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A CERTAIN NORMED SPACE R"
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Stud. 62 (2024), 192-198.

Let n,m € Nyn,m > 2 and E a Banach space. An element (z1,...,z,) € E" is called
a norming point of T € L("E) if ||z1|| = -+ = ||zn]l = 1 and [T (21, ..., z,)| = ||T]], where
L("E) denotes the space of all continuous n-linear forms on E. For T € L("E), we define
Norm(T') as the set of all (z1,...,2,) € E™ which are the norming points of T.

Let R} = R" with a norm satisfying that {Wy,...,W,} forms a basis and the set of all

extreme points of B]th is {£Wq,...,£W, }.

In the paper we characterize Norm(T) for every T' € L(™R] ) as follows:

Let T = (T(W117 .. Wim))lgikgn, c E(mRﬁ'”) ||TH = 1, ST = (bil---im)léikém € L(mRﬂlH) such
1<k<m 1<k<m
that

bi1"'im = T(Wi17 A Wim) if |T( TR Wim> =1 and bi1"'im =1if |T( TR Wim) < 1,

and A is the Cartesian product of the set {1,...,n}, M is the set of indices (i1,...,i,) € A
such that |T(W;,,...W;, )| < 1. Then,

Norm(T') = m U{( Z 1)W,,..., Z s, Dy, Z Dy, Wi — s, Wi,

(214eesim)EM j=1 1<i<n 1<i<n 1<i<n
Z s(j+1)W e Z ng Wl) ( Z sgl)Wi,... Z s(m ) € Norm(ST)}
1<i<n 1<i<n 1<i<n 1<i<n

1. Introduction. In 1961 Bishop and Phelps [3] showed that the set of norm-attaining
functionals on a Banach space is dense in the dual space. Shortly after, attention was
paid to possible extensions of this result to more general settings, specially bounded li-
near operators between Banach spaces. Lindenstrauss [14] studied norm-attaining operators.
The problem of denseness of norm-attaining functions has moved to other types of mappi-
ngs like multilinear forms or polynomials. The first result about norm-attaining multilinear
forms appeared in a joint work of Aron, Finet and Werner [2|, where they showed that
the Radon-Nikodym Property is sufficient for the denseness of norm-attaining multilinear
forms. Choi and Kim [4] showed that the Radon-Nikodym Property is also sufficient for
the denseness of norm-attaining polynomials. Acosta [1| studied norm attaining multilinear
mappings. Jiménez-Sevilla and Payd |7] studied the denseness of norm-attaining multilinear
forms and polynomials on preduals of Lorentz sequence spaces. Paya and Saleh [15] presented
new sufficient conditions for the denseness of norm-attaining multilinear forms. Note that
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the norm denseness problem of the set of norm-attaining forms in the spaces of all conti-
nuous multilinear forms is closely related to sets with the Radon-Nikodym Property. It is
also linked to the broader topic of optimization on infinite dimensional normed spaces and
variational principles (see Stegall [16], Finet and Georgiev [6]).

Let n € N, n > 2 and E a Banach space. We write Sg for the unit sphere of E. We
denote by L("FE) the Banach space of all continuous n-linear forms on F endowed with the

norm ||T']| = sup,, ... 2 )espx--xsp |1 (@15, 20)|. Ls("E) denote the closed subspace of all
continuous symmetric n-linear forms on E. An element (z1,...,x,) € E™ is called a norming
point of T if ||zq]| = -+ = ||n]| = 1 and |T(21, ..., 2,)| = || T

For T € L("F), we define
Norm(T') = {(xl, ooy Tp) € E": (2q,...,2,) is a norming point of T}.
Norm(T) is called the norming set of T. Notice that (xy,...,x,) € Norm(T) if and only if
(€121, ..., €,2,) € Norm(T) for some ¢, = £1 (k = 1,...,n). Notice that the norming sets
can be empty, finite or infinite (see examples of [12]). If Norm(T") # @, T' € L("E) is called
a norm attaining n-linear form (see [4]). For more details about the theory of multilinear
mappings on a Banach space, we refer to [5].

