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Let Λ = (λn) be a positive sequence increasing to +∞ and S(Λ, A) be the class of Dirichlet

series F (s) =
∞∑

n=1
fn exp{sλn} with the abscissa of absolute convergence A ∈ (−∞, +∞]. A

function F is called the Hadamard composition of the genus m ≥ 1 of the functions Fj(s) =

=
∞∑

n=0
an,j exp{sλn} (j ∈ {1, 2, . . . , p}), if fn =

∑
k1+···+kp=m

ck1...kp
ak1
n,1 · . . . · a

kp
n,p for all n. The

growth of the function F ∈ S(Λ, 0) with respect to a function G(s) =
∞∑

n=1
gn exp{sλn} ∈

S(Λ,+∞) is identified with the growth of the function M−1
G (MF (σ)) as σ ↑ 0, where MF (σ) =

= sup{|F (σ + it)| : t ∈ R}. The dependence of the growth of a function M−1
G (MF (σ)) on the

growth of functions M−1
G (MFj

(σ)) is studied in terms of generalized orders and generalized
convergence classes. In particular, there are proved the following statements:
Let F ∈ S(Λ, 0) be the Hadamard composition of genus m ≥ 1 of the functions Fj ∈ S(Λ, 0);
the positive increasing function α such that α((1+o(1))x) = (1+o(1))α(x) as x → +∞, β and
α(M−1

G (ex)) are slowly increasing functions, i.e. α(cx) = (1 + o(1))α(x) as x → +∞ for each
c ∈ (0, +∞). If lim

n→∞
ln n/ln |fn| < +∞, then ϱ0αβ [F ]G ≤ ϱ0 := max{ϱ0αβ [Fj ]G : 1 ≤ j ≤ p}.

If there is a dominating function F1 among the functions Fj then ϱ0α,β [F ]G = ϱ0α,β [F1]G and
λ0
α,β [F ]G = λ0

α,β [F1]G. (Theorem 1)

1. Introduction. Let Λ = (λn) be an increasing to +∞ sequence of non-negative numbers
and by S(Λ, A) we denote a class of Dirichlet series

F (s) =
∞∑
n=1

fne
sλn , s = σ + it, (1)

with the abscissa of absolute convergence A ∈ (−∞, +∞]. We will assume that entire
Dirichlet series (1) does not reduce to an exponential polynomial.

For σ < A we put MF (σ) = sup{|F (σ+ it)| : t ∈ R} and remark that for F ∈ S(Λ,+∞)
the function MF (σ) is continuous and increasing to +∞ on (−∞, +∞) and, therefore, there
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exists the function M−1
F (x) inverse to MF (σ), which increase to +∞ on (x0, +∞). The

growth of the function F ∈ S(Λ,+∞) with respect to a function G ∈ S(Λ,+∞),

G(s) =
∞∑
n=1

gne
sλn ,

is identified [1–4] with the growth of the function M−1
G (MF (σ)) as σ → +∞.

Suppose that Fj ∈ S(Λ, A),

Fj(s) =
∞∑
n=1

fn,je
sλn , j ∈ {1, 2, . . . , p},

and say [5, 6] that the function F is the Hadamard composition of genus m ≥ 1 of the
functions Fj if for all n

fn =
∑

k1+···+kp=m

ck1...kpf
k1
n,1 · ... · fkp

n,p. (2)

The function F1 is called dominant, if |cm0...0||fn,1|m ̸= 0 and |fn,j| = o(|fn,1|) as n → ∞ for
2 ≤ j ≤ p. In [7] it is shown that if function F1 is dominant then

fn = (1 + o(1))|cm0...0||fn,1|m, n → ∞. (3)

To study the growth of function F ∈ S(Λ,+∞) with respect to function G ∈ S(Λ,+∞)
in [7], the concepts of generalized (αβ)-order and generalized convergence (αβ)-class are
used. For this purpose, L denotes the class of positive continuous functions α on (−∞, +∞)
such that α(x) = α(x0) for x ≤ x0 and 0 < α(x) ↑ +∞ as x0 ≤ x ↑ +∞. We say that α ∈ L0

if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L and
α(cx) = (1+o(1))α(x) as x → +∞ for each c ∈ (0, +∞), i.e. α is slowly increasing function.
Clearly, Lsi ⊂ L0.

