УДК 517.537.72

O. M. MULYAVA¹, M. M. SHEREMETA², YU. S. TRUKHAN³

RELATIVE GROWTH OF HADAMARD COMPOSITIONS OF DIRICHLET SERIES ABSOLUTELY CONVERGENT IN A HALF-PLANE

O. M. Mulyava, M. M. Sheremeta, Yu. S. Trukhan. *Relative growth of Hadamard compositions of Dirichlet series absolutely convergent in a half-plane*, Mat. Stud. **63** (2025), 21–30.

Let $\Lambda = (\lambda_n)$ be a positive sequence increasing to $+\infty$ and $S(\Lambda, A)$ be the class of Dirichlet series $F(s) = \sum_{n=1}^{\infty} f_n \exp\{s\lambda_n\}$ with the abscissa of absolute convergence $A \in (-\infty, +\infty]$. A function F is called the Hadamard composition of the genus $m \ge 1$ of the functions $F_j(s) = \sum_{n=0}^{\infty} a_{n,j} \exp\{s\lambda_n\}$ $(j \in \{1, 2, \dots, p\})$, if $f_n = \sum_{k_1 + \dots + k_p = m} c_{k_1 \dots k_p} a_{n,1}^{k_1} \dots a_{n,p}^{k_p}$ for all n. The growth of the function $F \in S(\Lambda, 0)$ with respect to a function $G(s) = \sum_{n=1}^{\infty} g_n \exp\{s\lambda_n\} \in S(\Lambda, +\infty)$ is identified with the growth of the function $M_G^{-1}(M_F(\sigma))$ as $\sigma \uparrow 0$, where $M_F(\sigma) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\}$. The dependence of the growth of a function $M_G^{-1}(M_F(\sigma))$ on the growth of functions $M_G^{-1}(M_{F_j}(\sigma))$ is studied in terms of generalized orders and generalized convergence classes. In particular, there are proved the following statements: Let $F \in S(\Lambda, 0)$ be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, 0)$; the positive increasing function α such that $\alpha((1 + o(1))x) = (1 + o(1))\alpha(x)$ as $x \to +\infty$, β and $\alpha(M_G^{-1}(e^x))$ are slowly increasing functions, i.e. $\alpha(cx) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. If $\lim_{n \to \infty} \ln n/\ln |f_n| < +\infty$, then $\varrho_{\alpha\beta}^0[F]_G \le \varrho^0 := \max\{\varrho_{\alpha\beta}^0[F_j]_G : 1 \le j \le p\}$. If there is a dominating function F_1 among the functions F_j then $\varrho_{\alpha,\beta}^0[F_j]_G = \varrho_{\alpha,\beta}^0[F_1]_G$ and $\lambda_{\alpha,\beta}^0[F]_G = \lambda_{\alpha,\beta}^0[F_1]_G$. (Theorem 1)

1. Introduction. Let $\Lambda = (\lambda_n)$ be an increasing to $+\infty$ sequence of non-negative numbers and by $S(\Lambda, A)$ we denote a class of Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} f_n e^{s\lambda_n}, \quad s = \sigma + it, \tag{1}$$

with the abscissa of absolute convergence $A \in (-\infty, +\infty]$. We will assume that entire Dirichlet series (1) does not reduce to an exponential polynomial.

For $\sigma < A$ we put $M_F(\sigma) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\}$ and remark that for $F \in S(\Lambda, +\infty)$ the function $M_F(\sigma)$ is continuous and increasing to $+\infty$ on $(-\infty, +\infty)$ and, therefore, there

C O. M. Mulyava¹, M. M. Sheremeta², Yu. S. Trukhan³, 2025

²⁰²⁰ Mathematics Subject Classification: 30B50.

 $[\]label{eq:keywords: Dirichlet series; Hadamard composition; generalized order; generalized convergence class. doi:10.30970/ms.63.1.21-30$

exists the function $M_F^{-1}(x)$ inverse to $M_F(\sigma)$, which increase to $+\infty$ on $(x_0, +\infty)$. The growth of the function $F \in S(\Lambda, +\infty)$ with respect to a function $G \in S(\Lambda, +\infty)$,

$$G(s) = \sum_{n=1}^{\infty} g_n e^{s\lambda_n},$$

is identified [1–4] with the growth of the function $M_G^{-1}(M_F(\sigma))$ as $\sigma \to +\infty$.

Suppose that $F_j \in S(\Lambda, A)$,

$$F_j(s) = \sum_{n=1}^{\infty} f_{n,j} e^{s\lambda_n}, \quad j \in \{1, 2, \dots, p\},$$

and say [5, 6] that the function F is the Hadamard composition of genus $m \ge 1$ of the functions F_i if for all n

$$f_n = \sum_{k_1 + \dots + k_p = m} c_{k_1 \dots k_p} f_{n,1}^{k_1} \cdot \dots \cdot f_{n,p}^{k_p}.$$
 (2)

The function F_1 is called dominant, if $|c_{m0\dots0}||f_{n,1}|^m \neq 0$ and $|f_{n,j}| = o(|f_{n,1}|)$ as $n \to \infty$ for $2 \le j \le p$. In [7] it is shown that if function F_1 is dominant then

$$f_n = (1 + o(1))|c_{m0\dots 0}||f_{n,1}|^m, \quad n \to \infty.$$
(3)

To study the growth of function $F \in S(\Lambda, +\infty)$ with respect to function $G \in S(\Lambda, +\infty)$ in [7], the concepts of generalized $(\alpha\beta)$ -order and generalized convergence $(\alpha\beta)$ -class are used. For this purpose, L denotes the class of positive continuous functions α on $(-\infty, +\infty)$ such that $\alpha(x) = \alpha(x_0)$ for $x \leq x_0$ and $0 < \alpha(x) \uparrow +\infty$ as $x_0 \leq x \uparrow +\infty$. We say that $\alpha \in L^0$ if $\alpha \in L$ and $\alpha((1 + o(1))x) = (1 + o(1))\alpha(x)$ as $x \to +\infty$. Finally, $\alpha \in L_{si}$, if $\alpha \in L$ and $\alpha(cx) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$, i.e. α is slowly increasing function. Clearly, $L_{si} \subset L^0$.

