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Let Lp be the subspace of the space Lp(R) consisting of the restriction to the real axis of all
entire functions of exponential type ≤ π. In this paper, for any function f ∈ Lp (1 ≤ p ≤ ∞),
we obtain estimates for the norm of f in terms of the sequence (f(n/2))n∈Z, namely

1

2
∥f∥p,1 ≤ ∥f∥Lp

≤ 2∥f∥p,1,

where ∥f∥p,1 := 1
2 (∥Jf∥ℓp(Z)+∥JT1/2f∥ℓp(Z)). Here J : Lp → ℓp(Z) is the linear operator given

by the formula
(Jf)(n) := (−1)nf(n), n ∈ Z,

and Tτ is the shift by τ ∈ R of the function f ,

(Tτf)(z) := f(z + τ), z ∈ C.

1. Introduction. Let us denote by B the linear space of all entire functions of exponential
type ≤ π such that

sup
x,y∈R

|f(x+ iy)|e−π|y| <∞.

The linear space B becomes a Banach space with the norm defined by the formula
∥f∥B := sup

x,y∈R
|f(x+ iy)|e−π|y|, f ∈ B.

Let us consider the linear subspaces of the space B
Lp := B ∩ Lp(R), 1 ≤ p ≤ ∞,

∥f∥L∞ := sup
x∈R

|f(x)|, ∥f∥Lp :=
(∫

R
|f(x)|p dx

)1/p

(p ∈ [1,∞)).

A lot of mathematicians have studied the spaces Lp, 1 ≤ p ≤ ∞. The main results of their
researches are presented in the monograph of Levin [1].

Let us denote by J the linear operator acting from the space Lp to the space ℓp := ℓp(Z)
by the formula

(Jf)(n) := (−1)nf(n), n ∈ Z, f ∈ Lp.

It follows from the results of Levin [1] that the operator J : Lp → ℓp is continuous if 1 ≤ p ≤
∞ and has a continuous inverse operator if 1 < p < ∞. Denote by ∥ · ∥p the norm on ℓp,
namely
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∥u∥∞ := sup
n∈Z

|u(n)|, ∥u∥p :=
(∑

n∈Z

|u(n)|p
)1/p

(u = (u(n))n∈Z ∈ ℓp).

We also denote by Tτ (τ ∈ R) the shift operator acting on Lp by the formula

(Tτf)(z) := f(z + τ), z ∈ C, f ∈ Lp.

Obviously, the operator Tτ maps isometrically the space Lp onto itself.
The main result of this paper is the following theorem.

Theorem 1. Let f ∈ Lp (1 ≤ p ≤ ∞) and ∥f∥p,1 := 1
2
(∥Jf∥p + ∥JT1/2f∥p). Then

1

2
∥f∥p,1 ≤ ∥f∥Lp ≤ 2∥f∥p,1. (1)

The inequalities (1) have the same nature as the phenomenon of interference discovered
by S. N. Bernstein and for space L∞ is described as follows.

Theorem (S. N. Bernstein [1]). Let f ∈ L∞. Then

|f(x+ 1) + f(x)| ≤ C sup
n∈Z

|f(n)|, x ∈ R,

where C is an absolute constant.

2. The proof of Theorem 1. First, we prove the following auxiliary lemma.

Lemma 1. Let τ ∈ [−1/4, 1/4] and the sequence (gτ (k))k∈Z be given by the formula

gτ (k) :=
1

π

(
1

1/2− k
− 1

1/2 + τ − k

)
, k ∈ Z.

Then
∥gτ∥1 ≤ 1. (2)

Proof. It is easy to see that −g−τ (−k + 1) = gτ (k), k ∈ Z. Hence ∥g−τ∥1 = ∥gτ∥1,
τ ∈ [−1/4, 1/4]. Therefore, it suffices to prove the estimate (2) for τ ∈ [0, 1/4]. Let us
consider the function h(τ) := π∥gτ∥1, τ ∈ [0, 1/4]. Since the function x 7→ x−1 is decreasing
on R+ and R−, we have 0 ≤ gτ (k) ≤ g1/4(k), k ∈ Z, τ ∈ [0, 1/4], thus

h(τ) ≤ h(1/4) =
∑
k∈Z

(
1

1/2− k
− 1

3/4− k

)
.

Note that

lim
N→∞

N∑
k=−N

1

1/2− k
= 0

and

−
N∑

k=−N

1

3/4− k
= 4 +

N−1∑
k=1

1

k + 1/4
−

N+1∑
k=1

1

k − 1/4
.
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This implies that

h(1/4) = 4−
∞∑
k=1

(
1

k − 1/4
− 1

k + 1/4

)
= 4− 8

∞∑
k=1

1

(4k − 1)(4k + 1)
.