In [7] the generalized (αβ)-order ϱαβ[F ]G and the generalized lower (αβ)-order λαβ[F ]G
of the function F ∈ S(Λ,+∞) with respect to the function G ∈ S(Λ,+∞) are defined as
follows

ϱαβ[F ]G = lim
σ→+∞

α(M−1
G (MF (σ)))

β(σ)
, λαβ[F ]G = lim

σ→+∞

α(M−1
G (MF (σ)))

β(σ)
,

and the following theorem is proved.

Theorem A. Let F be the Hadamard composition of genus m ≥ 1 of the functions
Fj ∈ S(Λ,+∞). If either m = 1, ln n = o(λn) as n → ∞, α ∈ L0 and β(ln x) ∈ L0

or m ≥ 2, ln n = O(λn) as n → ∞, β ∈ L and α(M−1
G (ex)) ∈ Lsi then ϱαβ[F ]G ≤

≤ max{ϱαβ[Fj]G : 1 ≤ j ≤ p}.

The relative generalized convergence αβ-class is defined [7] by condition

∞∫
σ0

α(M−1
G (MF (σ)))

β(σ)
dσ < +∞.

Then the following theorem is true.
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Theorem B. Let F be the Hadamard composition of genus m ≥ 1 of the functions
Fj ∈ S(Λ,+∞), ln n = O(λn) as n → ∞, β ∈ L0 and α(M−1

G (ex)) ∈ L0. If Fj belongs
to relative generalized convergence αβ-class for all j then F belongs to the same class.

In the note proposed here we will obtain analogues of Theorems A and B in the case
G ∈ S(Λ,+∞) and F ∈ S(Λ, 0).

2. Growth estimates. If α ∈ L, β ∈ L and F ∈ S(Λ, 0) then the quantities

ϱ0αβ[F ] = lim
σ↑0

α(ln MF (σ))

β(1/|σ|)
and λ0

αβ[F ] = lim
σ↑0

α(ln MF (σ))

β(1/|σ|)
are called [8] the generalized (αβ)-order and the generalized lower (αβ)-order of F , respecti-
vely. Similarly, the generalized (αβ)-order ϱ0αβ[F ]G and the generalized lower (αβ)-order
λ0
αβ[F ]G of the function F ∈ S(Λ, 0) with respect to a function G ∈ S(Λ,+∞) we define as

follows

ϱ0αβ[F ]G = lim
σ↑0

α(M−1
G (MF (σ)))

β(1/|σ|)
, λ0

αβ[F ]G = lim
σ↑0

α(M−1
G (MF (σ)))

β(1/|σ|)
. (4)

For F ∈ S(Λ, 0) let µF (σ) = max{|fn| exp{σλn} : n ≥ 0} be the maximal term of
series (1). We remark that µF (σ) ↑ +∞ as σ ↑ 0 if and only if lim

n→∞
|fn| = +∞. So, we will

assume that this condition is satisfied. By the Cauchy inequality µF (σ) ≤ MF (σ), and the
following lemma contains the estimate of MF (σ) from above.

Lemma 1 ([9]). If F ∈ S(Λ, 0) and

h := lim
n→∞

ln n

ln |fn|
< +∞, (5)

then for every ε > 0 and all σ0(ε) ≤ σ < 0

MF (σ) ≤ K(ε)µF

(1− ε

1 + h
σ
)1+h+ε

, K(ε) = const > 0.

Remark that if G ∈ S(Λ,+∞) then the function ln MG(σ) is convex on (−∞,+∞)

and, thus, it has a continuous non-decreasing derivative d ln MG(σ)
dσ

on (−∞,+∞) except
of a countable number of points at which one-sided derivatives exist, and the left-sided
derivative does not exceed the right-sided one. Since ln MG(σ)

σ
→ +∞ as σ → +∞, we

have d ln MG(σ)
dσ

↗ +∞ as σ → +∞, i. e. dM−1
G (x)

d ln x
↘ 0 as x → +∞. Hence, it follows that

M−1
G ∈ Lsi.
Now we prove the following theorem.

Theorem 1. Let F ∈ S(Λ, 0) be the Hadamard composition of genus m ≥ 1 of the functions
Fj ∈ S(Λ, 0), α ∈ L0, β ∈ Lsi, α(M−1

G (ex)) ∈ Lsi and (5) holds. Then

ϱ0αβ[F ]G ≤ ϱ0 := max{ϱ0αβ[Fj]G : 1 ≤ j ≤ p}.