In [7] the generalized $(\alpha\beta)$ -order $\rho_{\alpha\beta}[F]_G$ and the generalized lower $(\alpha\beta)$ -order $\lambda_{\alpha\beta}[F]_G$ of the function $F \in S(\Lambda, +\infty)$ with respect to the function $G \in S(\Lambda, +\infty)$ are defined as follows

$$\varrho_{\alpha\beta}[F]_G = \lim_{\sigma \to +\infty} \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{\beta(\sigma)}, \quad \lambda_{\alpha\beta}[F]_G = \lim_{\sigma \to +\infty} \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{\beta(\sigma)},$$

and the following theorem is proved.

Theorem A. Let F be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, +\infty)$. If either m = 1, $\ln n = o(\lambda_n)$ as $n \to \infty$, $\alpha \in L^0$ and $\beta(\ln x) \in L^0$ or $m \ge 2$, $\ln n = O(\lambda_n)$ as $n \to \infty$, $\beta \in L$ and $\alpha(M_G^{-1}(e^x)) \in L_{si}$ then $\varrho_{\alpha\beta}[F]_G \le \max\{\varrho_{\alpha\beta}[F_j]_G : 1 \le j \le p\}$.

The relative generalized convergence $\alpha\beta$ -class is defined [7] by condition

$$\int_{\sigma_0}^{\infty} \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{\beta(\sigma)} d\sigma < +\infty.$$

Then the following theorem is true.

Theorem B. Let F be the Hadamard composition of genus $m \geq 1$ of the functions $F_j \in S(\Lambda, +\infty)$, $\ln n = O(\lambda_n)$ as $n \to \infty$, $\beta \in L^0$ and $\alpha(M_G^{-1}(e^x)) \in L^0$. If F_j belongs to relative generalized convergence $\alpha\beta$ -class for all j then F belongs to the same class.

In the note proposed here we will obtain analogues of Theorems A and B in the case $G \in S(\Lambda, +\infty)$ and $F \in S(\Lambda, 0)$.

2. Growth estimates. If
$$\alpha \in L$$
, $\beta \in L$ and $F \in S(\Lambda, 0)$ then the quantities
 $\varrho^0_{\alpha\beta}[F] = \overline{\lim_{\sigma\uparrow 0}} \frac{\alpha(\ln M_F(\sigma))}{\beta(1/|\sigma|)}$ and $\lambda^0_{\alpha\beta}[F] = \underline{\lim_{\sigma\uparrow 0}} \frac{\alpha(\ln M_F(\sigma))}{\beta(1/|\sigma|)}$

are called [8] the generalized $(\alpha\beta)$ -order and the generalized lower $(\alpha\beta)$ -order of F, respectively. Similarly, the generalized $(\alpha\beta)$ -order $\varrho^0_{\alpha\beta}[F]_G$ and the generalized lower $(\alpha\beta)$ -order $\lambda^0_{\alpha\beta}[F]_G$ of the function $F \in S(\Lambda, 0)$ with respect to a function $G \in S(\Lambda, +\infty)$ we define as follows

$$\varrho^{0}_{\alpha\beta}[F]_{G} = \overline{\lim_{\sigma\uparrow 0}} \frac{\alpha(M_{G}^{-1}(M_{F}(\sigma)))}{\beta(1/|\sigma|)}, \quad \lambda^{0}_{\alpha\beta}[F]_{G} = \underline{\lim_{\sigma\uparrow 0}} \frac{\alpha(M_{G}^{-1}(M_{F}(\sigma)))}{\beta(1/|\sigma|)}.$$
(4)

For $F \in S(\Lambda, 0)$ let $\mu_F(\sigma) = \max\{|f_n| \exp\{\sigma\lambda_n\} : n \ge 0\}$ be the maximal term of series (1). We remark that $\mu_F(\sigma) \uparrow +\infty$ as $\sigma \uparrow 0$ if and only if $\lim_{n\to\infty} |f_n| = +\infty$. So, we will assume that this condition is satisfied. By the Cauchy inequality $\mu_F(\sigma) \le M_F(\sigma)$, and the following lemma contains the estimate of $M_F(\sigma)$ from above.

Lemma 1 ([9]). If $F \in S(\Lambda, 0)$ and

$$h := \overline{\lim_{n \to \infty}} \frac{\ln n}{\ln |f_n|} < +\infty, \tag{5}$$

then for every $\varepsilon > 0$ and all $\sigma_0(\varepsilon) \le \sigma < 0$

$$M_F(\sigma) \le K(\varepsilon)\mu_F\left(\frac{1-\varepsilon}{1+h}\sigma\right)^{1+h+\varepsilon}, \quad K(\varepsilon) = \text{const} > 0.$$

Remark that if $G \in S(\Lambda, +\infty)$ then the function $\ln M_G(\sigma)$ is convex on $(-\infty, +\infty)$ and, thus, it has a continuous non-decreasing derivative $\frac{d \ln M_G(\sigma)}{d\sigma}$ on $(-\infty, +\infty)$ except of a countable number of points at which one-sided derivatives exist, and the left-sided derivative does not exceed the right-sided one. Since $\frac{\ln M_G(\sigma)}{\sigma} \to +\infty$ as $\sigma \to +\infty$, we have $\frac{d \ln M_G(\sigma)}{d\sigma} \nearrow +\infty$ as $\sigma \to +\infty$, i. e. $\frac{dM_G^{-1}(x)}{d \ln x} \searrow 0$ as $x \to +\infty$. Hence, it follows that $M_G^{-1} \in L_{si}$.

Now we prove the following theorem.

