(ut+∆, wt+∆, xt+∆)− φ(u,wt+∆, xt+∆)

)
=

= lim
∆→0

1

∆
E
(
φ(u+ C(u, x)∆ + a(t)w∆+ o(∆)), wt+∆, xt+∆)− φ(u,wt+∆, xt+∆)

)
=

= lim
∆→0

1

∆
E
(
φ′
u(u,wt+∆, xt+∆)(C(u, x)∆a(t)w∆+ o(∆))

)
=

(
C(u, x) + a(t)w

)
φ′
u(u,w, x).

Also from (9) we have

lim
∆→0

1

∆
E
(
φ(u,wt+∆, xt+∆)− φ(u,w, x)

)
= ε−1Qφ(u,w, x)+

+λ(x)
(
R+ − I

)
φ(u,w, x) + λ(x)φ′

w(u,w, x).

Combining these results we obtain (11).

Lemma 6. The singular perturbation problem for the operator (11) on the test functions
φε(u,w, x) = φ(u,w) + εφ0(u,w, x),

has the solution in the form

Gε(x)φε(u,w, x) = Gφ(u,w) + εθ(x)φ(u,w), (12)

where the remaining term θ(x) is uniformly bounded on x.
The limit operator G is defined by the equality

GΠ = ΠC(x)Π + ΠAΠ+ ΛΠΠ(R+ − I)Π− ΠW (x)Π. (13)

Proof. Let us conduct the similar terms with respect to ε to proof the equality (12)

Gε(x)φε(u,w, x) = ε−1Qφ(u,w)+

+Qφ0(u,w, x) +
(
C(x) + A+ λ(x)(R+ − I)−W (x)

)
φ(u,w)+
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+ε
(
C(x) + A+ λ(x)(R+ − I)−W (x)

)
φ0(u,w, x).

Since φ(u,w) doesn’t depend on x, then Qφ(u,w) = 0 ⇐⇒ φ(u,w) ∈ NQ.
Next term would be written in the form

Qφ0(u,w, x) +
(
C(x) + A+ λ(x)(R+ − I)−W (x)

)
φ(u,w) = Gφ(u,w).

We can obtain the limit process G in the form (13) using the solution condition of the last
equation. Then

φ0(u,w, x) = R0

(
C(x) + A+ λ(x)(R+ − I)−W (x)−G

)
φ(u,w), (14)

and taking into account that R0G = 0, we obtain

φ0(u,w, x) = R0

(
C(x) + A+ λ(x)(R+ − I)−W (x)

)
φ(u,w).

Using (14) we can substitute the last term to the form(
C(x) + A+ λ(x)(R+ − I)−W (x)

)
φ0(x,N) =

= ε
(
C(x) + A+ λ(x)(R+ − I)−W (x)

)
R0

(
C(x) + A+ λ(x)(R+ − I)−W (x)

)
φ(u,w) =

= εθ(x)φ(u,w).

We can proof that the operator θ(x) on the functions φ(u,w) is bounded using the form
of operators C(x), A, R+, W (x) and R0.

Theorem 1. The weak convergence takes place (uε(t), N ε(t)) → (û(t), N̂(t)) as ε → 0.

The limit process (û(t), N̂(t)) is defined by the generator

Gφ(u,w) =
(
Ĉ(u) + Â

)
φ′
u(u,w) + ΛΠΠ(R+ − I)φ(u,w)− ΛΠφ

′
w(u,w), (15)

where
Ĉ(u) = ΠC(x) =

∫
X

π(dx)C(u, x)

and Â = a(t)w. The limit process û(t) can be obtained as a solution of the differential
equation dû(t) =

(
Ĉ(u) + Â

)
û(t)dt.

Proof. Let’s calculate the right-hand part of Equation (15). In this case, we obtain

Gφ(u,w) =
(
ΠC(x) + ΠA

)
φ′
u(u,w) + ΛΠΠ(R+ − I)φ(u,w)− ΛΠφ

′
w(u,w).

In view of Theorem 4.2 from [4], the proof of the theorem is completed.

Remark 2. There are the following explanations of the terms in the formula (15):

a) Ĉ(u)φ′
u(u,w) corresponds to the deterministic evolution of the process;

b) Âφ′
u(u,w) is an evolutionary process drift term caused by the perturbation;

c) ΛΠΠ(R+ − I)φ(u,w) accounts for the contribution from the jumps, which are modeled
by MMPP;

d) −ΛΠφ
′
w(u,w) is a correction that compensates for the linear approximation, ensuring

that the generator accurately captures the effect of jumps.

Conclusions. The limit process for a stochastic evolutionary system at increasing time
intervals is determined by the solution of a deterministic differential equation. The obtained
result makes it possible to study the rate of convergence of the perturbed process to the limit,
as well as to consider stochastic approximation [8] and optimization procedures for problems
in which the system is described by an evolutionary equation with the Markov-modulated
Poisson perturbation.
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