If among the functions Fj there is a dominant function F1 then ϱ0α,β[F ]G = ϱ0α,β[F1]G and
λ0
α,β[F ]G = λ0

α,β[F1]G .
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Proof. From (2) we obtain
|fn| ≤

∑
k1+···+kp=m

|ck1...kp||fn,1|k1 · ... · |fn,p|kp ,

whence
|fn|emσλn ≤

∑
k1+···+kp=m

|ck1...kp |(|fn,1|eσλn)k1 · ... · (|fn,p|eσλn)kp

and, thus,
µF (mσ) ≤

∑
k1+···+kp=m

|ck1...kp|µF1(σ)
k1 · ... · µFp(σ)

kp .

Let ϱ0 < +∞. Since ϱ0αβ[Fj]G ≤ ϱ0, for every ϱ > ϱ0 and all σ ∈ [σ0(ϱ), 0) we have
MFj

(σ) ≤ MG(α
−1(ϱβ(1/|σ|))) and, thus,

µF (mσ) ≤
∑

k1+···+kp=m

|ck1...kp |MF1(σ)
k1 · ... ·MFp(σ)

kp ≤ CMm
G (α−1(ϱβ(1/|σ|))),

where C =
∑

k1+···+kp=m

|ck1...kp |, i.e.

µF (σ) ≤ CMm
G (α−1(ϱβ(m/|σ|))). (6)

Therefore, by Lemma 1 for all σ ∈ [σ0(ϱ), 0) we get

MF (σ) ≤ CK(ε)M
m(1+h+ε)
G

(
α−1

(
ϱβ

(m(1 + h)

(1− ε)|σ|

)))
. (7)

The condition α(M−1
G (ex)) ∈ Lsi implies α(M−1

G (xm(1+h+ε))) = (1 + o(1))α(M−1
G (x)) as

x → +∞ and since M−1
G ∈ Lsi, α ∈ L0 and β ∈ Lsi, from (7) we get

ϱ0αβ[F ]G ≤ lim
σ↑0

α
(
M−1

G

(
CK(ε)M

m(1+h+ε)
G

(
α−1

(
ϱβ

(m(1 + h)

(1− ε)|σ|

)))))
β(1/|σ|)

= ϱ.

In view of the arbitrariness of ϱ we obtain the inequality ϱ0αβ[F ]G ≤ ϱ0, which is obvious if
ϱ0 = +∞. The first part of Theorem 1 is proved.

If function F1 is dominant then (3) implies µF (σ) = (1+o(1))|cm0...0|µF1(σ/m)m as σ ↑ 0.
Therefore, c1µF1(σ/m)m ≤ µF (σ) ≤ c2µF1(σ/m)m for some 0 < c1 < c2 < ∞, whence by
Lemma 1

MF (σ) ≤ K(ε)µF

(1− ε

1 + h
σ
)1+h+ε

≤ c2K(ε)MF1

( 1− ε

m(1 + h)
σ
)m(1+h+ε)

and
MF (σ) ≥ µF (σ) ≥ c1µF1(σ/m)m ≥ c1

K(ε)m
M

m/(1+h+ε)
F1

( 1 + h

m(1− ε)
σ
)
.

Using the conditions α ∈ L0, β ∈ Lsi and α(M−1
G (ex)) ∈ Lsi as above we obtain the equalities

ϱ0αβ[F ]G = ϱ0αβ[F1]G and λ0
αβ[F ]G = λ0

αβ[F1]G.

Choosing α(x) = β(x) = ln x for x ≥ x0 from (4) we obtain the definition of the relative
logarithmic order ϱ0l [F ]G and the relative lower logarithmic order λ0

l [F ]G. Theorem 1 implies
the following statement.

Corollary 1. Let F ∈ S(Λ, 0) be the Hadamard composition of genus m ≥ 1 of the functions
Fj ∈ S(Λ, 0), ln M−1

G (ex) ∈ Lsi and (5) holds. Then ϱ0l [F ]G ≤ max{ϱ0l [Fj]G : 1 ≤ j ≤ p}.
If among the functions Fj there is a dominant function F1 then ϱ0l [F ]G = ϱ0l [F1]G and
λ0
l [F ]G = λ0

l [F1]G.
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If we choose α(x) = ln x and β(x) = x for x ≥ 3 then from (4) we obtain the definitions of
the relative R-order ϱ0R[F ]G = lim

σ↑0
|σ| ln M−1

G (MF (σ)), introduced by A.M. Gaisin [10]. Since

here β ̸∈ Lsi, the corresponding corollary cannot be obtained from Theorem 1. However,
from (9) it follows that

MF (σ) ≤ CK(ε)M
m(1+h+ε)
G

(
exp

{
ϱ
m(1 + h)

(1− ε)|σ|

})
.