Theorem 1. Let $F \in S(\Lambda, 0)$ be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, 0), \alpha \in L^0, \beta \in L_{si}, \alpha(M_G^{-1}(e^x)) \in L_{si}$ and (5) holds. Then

$$\varrho^0_{\alpha\beta}[F]_G \le \varrho^0 := \max\{\varrho^0_{\alpha\beta}[F_j]_G : 1 \le j \le p\}.$$

If among the functions F_j there is a dominant function F_1 then $\varrho^0_{\alpha,\beta}[F]_G = \varrho^0_{\alpha,\beta}[F_1]_G$ and $\lambda^0_{\alpha,\beta}[F]_G = \lambda^0_{\alpha,\beta}[F_1]_G$.

Proof. From (2) we obtain

$$|f_n| \le \sum_{k_1 + \dots + k_p = m} |c_{k_1 \dots k_p}| |f_{n,1}|^{k_1} \cdot \dots \cdot |f_{n,p}|^{k_p},$$

whence

$$|f_n|e^{m\sigma\lambda_n} \le \sum_{k_1+\dots+k_p=m} |c_{k_1\dots k_p}| (|f_{n,1}|e^{\sigma\lambda_n})^{k_1} \cdot \dots \cdot (|f_{n,p}|e^{\sigma\lambda_n})^{k_p}$$

and, thus,

$$\mu_F(m\sigma) \le \sum_{\substack{k_1 + \dots + k_p = m \\ \sigma \in \mathcal{C}}} |c_{k_1 \dots k_p}| \mu_{F_1}(\sigma)^{k_1} \cdot \dots \cdot \mu_{F_p}(\sigma)^{k_p}.$$

Let $\varrho^0 < +\infty$. Since $\varrho^0_{\alpha\beta}[F_j]_G \leq \varrho^0$, for every $\varrho > \varrho^0$ and all $\sigma \in [\sigma_0(\varrho), 0)$ we have $M_{F_j}(\sigma) \leq M_G(\alpha^{-1}(\varrho\beta(1/|\sigma|)))$ and, thus,

$$\mu_F(m\sigma) \le \sum_{k_1 + \dots + k_p = m} |c_{k_1 \dots k_p}| M_{F_1}(\sigma)^{k_1} \cdot \dots \cdot M_{F_p}(\sigma)^{k_p} \le CM_G^m(\alpha^{-1}(\varrho\beta(1/|\sigma|)))$$

where $C = \sum_{k_1 + \dots + k_p = m} |c_{k_1 \dots k_p}|$, i.e.

$$\mu_F(\sigma) \le CM_G^m(\alpha^{-1}(\varrho\beta(m/|\sigma|))).$$
(6)

Therefore, by Lemma 1 for all $\sigma \in [\sigma_0(\varrho), 0)$ we get

$$M_F(\sigma) \le CK(\varepsilon) M_G^{m(1+h+\varepsilon)} \left(\alpha^{-1} \left(\varrho \beta \left(\frac{m(1+h)}{(1-\varepsilon)|\sigma|} \right) \right) \right).$$
(7)

The condition $\alpha(M_G^{-1}(e^x)) \in L_{si}$ implies $\alpha(M_G^{-1}(x^{m(1+h+\varepsilon)})) = (1+o(1))\alpha(M_G^{-1}(x))$ as $x \to +\infty$ and since $M_G^{-1} \in L_{si}$, $\alpha \in L^0$ and $\beta \in L_{si}$, from (7) we get

$$\varrho_{\alpha\beta}^{0}[F]_{G} \leq \overline{\lim_{\sigma\uparrow 0}} \frac{\alpha \left(M_{G}^{-1} \left(CK(\varepsilon) M_{G}^{m(1+h+\varepsilon)} \left(\alpha^{-1} \left(\varrho\beta \left(\frac{m(1+h)}{(1-\varepsilon)|\sigma|} \right) \right) \right) \right) \right)}{\beta(1/|\sigma|)} = \varrho.$$

In view of the arbitrariness of ρ we obtain the inequality $\rho^0_{\alpha\beta}[F]_G \leq \rho^0$, which is obvious if $\rho^0 = +\infty$. The first part of Theorem 1 is proved.

If function F_1 is dominant then (3) implies $\mu_F(\sigma) = (1+o(1))|c_{m0\dots0}|\mu_{F_1}(\sigma/m)^m$ as $\sigma \uparrow 0$. Therefore, $c_1\mu_{F_1}(\sigma/m)^m \leq \mu_F(\sigma) \leq c_2\mu_{F_1}(\sigma/m)^m$ for some $0 < c_1 < c_2 < \infty$, whence by Lemma 1

$$M_F(\sigma) \le K(\varepsilon)\mu_F \left(\frac{1-\varepsilon}{1+h}\sigma\right)^{1+h+\varepsilon} \le c_2 K(\varepsilon)M_{F_1} \left(\frac{1-\varepsilon}{m(1+h)}\sigma\right)^{m(1+h+\varepsilon)}$$

and

$$M_F(\sigma) \ge \mu_F(\sigma) \ge c_1 \mu_{F_1}(\sigma/m)^m \ge \frac{c_1}{K(\varepsilon)^m} M_{F_1}^{m/(1+h+\varepsilon)} \Big(\frac{1+h}{m(1-\varepsilon)}\sigma\Big).$$

Using the conditions $\alpha \in L^0$, $\beta \in L_{si}$ and $\alpha(M_G^{-1}(e^x)) \in L_{si}$ as above we obtain the equalities $\varrho^0_{\alpha\beta}[F]_G = \varrho^0_{\alpha\beta}[F_1]_G$ and $\lambda^0_{\alpha\beta}[F]_G = \lambda^0_{\alpha\beta}[F_1]_G$.

Choosing $\alpha(x) = \beta(x) = \ln x$ for $x \ge x_0$ from (4) we obtain the definition of the relative logarithmic order $\varrho_l^0[F]_G$ and the relative lower logarithmic order $\lambda_l^0[F]_G$. Theorem 1 implies the following statement.

