УДК 517.98, 517.5

N. SUSHCHYK, D. LUKIVSKA

SOME INEQUALITIES FOR ENTIRE FUNCTIONS

N. Sushchyk, D. Lukivska. Some inequalities for entire functions, Mat. Stud. **62** (2024), 109–112.

Let \mathcal{L}_p be the subspace of the space $L_p(\mathbb{R})$ consisting of the restriction to the real axis of all entire functions of exponential type $\leq \pi$. In this paper, for any function $f \in \mathcal{L}_p$ $(1 \leq p \leq \infty)$, we obtain estimates for the norm of f in terms of the sequence $(f(n/2))_{n \in \mathbb{Z}}$, namely

$$\frac{1}{2} \|f\|_{p,1} \le \|f\|_{\mathcal{L}_p} \le 2 \|f\|_{p,1},$$

where $||f||_{p,1} := \frac{1}{2} (||Jf||_{\ell_p(\mathbb{Z})} + ||JT_{1/2}f||_{\ell_p(\mathbb{Z})})$. Here $J : \mathcal{L}_p \to \ell_p(\mathbb{Z})$ is the linear operator given by the formula

$$(Jf)(n) := (-1)^n f(n), \quad n \in \mathbb{Z},$$

and T_{τ} is the shift by $\tau \in \mathbb{R}$ of the function f,

$$(T_{\tau}f)(z) := f(z+\tau), \quad z \in \mathbb{C}.$$

1. Introduction. Let us denote by \mathcal{B} the linear space of all entire functions of exponential type $\leq \pi$ such that

$$\sup_{x,y\in\mathbb{R}} |f(x+iy)|e^{-\pi|y|} < \infty.$$

The linear space \mathcal{B} becomes a Banach space with the norm defined by the formula

$$||f||_{\mathcal{B}} := \sup_{x,y \in \mathbb{R}} |f(x+iy)|e^{-\pi|y|}, \quad f \in \mathcal{B}.$$

Let us consider the linear subspaces of the space \mathcal{B}

$$\mathcal{L}_p := \mathcal{B} \cap L_p(\mathbb{R}), \quad 1 \le p \le \infty,$$
$$\|f\|_{\mathcal{L}_\infty} := \sup_{x \in \mathbb{R}} |f(x)|, \quad \|f\|_{\mathcal{L}_p} := \left(\int_{\mathbb{R}} |f(x)|^p \, dx\right)^{1/p} \quad (p \in [1,\infty))$$

A lot of mathematicians have studied the spaces \mathcal{L}_p , $1 \leq p \leq \infty$. The main results of their researches are presented in the monograph of Levin [1].

Let us denote by J the linear operator acting from the space \mathcal{L}_p to the space $\ell_p := \ell_p(\mathbb{Z})$ by the formula

$$(Jf)(n) := (-1)^n f(n), \quad n \in \mathbb{Z}, \quad f \in \mathcal{L}_p.$$

It follows from the results of Levin [1] that the operator $J: \mathcal{L}_p \to \ell_p$ is continuous if $1 \leq p \leq \infty$ and has a continuous inverse operator if $1 . Denote by <math>\|\cdot\|_p$ the norm on ℓ_p , namely

doi:10.30970/ms.62.1.109--112

²⁰²⁰ Mathematics Subject Classification: 30D20, 47A30.

Keywords: entire functions; Banach spaces.

$$||u||_{\infty} := \sup_{n \in \mathbb{Z}} |u(n)|, \quad ||u||_p := \left(\sum_{n \in \mathbb{Z}} |u(n)|^p\right)^{1/p} \quad (u = (u(n))_{n \in \mathbb{Z}} \in \ell_p).$$

We also denote by T_{τ} ($\tau \in \mathbb{R}$) the shift operator acting on \mathcal{L}_p by the formula

$$(T_{\tau}f)(z) := f(z+\tau), \quad z \in \mathbb{C}, \quad f \in \mathcal{L}_p$$

Obviously, the operator T_{τ} maps isometrically the space \mathcal{L}_p onto itself.

The main result of this paper is the following theorem.