Therefore, if ln M−1
G (ex) ∈ Lsi then as in the proof of Theorem 1 we get

ϱ0R[F ]G ≤ lim
σ↑0

|σ| ln M−1
G

(
CK(ε)M

m(1+h+ε)
G

(
exp

{
ϱ
m(1 + h)

(1− ε)|σ|

}))
=

m(1 + h)

(1− ε)
ϱ.

In view of the arbitrariness of ε and ϱ, we get the following statement.

Proposition 1. Let F ∈ S(Λ, 0) be the Hadamard composition of genus m ≥ 1 of the
functions Fj ∈ S(Λ, 0), ln M−1

G (ex) ∈ Lsi and (5) holds. Then
ϱ0R[F ]G ≤ m(1 + h)max{ϱ0R[Fj]G : 1 ≤ j ≤ p}.

To replace condition (5) by a condition on the growth of the sequence Λ, we need the
following lemma.

Lemma 2. If F ∈ S(Λ, 0), G ∈ S(Λ,+∞), α ∈ Lsi, β ∈ Lsi and

α(M−1
G (n)) = o

(
β
(
λn/ln n

))
, n → ∞, (8)

then for every ε ∈ (0, 1), δ > 0 and all σ0(ε, δ) ≤ σ < 0

MF (σ) ≤ µF ((1− ε)σ)MG(α
−1(δβ(1/|σ|))). (9)

Proof. It is clear that

MF (σ) ≤
∞∑
n=1

|fn|eσλn =
∞∑
n=1

|fn|e(1−ε)σλneεσλn ≤ µF ((1− ε)σ)
∞∑
n=1

e−ε|σ|λn . (10)

From (8) it follows that α(M−1
G (n)) ≤ δ1β(λn/ln n) for every δ1 > 0 and all n ≥ n0(δ1) and,

since β ∈ Lsi, α(M−1
G (n)) ≤ δβ(ελn/(2 ln n)) for every ε > 0, δ > 0 and all n ≥ n0(ε, δ).

Hence, we get

λn/ln n ≥ 2

ε
β−1

(
α(M−1

G (n))/δ
)
. (11)

Put N(σ) = [MG(α
−1(δβ(1/|σ|)))] + 1. Then N(σ) ≥ n0(ε, δ) for all σ sufficiently close to 0

and
|σ| ≥ 1

/
β−1

(
α(M−1

G (N(σ)))/δ
)
≥ 1

/
β−1

(
α(M−1

G (n))/δ
)

for n ≥ N(σ). Therefore, in view of (11)
∞∑

n=N(σ)

e−ε|σ|λn ≤
∞∑

n=N(σ)

exp
{
− ελn

β−1
(
α(M−1

G (n))/δ
)} ≤

∞∑
n=N(σ)

1

n2

and, thus,
∞∑
n=1

e−ε|σ|λn ≤ N(σ)− 1 +
∞∑

n=N(σ)

e−ε|σ|λn ≤ MG(α
−1(δβ(1/|σ|))) (12)

for all σ sufficiently close to 0. From (10) and (12) we obtain (9).
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Using Lemma 2 we prove the following theorem.

Theorem 2. Let F ∈ S(Λ, 0) be the Hadamard composition of genus m ≥ 1 of the functions
Fj ∈ S(Λ, 0), α ∈ Lsi, β ∈ Lsi, α(M−1

G (ex)) ∈ Lsi and (8) holds. Then ϱ0αβ[F ]G ≤ ϱ0 =
= max{ϱ0αβ[Fj]G : 1 ≤ j ≤ p}.

If among the functions Fj there is a dominant function F1 then ϱ0αβ[F ]G = ϱ0αβ[F1]G and
λ0
αβ[F ]G = λ0

αβ[F1]G .