Corollary 1. Let $F \in S(\Lambda, 0)$ be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, 0)$, $\ln M_G^{-1}(e^x) \in L_{si}$ and (5) holds. Then $\varrho_l^0[F]_G \le \max\{\varrho_l^0[F_j]_G : 1 \le j \le p\}$. If among the functions F_j there is a dominant function F_1 then $\varrho_l^0[F]_G = \varrho_l^0[F_1]_G$ and $\lambda_l^0[F]_G = \lambda_l^0[F_1]_G$.

If we choose $\alpha(x) = \ln x$ and $\beta(x) = x$ for $x \ge 3$ then from (4) we obtain the definitions of the relative *R*-order $\varrho_R^0[F]_G = \overline{\lim_{\sigma \uparrow 0}} |\sigma| \ln M_G^{-1}(M_F(\sigma))$, introduced by A.M. Gaisin [10]. Since here $\beta \notin L_{si}$, the corresponding corollary cannot be obtained from Theorem 1. However, from (9) it follows that

$$M_F(\sigma) \le CK(\varepsilon) M_G^{m(1+h+\varepsilon)} \Big(\exp\left\{ \varrho \frac{m(1+h)}{(1-\varepsilon)|\sigma|} \right\} \Big)$$

Therefore, if $\ln M_G^{-1}(e^x) \in L_{si}$ then as in the proof of Theorem 1 we get

$$\varrho_R^0[F]_G \le \overline{\lim}_{\sigma\uparrow 0} |\sigma| \ln M_G^{-1} \Big(CK(\varepsilon) M_G^{m(1+h+\varepsilon)} \Big(\exp\left\{ \varrho \frac{m(1+h)}{(1-\varepsilon)|\sigma|} \right\} \Big) \Big) = \frac{m(1+h)}{(1-\varepsilon)} \varrho.$$

In view of the arbitrariness of ε and ρ , we get the following statement.

Proposition 1. Let $F \in S(\Lambda, 0)$ be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, 0)$, $\ln M_G^{-1}(e^x) \in L_{si}$ and (5) holds. Then $\varrho_R^0[F]_G \le m(1+h) \max\{\varrho_R^0[F_j]_G : 1 \le j \le p\}.$

To replace condition (5) by a condition on the growth of the sequence Λ , we need the following lemma.

Lemma 2. If $F \in S(\Lambda, 0)$, $G \in S(\Lambda, +\infty)$, $\alpha \in L_{si}$, $\beta \in L_{si}$ and

$$\alpha(M_G^{-1}(n)) = o\Big(\beta\Big(\lambda_n/\ln n\Big)\Big), \quad n \to \infty, \tag{8}$$

then for every $\varepsilon \in (0,1)$, $\delta > 0$ and all $\sigma_0(\varepsilon, \delta) \le \sigma < 0$

$$M_F(\sigma) \le \mu_F((1-\varepsilon)\sigma)M_G(\alpha^{-1}(\delta\beta(1/|\sigma|))).$$
(9)

Proof. It is clear that

$$M_F(\sigma) \le \sum_{n=1}^{\infty} |f_n| e^{\sigma\lambda_n} = \sum_{n=1}^{\infty} |f_n| e^{(1-\varepsilon)\sigma\lambda_n} e^{\varepsilon\sigma\lambda_n} \le \mu_F((1-\varepsilon)\sigma) \sum_{n=1}^{\infty} e^{-\varepsilon|\sigma|\lambda_n}.$$
 (10)

From (8) it follows that $\alpha(M_G^{-1}(n)) \leq \delta_1 \beta(\lambda_n/\ln n)$ for every $\delta_1 > 0$ and all $n \geq n_0(\delta_1)$ and, since $\beta \in L_{si}$, $\alpha(M_G^{-1}(n)) \leq \delta\beta(\varepsilon\lambda_n/(2\ln n))$ for every $\varepsilon > 0$, $\delta > 0$ and all $n \geq n_0(\varepsilon, \delta)$. Hence, we get

$$\lambda_n / \ln n \ge \frac{2}{\varepsilon} \beta^{-1} \Big(\alpha(M_G^{-1}(n)) / \delta \Big).$$
(11)

Put $N(\sigma) = [M_G(\alpha^{-1}(\delta\beta(1/|\sigma|)))] + 1$. Then $N(\sigma) \ge n_0(\varepsilon, \delta)$ for all σ sufficiently close to 0 and

$$|\sigma| \ge 1/\beta^{-1} \Big(\alpha(M_G^{-1}(N(\sigma)))/\delta \Big) \ge 1/\beta^{-1} \Big(\alpha(M_G^{-1}(n))/\delta \Big)$$

for $n \ge N(\sigma)$. Therefore, in view of (11)

$$\sum_{n=N(\sigma)}^{\infty} e^{-\varepsilon|\sigma|\lambda_n} \le \sum_{n=N(\sigma)}^{\infty} \exp\left\{-\frac{\varepsilon\lambda_n}{\beta^{-1}\left(\alpha(M_G^{-1}(n))/\delta\right)}\right\} \le \sum_{n=N(\sigma)}^{\infty} \frac{1}{n^2}$$

and, thus,

$$\sum_{n=1}^{\infty} e^{-\varepsilon |\sigma|\lambda_n} \le N(\sigma) - 1 + \sum_{n=N(\sigma)}^{\infty} e^{-\varepsilon |\sigma|\lambda_n} \le M_G(\alpha^{-1}(\delta\beta(1/|\sigma|)))$$
(12)

for all σ sufficiently close to 0. From (10) and (12) we obtain (9).

25

Using Lemma 2 we prove the following theorem.

Theorem 2. Let $F \in S(\Lambda, 0)$ be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, 0), \ \alpha \in L_{si}, \ \beta \in L_{si}, \ \alpha(M_G^{-1}(e^x)) \in L_{si} \text{ and } (8) \text{ holds. Then } \varrho^0_{\alpha\beta}[F]_G \le \varrho^0 = \max\{\varrho^0_{\alpha\beta}[F_j]_G : 1 \le j \le p\}.$

If among the functions F_j there is a dominant function F_1 then $\varrho^0_{\alpha\beta}[F]_G = \varrho^0_{\alpha\beta}[F_1]_G$ and $\lambda^0_{\alpha\beta}[F]_G = \lambda^0_{\alpha\beta}[F_1]_G$.