Theorem 1. Let $f \in \mathcal{L}_p$ $(1 \le p \le \infty)$ and $||f||_{p,1} := \frac{1}{2}(||Jf||_p + ||JT_{1/2}f||_p)$. Then

$$\frac{1}{2} \|f\|_{p,1} \le \|f\|_{\mathcal{L}_p} \le 2 \|f\|_{p,1}.$$
(1)

The inequalities (1) have the same nature as the phenomenon of interference discovered by S. N. Bernstein and for space \mathcal{L}_{∞} is described as follows.

Theorem (S. N. Bernstein [1]). Let $f \in \mathcal{L}_{\infty}$. Then

$$|f(x+1) + f(x)| \le C \sup_{n \in \mathbb{Z}} |f(n)|, \quad x \in \mathbb{R},$$

where C is an absolute constant.

2. The proof of Theorem 1. First, we prove the following auxiliary lemma.

Lemma 1. Let $\tau \in [-1/4, 1/4]$ and the sequence $(g_{\tau}(k))_{k \in \mathbb{Z}}$ be given by the formula

$$g_{\tau}(k) := \frac{1}{\pi} \left(\frac{1}{1/2 - k} - \frac{1}{1/2 + \tau - k} \right), \quad k \in \mathbb{Z}.$$

Then

$$||g_{\tau}||_1 \le 1.$$
 (2)

Proof. It is easy to see that $-g_{-\tau}(-k+1) = g_{\tau}(k), k \in \mathbb{Z}$. Hence $||g_{-\tau}||_1 = ||g_{\tau}||_1$, $\tau \in [-1/4, 1/4]$. Therefore, it suffices to prove the estimate (2) for $\tau \in [0, 1/4]$. Let us consider the function $h(\tau) := \pi ||g_{\tau}||_1, \tau \in [0, 1/4]$. Since the function $x \mapsto x^{-1}$ is decreasing on \mathbb{R}_+ and \mathbb{R}_- , we have $0 \leq g_{\tau}(k) \leq g_{1/4}(k), k \in \mathbb{Z}, \tau \in [0, 1/4]$, thus

$$h(\tau) \le h(1/4) = \sum_{k \in \mathbb{Z}} \left(\frac{1}{1/2 - k} - \frac{1}{3/4 - k} \right).$$

Note that

$$\lim_{N \to \infty} \sum_{k=-N}^{N} \frac{1}{1/2 - k} = 0$$

and

$$-\sum_{k=-N}^{N} \frac{1}{3/4 - k} = 4 + \sum_{k=1}^{N-1} \frac{1}{k + 1/4} - \sum_{k=1}^{N+1} \frac{1}{k - 1/4}$$

This implies that

$$h(1/4) = 4 - \sum_{k=1}^{\infty} \left(\frac{1}{k - 1/4} - \frac{1}{k + 1/4} \right) = 4 - 8 \sum_{k=1}^{\infty} \frac{1}{(4k - 1)(4k + 1)}.$$

Using the equality (see [2, p.11])

 $\sum_{k=1}^{\infty} \frac{1}{(4k-1)(4k+1)} = \frac{1}{2} - \frac{\pi}{8},$

we obtain that $h(1/4) = \pi$, i.e. $||g_{\tau}||_1 \le 1$.

The proof of Theorem 1. Let $p \in [1, \infty)$ and $f \neq 0, f \in \mathcal{L}_p$. Since $J \colon \mathcal{L}_p \to \ell_p$ is continuous, we get that $\sum_{n \in \mathbb{Z}} |f(x+n)|^p < \infty$ for every $x \in \mathbb{R}$. Thus, the function

$$\mathbb{R} \ni x \mapsto \psi(x, f) := \left(\sum_{n \in \mathbb{Z}} |f(x+n)|^p\right)^{1/p}$$

is Lebesgue measurable on \mathbb{R} . Moreover, it is a periodic function with period 1. Let us show that $\psi(\cdot, f)$ is bounded. According to Plancherel-Polya's theorem (see [1]), each function $f \in \mathcal{L}_p$ admits the representation

$$f(z) = \sum_{k \in \mathbb{Z}} (-1)^k f(k) \frac{\sin \pi z}{\pi (z-k)}, \quad z \in \mathbb{C}.$$

Then

$$f(\tau + 1/2) - \cos(\pi\tau)f(1/2) = -\cos(\pi\tau)\sum_{k\in\mathbb{Z}}(-1)^k f(k)g_\tau(k), \quad \tau \in [-1/4, 1/4].$$
(3)