Proof. As in the proof of Theorem 1, for every ϱ > ϱ0 and all σ ∈ [σ0(ϱ), 0) we obtain (6).
Therefore, by Lemma 2 for all σ sufficiently close to 0 we get

MF (σ) ≤ CMm
G

(
α−1

(
ϱβ

( m

(1− ε)|σ|

)))
MG

(
α−1

(
δβ

( 1

|σ|

)))
.

Due to the arbitrariness of δ, we can assume that δ < ϱ. Hence, we obtain the following
analogue of inequality (7)

MF (σ) ≤ CMm+1
G

(
α−1

(
ϱβ

( m

(1− ε)|σ|

)))
.

The further proof of the first part of Theorem 2 is the same as the proof of the first part of
Theorem 1. The second part of Theorem 2 is proven in a similar way to the second part of
Theorem 1.

Note also that in view of Theorem 1 we can obtain analogs of Corollary 1 and Pro-
position 1.

3. Relative convergence classes. For F ∈ S(Λ, 0) and functions α ∈ L, β ∈ L the
generalized convergence αβ-class is defined [11] (see also [12, p.30]) by the condition

0∫
σ0

α(ln MF (σ))

|σ|2β(1/|σ|)
dσ < +∞.

By analogy, we define a relative generalized convergence αβ-class Cαβ by condition

0∫
σ0

α(M−1
G (MF (σ)))

|σ|2β(1/|σ|)
dσ < +∞.

Theorem 3. Let F ∈ S(Λ, 0) be the Hadamard composition of genus m ≥ 1 of the functions
Fj ∈ S(Λ, 0), β ∈ L0, α(M−1

G (ex)) ∈ L0 and (5) holds. If Fj ∈ Cαβ for all j then F ∈ Cαβ.

Proof. We will use such a property of class L0 [13]: if γ ∈ L0 then γ(cx) = O(γ(x)) for
every c ∈ (0,+∞) as x → +∞.

Since µF (mσ) ≤
∑

k1+···+kp=m

|ck1...kp |MF1(σ)
k1 · ... ·MFp(σ)

kp , we have

α(M−1
G (µF (mσ))) ≤ α

(
M−1

G

( ∑
k1+···+kp=m

|ck1...kp |MF1(σ)
k1 · ... ·MFp(σ)

kp
))

=

= α
(
M−1

G

(
exp

{
ln

∑
k1+···+kp=m

|ck1...kp |MF1(σ)
k1 · ... ·MFp(σ)

kp
}))

≤

≤ α
(
M−1

G

(
exp

{ ∑
k1+···+kp=m

(k1 ln MF1(σ) + · · ·+ kp ln MFp(σ)) +K1

}))
,
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where K1 = ln p+
∑

k1+···+kp=m

ln |ck1...kp |. From hence by condition α(M−1
G (ex)) ∈ L0 we get

α(M−1
G (µF (mσ))) ≤ K2α

(
M−1

G

(
exp

{
m

∑
k1+···+kp=m

(ln MF1(σ) + ·+ ln MFp(σ))
}))

≤

≤ K2α
(
M−1

G

(
exp

{
m

∑
k1+···+kp=m

p ·max{ln MFj
(σ) : 1 ≤ j ≤ p}

}))
=

= K2α
(
M−1

G

(
exp

{
mpK3max{ln MFj

(σ) : 1 ≤ j ≤ p}
}))

≤

≤ K4α
(
M−1

G

(
exp

{
max{ln MFj

(σ) : 1 ≤ j ≤ p}
}))

=

= K4max{α
(
M−1

G

(
MFj

(σ)
))

: 1 ≤ j ≤ p} ≤ K4

p∑
j=1

α
(
M−1

G

(
MFj

(σ)
))

,

where Kj are some positive constants. Thus,

0∫
σ0

α(M−1
G (µF (mσ)))

|σ|2β(1/|σ|)
dσ ≤ K4

p∑
j=1

∞∫
σ0

α(M−1
G (MFj

(σ)))

|σ|2β(1/|σ|)
dσ.