Proof. As in the proof of Theorem 1, for every $\rho > \rho^0$ and all $\sigma \in [\sigma_0(\rho), 0)$ we obtain (6). Therefore, by Lemma 2 for all σ sufficiently close to 0 we get

$$M_F(\sigma) \le CM_G^m \left(\alpha^{-1} \left(\varrho \beta \left(\frac{m}{(1-\varepsilon)|\sigma|} \right) \right) \right) M_G \left(\alpha^{-1} \left(\delta \beta \left(\frac{1}{|\sigma|} \right) \right) \right)$$

Due to the arbitrariness of δ , we can assume that $\delta < \rho$. Hence, we obtain the following analogue of inequality (7)

$$M_F(\sigma) \le CM_G^{m+1}\left(\alpha^{-1}\left(\varrho\beta\left(\frac{m}{(1-\varepsilon)|\sigma|}\right)\right)\right).$$

The further proof of the first part of Theorem 2 is the same as the proof of the first part of Theorem 1. The second part of Theorem 2 is proven in a similar way to the second part of Theorem 1. \Box

Note also that in view of Theorem 1 we can obtain analogs of Corollary 1 and Proposition 1.

3. Relative convergence classes. For $F \in S(\Lambda, 0)$ and functions $\alpha \in L, \beta \in L$ the generalized convergence $\alpha\beta$ -class is defined [11] (see also [12, p.30]) by the condition

$$\int_{\sigma_0}^0 \frac{\alpha(\ln M_F(\sigma))}{|\sigma|^2 \beta(1/|\sigma|)} d\sigma < +\infty.$$

By analogy, we define a relative generalized convergence $\alpha\beta$ -class $\mathfrak{C}_{\alpha\beta}$ by condition

$$\int_{\sigma_0}^0 \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{|\sigma|^2 \beta(1/|\sigma|)} d\sigma < +\infty.$$

Theorem 3. Let $F \in S(\Lambda, 0)$ be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, 0), \ \beta \in L^0, \ \alpha(M_G^{-1}(e^x)) \in L^0 \text{ and } (5) \text{ holds. If } F_j \in \mathfrak{C}_{\alpha\beta} \text{ for all } j \text{ then } F \in \mathfrak{C}_{\alpha\beta}.$

Proof. We will use such a property of class L^0 [13]: if $\gamma \in L^0$ then $\gamma(cx) = O(\gamma(x))$ for every $c \in (0, +\infty)$ as $x \to +\infty$.

Since
$$\mu_F(m\sigma) \leq \sum_{k_1+\dots+k_p=m} |c_{k_1\dots k_p}| M_{F_1}(\sigma)^{k_1} \cdot \dots \cdot M_{F_p}(\sigma)^{k_p}$$
, we have

$$\alpha(M_{G}^{-1}(\mu_{F}(m\sigma))) \leq \alpha \Big(M_{G}^{-1} \Big(\sum_{k_{1}+\dots+k_{p}=m} |c_{k_{1}\dots k_{p}}| M_{F_{1}}(\sigma)^{k_{1}} \cdot \dots \cdot M_{F_{p}}(\sigma)^{k_{p}} \Big) \Big) = \\ = \alpha \Big(M_{G}^{-1} \Big(\exp \Big\{ \ln \sum_{k_{1}+\dots+k_{p}=m} |c_{k_{1}\dots k_{p}}| M_{F_{1}}(\sigma)^{k_{1}} \cdot \dots \cdot M_{F_{p}}(\sigma)^{k_{p}} \Big\} \Big) \Big) \leq \\ \leq \alpha \Big(M_{G}^{-1} \Big(\exp \Big\{ \sum_{k_{1}+\dots+k_{p}=m} (k_{1} \ln M_{F_{1}}(\sigma) + \dots + k_{p} \ln M_{F_{p}}(\sigma)) + K_{1} \Big\} \Big) \Big),$$

where $K_1 = \ln p + \sum_{k_1 + \dots + k_p = m} \ln |c_{k_1 \dots k_p}|$. From hence by condition $\alpha(M_G^{-1}(e^x)) \in L^0$ we get

$$\begin{aligned} \alpha(M_{G}^{-1}(\mu_{F}(m\sigma))) &\leq K_{2}\alpha\Big(M_{G}^{-1}\Big(\exp\Big\{m\sum_{k_{1}+\dots+k_{p}=m}(\ln M_{F_{1}}(\sigma)+\dots+\ln M_{F_{p}}(\sigma))\Big\}\Big)\Big) &\leq \\ &\leq K_{2}\alpha\Big(M_{G}^{-1}\Big(\exp\Big\{m\sum_{k_{1}+\dots+k_{p}=m}p\cdot\max\{\ln M_{F_{j}}(\sigma):1\leq j\leq p\}\Big\}\Big)\Big) = \\ &= K_{2}\alpha\Big(M_{G}^{-1}\Big(\exp\Big\{mpK_{3}\max\{\ln M_{F_{j}}(\sigma):1\leq j\leq p\}\Big\}\Big)\Big) \leq \\ &\leq K_{4}\alpha\Big(M_{G}^{-1}\Big(\exp\Big\{\max\{\ln M_{F_{j}}(\sigma):1\leq j\leq p\}\Big\}\Big)\Big) = \\ &= K_{4}\max\{\alpha\Big(M_{G}^{-1}\Big(M_{F_{j}}(\sigma)\Big)\Big):1\leq j\leq p\}\leq K_{4}\sum_{j=1}^{p}\alpha\Big(M_{G}^{-1}\Big(M_{F_{j}}(\sigma)\Big)\Big),\end{aligned}$$

where K_j are some positive constants. Thus,

$$\int_{\sigma_0}^{0} \frac{\alpha(M_G^{-1}(\mu_F(m\sigma)))}{|\sigma|^2 \beta(1/|\sigma|)} d\sigma \le K_4 \sum_{j=1}^{p} \int_{\sigma_0}^{\infty} \frac{\alpha(M_G^{-1}(M_{F_j}(\sigma)))}{|\sigma|^2 \beta(1/|\sigma|)} d\sigma.$$