Using the equality (see [2, p.11])
∞∑
k=1

1

(4k − 1)(4k + 1)
=

1

2
− π

8
,

we obtain that h(1/4) = π, i.e. ∥gτ∥1 ≤ 1.

The proof of Theorem 1. Let p ∈ [1,∞) and f ̸= 0, f ∈ Lp. Since J : Lp → ℓp is continuous,
we get that

∑
n∈Z

|f(x+ n)|p <∞ for every x ∈ R. Thus, the function

R ∋ x 7→ ψ(x, f) :=
(∑

n∈Z

|f(x+ n)|p
)1/p

is Lebesgue measurable on R. Moreover, it is a periodic function with period 1. Let us show
that ψ(·, f) is bounded. According to Plancherel-Polya’s theorem (see [1]), each function
f ∈ Lp admits the representation

f(z) =
∑
k∈Z

(−1)kf(k)
sinπz

π(z − k)
, z ∈ C.

Then

f(τ + 1/2)− cos(πτ)f(1/2) = − cos(πτ)
∑
k∈Z

(−1)kf(k)gτ (k), τ ∈ [−1/4, 1/4]. (3)

Substituting Tnf (n ∈ Z) for f in (3), we obtain

f(τ + 1/2 + n)− cos(πτ)f(1/2 + n) = − cos(πτ)
∑
k∈Z

(−1)kf(k + n)gτ (k),

and thus
|f(τ + 1/2 + n)| ≤ |f(1/2 + n)|+

∑
k∈Z

|f(k + n)| gτ (k), n ∈ Z. (4)

Taking into account the convolution properties, we deduce that∑
n∈Z

(∑
k∈Z

|f(k + n)|gτ (k)
)p

≤
(∑

n∈Z

|f(n)|p
)
∥gτ∥p1 ≤

∑
n∈Z

|f(n)|p.

Combining (4) and the triangle inequality for the norm ∥ · ∥p, we get

ψ(τ + 1/2, f) ≤ ψ(1/2, f) + ψ(0, f), τ ∈ [−1/4, 1/4]. (5)

Replacing f by T1/2f in (5), we can write the inequality

ψ(τ + 1, f) ≤ ψ(1, f) + ψ(1/2, f), τ ∈ [−1/4, 1/4]. (6)

Combining (5), (6) and taking into account the periodicity of ψ(·, f), we obtain

ψ(x, f) ≤ ψ(0, f) + ψ(1/2, f), x ∈ R. (7)
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It means that ∫ 1

0

ψp(x, f) dx ≤ (ψ(0, f) + ψ(1/2, f))p.

Applying the monotone convergence theorem, we conclude that∫ 1

0

ψp(x, f) dx =

∫ 1

0

∑
n∈Z

|f(x+ n)|p dx =

∫
R
|f(x)|p dx, (8)

in other words
∥f∥Lp ≤ ψ(0, f) + ψ(1/2, f) = 2∥f∥p,1. (9)

The inequality (7) yields

ψ(x, f) + ψ(x+ 1/2, f) ≤ 2(ψ(0, f) + ψ(1/2, f)), x ∈ R. (10)

Since ψ(t, Txf) = ψ(t+ x, f), x, t ∈ R, we have
ψ(0, f) + ψ(1/2, f) = ψ(−x, Txf) + ψ(−x+ 1/2, Txf) ≤

≤ 2(ψ(0, Txf) + ψ(1/2, Txf)) = 2(ψ(x, f) + ψ(x+ 1/2, f)).

Taking into account the inequality (a+ b)p ≤ 2p−1(ap + bp), a, b ≥ 0, we get(ψ(0, f) + ψ(1/2, f)

4

)p

≤
(ψ(x, f) + ψ(x+ 1/2, f)

2

)p

≤

≤ 1

2
(ψp(x, f) + ψp(x+ 1/2, f)) .

Thus, in view of (8), we obtain

∥f∥pLp
=

1

2

∫ 1

0

[ψp(x, f) + ψp(x+ 1/2, f)] dx ≥
(
ψ(0, f) + ψ(1/2, f)

4

)p

,

i.e. 1
2
∥f∥p,1 ≤ ∥f∥Lp . Therefore, the inequalities (1) are proved for p ∈ [1,∞).

In the case p = ∞ the proof is similar.
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