In view of the condition β ∈ L0 from hence it follows that if Fj ∈ Cαβ for all j then

0∫
σ0

α(M−1
G (µF (σ)))

|σ|2β(1/|σ|)
dσ < +∞. (13)

Finally, by Lemma 1 in view of condition α(M−1
G (ex)) ∈ L0 and β ∈ L0 we get

0∫
σ0

α(M−1
G (MF (σ))

|σ|2β(1/|σ|)
dσ) ≤

0∫
σ0

α
(
M−1

G

(
K(ε)µF

(
1−ε
1+h

σ
)1+h+ε))

|σ|2β(1/|σ|)
dσ ≤

≤ K5

0∫
σ0

α
(
M−1

G

(
µF

(
1−ε
1+h

σ
)))

|σ|2β(1/|σ|)
dσ ≤ K6

0∫
σ0

α(M−1
G (µF (σ)))

|σ|2β(1/|σ|)
dσ < +∞,

i.e. F ∈ Cαβ.

To study the growth of functions F ∈ S(Λ, 0) of the generalized (α, β)-order ϱ =
= ϱ0αβ[F ] one can use the generalized convergence class defined in [5, 6] by the condition∫ 0

σ0

ln M(σ,F )
|σ|2α−1(ϱβ(1/|σ|))dσ < +∞. Therefore, in addition to class Cαβ, to study the growth of

functions F ∈ S(Λ, 0) one can use the relative generalized convergence class Cαβ,ϱ defined by
the condition

0∫
σ0

M−1
G (MF (σ))

|σ|2α−1(ϱβ(1/|σ|))
dσ < +∞, ϱ = ϱ0αβ[F ]G. (14)

The analogue for Cαβ,ϱ of Theorem 3 is the following statement.
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Proposition 2. Let F ∈ S(Λ, 0) with ϱ0αβ[F ]G = ϱ ∈ (0,+∞) be the Hadamard composition
of genus m ≥ 1 of the functions Fj ∈ S(Λ, 0) with ϱ0αβ[Fj]G = ϱ. Suppose that M−1

G (ex) ∈ L0,
α−1(cβ(x)) ∈ L0 for each c ∈ (0,+∞) and (5) holds. If Fj ∈ Cαβ,ϱ for all j then F ∈ Cαβ,ϱ.

Proof. As in the proof of Theorem 3 now we obtain
0∫

σ0

M−1
G (µF (mσ))

|σ|2α−1(ϱβ(1/|σ|))
dσ ≤ K4

p∑
j=1

∞∫
σ0

M−1
G (MFj

(σ))

|σ|2α−1(ϱβ(1/|σ|))
dσ,

whence in view of the condition α−1(cβ(x)) ∈ L0 for each c ∈ (0,+∞) instead of (13) we
have

0∫
σ0

M−1
G (µF (σ))

|σ|2α−1(ϱβ(1/|σ|))
dσ < +∞. (15)

Finally, by Lemma 1 in view of condition M−1
G (ex) ∈ L0 and α−1(ϱβ(x)) ∈ L0 as in the proof

of Theorem 3 we get
0∫

σ0

M−1
G (MF (σ))

|σ|2α−1(ϱβ(1/|σ|))
dσ) ≤ K6

0∫
σ0

M−1
G (µF (σ))

|σ|2α−1(ϱβ(1/|σ|))
dσ < +∞,

i. e. F ∈ Cαβ,ϱ.

In the proof of Theorem 3 and Proposition 2, condition (5) on the coefficients was signi-
ficantly used. To replace it with a condition on exponents, we need the following addition to
Lemma 2.

Lemma 3. If F ∈ S(Λ, 0), G ∈ S(Λ,+∞), α ∈ Lsi, β ∈ Lsi and for some η > 0

α
(
(M−1

G (n))1+η
)
= o

(
β
(
λn/ln n

))
, n → ∞, (16)

then for every ε ∈ (0, 1), δ > 0 and all σ0(ε, δ) ≤ σ < 0

MF (σ) ≤ µF ((1− ε)σ)MG

(
(α−1(δβ(1/|σ|)))1/(1+η)

)
(17)

Proof. As in the proof of Lemma 2, from (16) we get instead (11)

λn/ln n ≥ 2

ε
β−1

(
α(M−1

G (n)1+η)
/
δ
)
.

Now we put N(σ) = [MG

(
(α−1(δβ(1/|σ|)))1/(1+η)

)
] + 1. Then, as above,

|σ| ≥ 1/β−1
(
α
(
(M−1

G (N(σ))1+η
)/

δ
)
≥ 1/β−1

(
α(M−1

G (n)1+η
/
δ
)

for n ≥ N(σ) and, therefore,
∑∞

n=N(σ) exp{−ε|σ|λn} ≤
∑∞

n=N(σ) exp{−2 ln n}, whence
∞∑
n=1

e−ε|σ|λn ≤ N(σ)− 1 +
∞∑

n=N(σ)

e−ε|σ|λn ≤ MG(α
−1(δβ(1/|σ|))),

i.e. (10) implies (17).