In view of the condition $\beta \in L^0$ from hence it follows that if $F_j \in \mathfrak{C}_{\alpha\beta}$ for all j then

$$\int_{\sigma_0}^{0} \frac{\alpha(M_G^{-1}(\mu_F(\sigma)))}{|\sigma|^2 \beta(1/|\sigma|)} d\sigma < +\infty.$$
(13)

Finally, by Lemma 1 in view of condition $\alpha(M_G^{-1}(e^x)) \in L^0$ and $\beta \in L^0$ we get

$$\int_{\sigma_0}^{0} \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{|\sigma|^2\beta(1/|\sigma|)} d\sigma) \leq \int_{\sigma_0}^{0} \frac{\alpha\left(M_G^{-1}\left(K(\varepsilon)\mu_F\left(\frac{1-\varepsilon}{1+h}\sigma\right)^{1+h+\varepsilon}\right)\right)}{|\sigma|^2\beta(1/|\sigma|)} d\sigma \leq K_5 \int_{\sigma_0}^{0} \frac{\alpha\left(M_G^{-1}\left(\mu_F\left(\frac{1-\varepsilon}{1+h}\sigma\right)\right)\right)}{|\sigma|^2\beta(1/|\sigma|)} d\sigma \leq K_6 \int_{\sigma_0}^{0} \frac{\alpha(M_G^{-1}(\mu_F(\sigma)))}{|\sigma|^2\beta(1/|\sigma|)} d\sigma < +\infty,$$

$$\Box$$

i.e. $F \in \mathfrak{C}_{\alpha\beta}$.

To study the growth of functions $F \in S(\Lambda, 0)$ of the generalized (α, β) -order $\varrho = \varrho_{\alpha\beta}^0[F]$ one can use the generalized convergence class defined in [5, 6] by the condition $\int_{\sigma_0}^0 \frac{\ln M(\sigma, F)}{|\sigma|^2 \alpha^{-1}(\varrho\beta(1/|\sigma|))} d\sigma < +\infty$. Therefore, in addition to class $\mathfrak{C}_{\alpha\beta}$, to study the growth of functions $F \in S(\Lambda, 0)$ one can use the relative generalized convergence class $\mathfrak{C}_{\alpha\beta,\varrho}$ defined by the condition

$$\int_{\sigma_0}^{0} \frac{M_G^{-1}(M_F(\sigma))}{|\sigma|^2 \alpha^{-1}(\varrho\beta(1/|\sigma|))} d\sigma < +\infty, \quad \varrho = \varrho_{\alpha\beta}^0[F]_G.$$
(14)

The analogue for $\mathfrak{C}_{\alpha\beta,\varrho}$ of Theorem 3 is the following statement.

Proposition 2. Let $F \in S(\Lambda, 0)$ with $\varrho^0_{\alpha\beta}[F]_G = \varrho \in (0, +\infty)$ be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, 0)$ with $\varrho^0_{\alpha\beta}[F_j]_G = \varrho$. Suppose that $M_G^{-1}(e^x) \in L^0$, $\alpha^{-1}(c\beta(x)) \in L^0$ for each $c \in (0, +\infty)$ and (5) holds. If $F_j \in \mathfrak{C}_{\alpha\beta,\varrho}$ for all j then $F \in \mathfrak{C}_{\alpha\beta,\varrho}$.

Proof. As in the proof of Theorem 3 now we obtain

$$\int_{\sigma_0}^0 \frac{M_G^{-1}(\mu_F(m\sigma))}{|\sigma|^2 \alpha^{-1}(\varrho\beta(1/|\sigma|))} d\sigma \le K_4 \sum_{j=1}^p \int_{\sigma_0}^\infty \frac{M_G^{-1}(M_{F_j}(\sigma))}{|\sigma|^2 \alpha^{-1}(\varrho\beta(1/|\sigma|))} d\sigma$$

whence in view of the condition $\alpha^{-1}(c\beta(x)) \in L^0$ for each $c \in (0, +\infty)$ instead of (13) we have

$$\int_{\sigma_0}^0 \frac{M_G^{-1}(\mu_F(\sigma))}{|\sigma|^2 \alpha^{-1}(\varrho\beta(1/|\sigma|))} d\sigma < +\infty.$$
(15)

Finally, by Lemma 1 in view of condition $M_G^{-1}(e^x) \in L^0$ and $\alpha^{-1}(\rho\beta(x)) \in L^0$ as in the proof of Theorem 3 we get

$$\int_{\sigma_0}^0 \frac{M_G^{-1}(M_F(\sigma))}{|\sigma|^2 \alpha^{-1}(\varrho\beta(1/|\sigma|))} d\sigma) \le K_6 \int_{\sigma_0}^0 \frac{M_G^{-1}(\mu_F(\sigma))}{|\sigma|^2 \alpha^{-1}(\varrho\beta(1/|\sigma|))} d\sigma < +\infty,$$

i. e. $F \in \mathfrak{C}_{\alpha\beta,\varrho}$.

In the proof of Theorem 3 and Proposition 2, condition (5) on the coefficients was significantly used. To replace it with a condition on exponents, we need the following addition to Lemma 2.