Substituting $T_n f \ (n \in \mathbb{Z})$ for f in (3), we obtain

$$f(\tau + 1/2 + n) - \cos(\pi\tau)f(1/2 + n) = -\cos(\pi\tau)\sum_{k\in\mathbb{Z}}(-1)^k f(k+n)g_\tau(k),$$

and thus

$$|f(\tau + 1/2 + n)| \le |f(1/2 + n)| + \sum_{k \in \mathbb{Z}} |f(k + n)| g_{\tau}(k), \quad n \in \mathbb{Z}.$$
 (4)

Taking into account the convolution properties, we deduce that

$$\sum_{n\in\mathbb{Z}} \left(\sum_{k\in\mathbb{Z}} |f(k+n)|g_{\tau}(k)\right)^p \le \left(\sum_{n\in\mathbb{Z}} |f(n)|^p\right) \|g_{\tau}\|_1^p \le \sum_{n\in\mathbb{Z}} |f(n)|^p.$$

Combining (4) and the triangle inequality for the norm $\|\cdot\|_p$, we get

$$\psi(\tau + 1/2, f) \le \psi(1/2, f) + \psi(0, f), \quad \tau \in [-1/4, 1/4].$$
 (5)

Replacing f by $T_{1/2}f$ in (5), we can write the inequality

$$\psi(\tau+1,f) \le \psi(1,f) + \psi(1/2,f), \quad \tau \in [-1/4,1/4].$$
 (6)

Combining (5), (6) and taking into account the periodicity of $\psi(\cdot, f)$, we obtain

$$\psi(x,f) \le \psi(0,f) + \psi(1/2,f), \quad x \in \mathbb{R}.$$
(7)

It means that

$$\int_0^1 \psi^p(x, f) \, dx \le (\psi(0, f) + \psi(1/2, f))^p.$$

Applying the monotone convergence theorem, we conclude that

$$\int_{0}^{1} \psi^{p}(x, f) \, dx = \int_{0}^{1} \sum_{n \in \mathbb{Z}} |f(x+n)|^{p} \, dx = \int_{\mathbb{R}} |f(x)|^{p} \, dx, \tag{8}$$

in other words

$$||f||_{\mathcal{L}_p} \le \psi(0, f) + \psi(1/2, f) = 2||f||_{p,1}.$$
(9)

The inequality (7) yields

$$\psi(x, f) + \psi(x + 1/2, f) \le 2(\psi(0, f) + \psi(1/2, f)), \quad x \in \mathbb{R}.$$
 (10)

Since $\psi(t, T_x f) = \psi(t + x, f), x, t \in \mathbb{R}$, we have

$$\psi(0,f) + \psi(1/2,f) = \psi(-x,T_xf) + \psi(-x+1/2,T_xf) \le \le 2(\psi(0,T_xf) + \psi(1/2,T_xf)) = 2(\psi(x,f) + \psi(x+1/2,f))$$

Taking into account the inequality $(a+b)^p \leq 2^{p-1}(a^p+b^p), a, b \geq 0$, we get

$$\begin{split} \Big(\frac{\psi(0,f) + \psi(1/2,f)}{4}\Big)^p &\leq \Big(\frac{\psi(x,f) + \psi(x+1/2,f)}{2}\Big)^p \leq \\ &\leq \frac{1}{2} \left(\psi^p(x,f) + \psi^p(x+1/2,f)\right). \end{split}$$

Thus, in view of (8), we obtain

$$||f||_{\mathcal{L}_p}^p = \frac{1}{2} \int_0^1 [\psi^p(x,f) + \psi^p(x+1/2,f)] \, dx \ge \left(\frac{\psi(0,f) + \psi(1/2,f)}{4}\right)^p,$$

i.e. $\frac{1}{2} \|f\|_{p,1} \leq \|f\|_{\mathcal{L}_p}$. Therefore, the inequalities (1) are proved for $p \in [1, \infty)$. In the case $p = \infty$ the proof is similar.

REFERENCES

- B.Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, V.150, AMS, Providence, RI, 1996.
- I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, Academic Press, Editors: Daniel Zwillinger, Victor Moll, 2014. doi.org/10.1016/C2010-0-64839-5

Ivan Franko National University of Lviv Lviv, Ukraine n.sushchyk@gmail.com d.lukivska@gmail.com

> Received 07.05.2024 Revised 08.08.2024