Theorem 4. Let F ∈ S(Λ, 0) with ϱ0αβ[F ]G = ϱ ∈ (0,+∞) be the Hadamard composition
of genus m ≥ 1 of the functions Fj ∈ S(Λ, 0) with ϱ0αβ[Fj]G = ϱ, M−1

G (ex) ∈ L0 and
α−1(cβ(x)) ∈ L0 for each c ∈ (0,+∞). Suppose that for some η > 0 condition (16) holds
and

∫∞
x0

dx
(α−1(ϱβ(x)))η/(1+η) < +∞. If Fj ∈ Cαβ,ϱ for all j then F ∈ Cαβ,ϱ.
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Proof. Since α−1(ϱβ(x)) ∈ L0 and Fj ∈ Cαβ,ϱ for all j then as in the proof of Theorem 3 we
get (15). On the other hand, since M−1

G (ex) ∈ L0, by Lemma 3 as above for δ < ϱ we get

M−1
G (MF (σ)) ≤ M−1

G (exp{ln µF ((1− ε)σ) + ln MG

(
(α−1(δβ(1/|σ)))1/(1+η)

)
}) ≤

≤ Kmax{M−1
G (µF ((1− ε)σ)), (α−1(δβ(1/|σ)))1/(1+η)} ≤

≤ K(M−1
G (µF ((1− ε)σ)) + (α−1(ϱβ(1/|σ)))1/(1+η)), K = const > 0. (18)

The condition
∫∞
x0

dx
(α−1(ϱβ(x))η/(1+η) < +∞ implies

0∫
σ0

(α−1(ϱβ(1/|σ|)))1/(1+η))

|σ|2α−1(ϱβ(1/|σ|))
dσ < +∞. (19)

Since α−1(ϱβ(x)) ∈ L0, from (18), (15) and (19) we obtain (14).

Finally, consider the belonging of functions to the class Cαβ if we impose a condition on
the sequence Λ. To do this we need a slightly different version of Lemma 3.

Lemma 4. If F ∈ S(Λ, 0), G ∈ S(Λ,+∞), α ∈ Lsi, β ∈ Lsi and for some η > 0

α1+η
(
M−1

G (n)
)
= o

(
β
(
λn/ln n

))
, n → ∞, (20)

then for every ε ∈ (0, 1), δ > 0 and all σ0(ε, δ) ≤ σ < 0

MF (σ) ≤ µF ((1− ε)σ)MG

(
α−1

(
δβ1/(1+η)(1/|σ|)

))
. (21)

Proof. Indeed, as in the proofs of Lemma 2 and 3, from (20) we obtain

λn/ln n ≥ 2

ε
β−1

(
α1+η(M−1

G (n))/δ
)
.

Putting N(σ) = [MG(α
−1((δβ(1/|σ|))1/(1+η)))] + 1, as above, we get

|σ| ≥ 1
/
β−1

(
α1+η(M−1

G (N(σ)))/δ
)
≥ 1

/
β−1

(
α1+η(M−1

G (n))/δ
)

for n ≥ N(σ)

and, therefore,
∑∞

n=N(σ) exp{−ε|σ|λn} ≤
∑∞

n=N(σ) exp{−2 ln n}, whence
∞∑
n=1

exp{−ε|σ|λn} ≤ MG

(
α−1

(
(δβ(1/|σ|))1/(1+η)

))
,

i.e. (10) implies (21).

Using Lemma 4 and repeating the proof of Theorem 4, we get the following statement.

Proposition 3. Let F ∈ S(Λ, 0) be the Hadamard composition of genus m ≥ 1 of the
functions Fj ∈ S(Λ, 0), α(M−1

G (ex)) ∈ L0 and β ∈ L0. Suppose that for some η > 0 condition
(20) holds and

∫∞
x0

β−η/(1+η)(x)dx < +∞. If Fj ∈ Cαβ for all j then F ∈ Cαβ.

4. Open problem. In view of recent articles [14–17] about Dirichlet series with complex
exponents it is naturally to extend the results of this paper to the case of an arbitrary
sequence of complex exponents.
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