Lemma 3. If
$$F \in S(\Lambda, 0), G \in S(\Lambda, +\infty), \alpha \in L_{si}, \beta \in L_{si}$$
 and for some $\eta > 0$

$$\alpha \left((M_G^{-1}(n))^{1+\eta} \right) = o\left(\beta \left(\lambda_n / \ln n\right)\right), \quad n \to \infty,$$
(16)

then for every $\varepsilon \in (0,1)$, $\delta > 0$ and all $\sigma_0(\varepsilon, \delta) \le \sigma < 0$

$$M_F(\sigma) \le \mu_F((1-\varepsilon)\sigma)M_G\Big((\alpha^{-1}(\delta\beta(1/|\sigma|)))^{1/(1+\eta)}\Big)$$
(17)

Proof. As in the proof of Lemma 2, from (16) we get instead (11)

$$\lambda_n / \ln n \ge \frac{2}{\varepsilon} \beta^{-1} \left(\alpha (M_G^{-1}(n)^{1+\eta}) / \delta \right).$$

Now we put $N(\sigma) = [M_G((\alpha^{-1}(\delta\beta(1/|\sigma|)))^{1/(1+\eta)})] + 1$. Then, as above, $|\sigma| > 1/\beta^{-1} \Big(\alpha((M^{-1}(N(\sigma))^{1+\eta})/\delta) > 1/\beta^{-1} \Big(\alpha(M^{-1}(n)^{1+\eta}/\delta) \Big) \Big)$

$$|\sigma| \ge 1/\beta^{-1} \left(\alpha \left((M_G^{-1}(N(\sigma))^{1+\eta})/\delta \right) \ge 1/\beta^{-1} \left(\alpha (M_G^{-1}(n)^{1+\eta}/\delta) \right)$$

and therefore $\sum_{n=0}^{\infty} \exp\left\{ -c |\sigma| \right\} \ge \sum_{n=0}^{\infty} \exp\left\{ -2\ln n \right\}$

for $n \ge N(\sigma)$ and, therefore, $\sum_{n=N(\sigma)}^{\infty} \exp\{-\varepsilon |\sigma| \lambda_n\} \le \sum_{n=N(\sigma)}^{\infty} \exp\{-2 \ln n\}$, whence $\sum_{n=1}^{\infty} e^{-\varepsilon |\sigma| \lambda_n} \le N(\sigma) - 1 + \sum_{n=N(\sigma)}^{\infty} e^{-\varepsilon |\sigma| \lambda_n} \le M_G(\alpha^{-1}(\delta\beta(1/|\sigma|))),$ i.e. (10) implies (17)

i.e. (10) implies (17).

Theorem 4. Let $F \in S(\Lambda, 0)$ with $\varrho_{\alpha\beta}^0[F]_G = \varrho \in (0, +\infty)$ be the Hadamard composition of genus $m \geq 1$ of the functions $F_j \in S(\Lambda, 0)$ with $\varrho_{\alpha\beta}^0[F_j]_G = \varrho$, $M_G^{-1}(e^x) \in L^0$ and $\alpha^{-1}(c\beta(x)) \in L^0$ for each $c \in (0, +\infty)$. Suppose that for some $\eta > 0$ condition (16) holds and $\int_{x_0}^{\infty} \frac{dx}{(\alpha^{-1}(\varrho\beta(x)))^{\eta/(1+\eta)}} < +\infty$. If $F_j \in \mathfrak{C}_{\alpha\beta,\varrho}$ for all j then $F \in \mathfrak{C}_{\alpha\beta,\varrho}$. *Proof.* Since $\alpha^{-1}(\varrho\beta(x)) \in L^0$ and $F_j \in \mathfrak{C}_{\alpha\beta,\varrho}$ for all j then as in the proof of Theorem 3 we get (15). On the other hand, since $M_G^{-1}(e^x) \in L^0$, by Lemma 3 as above for $\delta < \varrho$ we get

$$M_{G}^{-1}(M_{F}(\sigma)) \leq M_{G}^{-1}(\exp\{\ln \mu_{F}((1-\varepsilon)\sigma) + \ln M_{G}\left((\alpha^{-1}(\delta\beta(1/|\sigma)))^{1/(1+\eta)}\right)\}) \leq \\ \leq K \max\{M_{G}^{-1}(\mu_{F}((1-\varepsilon)\sigma)), (\alpha^{-1}(\delta\beta(1/|\sigma)))^{1/(1+\eta)}\} \leq \\ \leq K(M_{G}^{-1}(\mu_{F}((1-\varepsilon)\sigma)) + (\alpha^{-1}(\varrho\beta(1/|\sigma)))^{1/(1+\eta)}), \quad K = \text{const} > 0.$$
(18)

The condition $\int_{x_0}^{\infty} \frac{dx}{(\alpha^{-1}(\varrho\beta(x))^{\eta/(1+\eta)}} < +\infty$ implies

$$\int_{\sigma_0}^{0} \frac{(\alpha^{-1}(\varrho\beta(1/|\sigma|)))^{1/(1+\eta)})}{|\sigma|^2 \alpha^{-1}(\varrho\beta(1/|\sigma|))} d\sigma < +\infty.$$

$$\tag{19}$$

Since $\alpha^{-1}(\varrho\beta(x)) \in L^0$, from (18), (15) and (19) we obtain (14).

Finally, consider the belonging of functions to the class $\mathfrak{C}_{\alpha\beta}$ if we impose a condition on the sequence Λ . To do this we need a slightly different version of Lemma 3.

Lemma 4. If $F \in S(\Lambda, 0)$, $G \in S(\Lambda, +\infty)$, $\alpha \in L_{si}$, $\beta \in L_{si}$ and for some $\eta > 0$

$$\alpha^{1+\eta} \left(M_G^{-1}(n) \right) = o\left(\beta \left(\lambda_n / \ln n \right) \right), \quad n \to \infty,$$
(20)

then for every $\varepsilon \in (0,1)$, $\delta > 0$ and all $\sigma_0(\varepsilon, \delta) \le \sigma < 0$

$$M_F(\sigma) \le \mu_F((1-\varepsilon)\sigma)M_G(\alpha^{-1}(\delta\beta^{1/(1+\eta)}(1/|\sigma|))).$$
(21)

Proof. Indeed, as in the proofs of Lemma 2 and 3, from (20) we obtain

 $\lambda_n/\ln n \ge \frac{2}{\varepsilon} \beta^{-1} \left(\alpha^{1+\eta} (M_G^{-1}(n)) / \delta \right).$ Putting $N(\sigma) = [M_G(\alpha^{-1}((\delta\beta(1/|\sigma|))^{1/(1+\eta)}))] + 1$, as above, we get $|\sigma| \ge 1/\beta^{-1} \left(\alpha^{1+\eta} (M_G^{-1}(N(\sigma))) / \delta \right) \ge 1/\beta^{-1} \left(\alpha^{1+\eta} (M_G^{-1}(n)) / \delta \right) \quad \text{for } n \ge N(\sigma)$ and, therefore, $\sum_{n=N(\sigma)}^{\infty} \exp\{-\varepsilon |\sigma| \lambda_n\} \le \sum_{n=N(\sigma)}^{\infty} \exp\{-2\ln n\}$, whence

$$\sum_{n=1}^{\infty} \exp\{-\varepsilon |\sigma|\lambda_n\} \le M_G \left(\alpha^{-1} \left(\left(\delta\beta(1/|\sigma|)\right)^{1/(1+\eta)} \right) \right),$$
1).

i.e. (10) implies (21).

Using Lemma 4 and repeating the proof of Theorem 4, we get the following statement.

Proposition 3. Let $F \in S(\Lambda, 0)$ be the Hadamard composition of genus $m \ge 1$ of the functions $F_j \in S(\Lambda, 0)$, $\alpha(M_G^{-1}(e^x)) \in L^0$ and $\beta \in L^0$. Suppose that for some $\eta > 0$ condition (20) holds and $\int_{x_0}^{\infty} \beta^{-\eta/(1+\eta)}(x) dx < +\infty$. If $F_j \in \mathfrak{C}_{\alpha\beta}$ for all j then $F \in \mathfrak{C}_{\alpha\beta}$.

4. Open problem. In view of recent articles [14–17] about Dirichlet series with complex exponents it is naturally to extend the results of this paper to the case of an arbitrary sequence of complex exponents.

REFERENCES

- O.M. Mulyava, M.M. Sheremeta, *Relative growth of Dirichlet series*, Mat. Stud., 49 (2018), №2, 158–164. https://doi.org/10.15330/ms.49.2.158-164
- O.M. Mulyava, M.M. Sheremeta, Remarks to relative growth of entire Dirichlet series, Visnyk Lviv Univ. Ser. mech.-math., 87 (2019), 73–81. http://dx.doi.org/10.30970/vmm.2019.87.073-081
- 3. O.M. Mulyava, M.M. Sheremeta, Relative growth of Dirichlet series with different abscissas of absolute convergence, Ukr. Math. J., **72** (2020), №11, 1771–1183. https://doi.org/10.1007/s11253-021-01887-1
- O.M. Mulyava, M.M. Sheremeta, Relative growth of entire Dirichlet series with different generalized orders, Bukovyn. Mat. Zh., 9 (2021), №2, 22–34. https://doi.org/10.31861/bmj2021.02.02
- O.M. Mulyava, M.M. Sheremeta, Compositions of Dirichlet series similar to the Hadamard compositions, and convergence classes, Mat. Stud., 51 (2019), №1, 25–34. https://doi.org/10.15330/ms.51.1.25-34.
- A.I. Bandura, O.M. Mulyava, M.M. Sheremeta, On Dirichlet series similar to Hadamard compositions in half-plane, Carpatian Math. Publ., 15 (2023), №1, 180–195. https://doi.org/10.15330/cmp.15.1.180-195.
- O.M. Mulyava, M.M. Sheremeta, Yu.S. Trukhan, Relative growth of Hadamard compositions of entire Dirichlet series, Visnyk of Lviv Univ. Series Mech. Math. 95 (2023), 83–93. http://dx.doi.org/10.30970/vmm.2023.95.073-082
- Yu.M. Gal', M.M. Sheremeta, On the growth of analytic functions defined by Dirichlet series, Dop. AN URSR, Ser. A, 12 (1978), 1065–1067. (in Ukrainian)
- 9. Yu.M. Gal', On the growth of analytic fuctions given by Dirichlet series absolute convergent in a halfplane, Drohobych, 1980, Manuscript dep. VINITI, №4080-80 Dep. (in Russian)
- 10. A.M. Gaisin, Estimates for the growth of functions represented by Dirichlet series in the half-plane, Mat. Sbornik, **117** (1982), №3, 412–424. (in Russian)
- 11. O.M. Mulyava, On convergence classes of Dirichlet series, Ukr. Math. J., **51** (1999), №11, 1681–1692. https://doi.org/10.1007/BF02525271
- O. Mulyava, M. Sheremeta, Convergence classes of analytic functions, Kyiv, Publishing Lira-K, 2020, 196 p.
- 13. M.M. Sheremeta, On two classes of positive functions and the belonging to them of main characteristics of entire functions, Mat. Stud., **19** (2003), №1, 75–82. http://matstud.org.ua/texts/2003/19_1/73_82.pdf
- 14. I. Ovchar, Ya. Savchuk, O. Skaskiv, Wiman-Valiron's type theorem for entire Dirichlet series with arbitrary complex exponents, Bukovyn. Mat. Zh., 4 (2016), №1–2, 130–135. (in Ukrainian)
- 15. A. Kuryliak, Wiman's type inequality for entire multiple Dirichlet series with arbitrary complex exponents, Mat. Stud., **59** (2023), №2, 178–186. https://doi.org/10.30970/ms.59.2.178-186
- 16. M. Kuryliak, O. Skaskiv, On the domain of convergence of general Dirichlet series with complex exponents, Carpathian Math. Publ., 15 (2023), 594–607. https://doi.org/10.15330/cmp.15.2.594-607
- A. Kuryliak, M. Kuryliak, O. Skaskiv, On the domain of the convergence of Taylor-Direchlet series with complex exponents, Precarpathian bulletin of the Shevchenko scientific society. Number, 18(68) (2023), 25–31. https://doi.org/10.31471/2304-7399-2023-18(68)-25-31

¹Kyiv National University of Food Technologies Kyiv, Ukraine oksana.m@bigmir.net

^{2,3}Lviv Ivan Franko National University Lviv, Ukraine m.m.sheremeta@gmail.com yurkotrukhan@gmail.com

> Received 15.12.2023 Revised 25.01.2025