For m € N, let 7" := R™ with the the ¢{;-norm and ¢ = R? with the supremum norm.
Notice that if £ = " or ¢*, and T € L("E), Norm(T) # & since Sg is compact. Kim |8,
9, 10, 12] classified Norm(T) for every T € L,(2¢%), L(20%), L(*02), L (*63) or L,(30%). Kim
[13] classified Norm(T) for every T' € L(*R},,), where R} denotes the plane with the
hexagonal norm with weight 0 < w < 1 ||(z,y)||h@w) = max{|y|, |z| + (1 —w)|y|}.

Let R, = R" with a norm satisfying that {Wy,...,W,} forms a basis and the set of all
extreme points of BRW-M is {£Wq,...,£W,}.

In this paper, we characterize Norm(7') for every T' € E(mRﬁ_”).

2. Results. In this paper, we assume R} = R" with the norm that {Wy,...,W,} forms a
basis and the set of all extreme points of BRW»H is the set {+Wy,...,£W, }.

Example 1. Rjj, = (7 with W; =e; for j € {1,...,n}.

Example 2. Let 0 <6 < 7 and R2, = (> 0= R? with the rotated supremum norm

lIllg ~— Fo0
| (2, ) || (c0,0) = max {\x cosf + ysin 6|, |xsinf — y cos 6\}
with W; = (cos @ — sinf, cosf + sinf), Wy = (cos@ + sinf, —cosf + sinf) (see [11]).

Note that Rj, —and ¢ are isometric isomorphic with |[(z,9)//(e0) = [I(;9)llc and

1@, )l comrey = (@ 91
For m,n > 2, let T € L(™R], ). By m-linearity of T

r( X A T =S ) e

1<i;<n 1<im<n 1<ip<n, 1<k<m
for some mgf) eER (kef{l,....m},ip €{1,...,n}).

Recall that the Krein-Milman Theorem states that a compact convex subset of a Haus-
dorff locally convex topological vector space is equal to the closed convex hull of its extreme
points. Using the Krein-Milman Theorem, we presents an explicit formula of ||T']| for every
T e L(R})-
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Theorem A. Let m,n > . If T'€ L("R] ), then
1T = max{|T(W;,,... W;,,)|: 1 <ix<n, 1<k <m}
Proof. Let M := max{|T(Wi,,...W;,)|: 1 <ix <n, 1 <k <m} Let (Xy,...,X,,) €

SRﬁ " By the Krein-Milman Theorem, the closed unit ball of ]R” | s the closed convex

hull of {£W,...,£W,}. For k € {1,...,m}, there are 51» € {-1,1} and t*) > 0 with

Yo 1t£ )< 1 such that
Xo= 3 a0,

19

1<i<n
It follows that
T(X1,..., X \<’T( IR A I S e )’
1<i1<n 1<zm<n
< T W W) D] | <

1<ip<n, 1<k<m

<M Z tlill)...tz(:j):M(Z tél))”(z tém)>§M

1<ip<n, 1<k<m 1<5<n 1<5<n
:maX{’T(Wil,...Wim){: 1<ip<mn, 1<k< m} < |7,
which shows that

T = sup T(X1,..., Xm)| < M < ||T|.

(X1,e0, Xm)ESn{ﬂl i

Therefore, ||T'|| = M. O

By simplicity we denote 7' = (T'(Wi,, ... W;,.))i<ip<n.. We call T(W;,,. ..Wim)/s the

1<k<m
coefficients of T. Note that if ||T'| = 1, then |T'( Zl,...WimH < 1forall 1 <4 < mn,
1<k <m.
We introduce some notations to make it easier to read as follows:
Let W = (Wh,...,.W,) € (R},)", o) = (azgk) a:nk)) eR* (1< k; < m) and

r:=(zM, ... 2M) € (R")™. We define for 1 <k <m, (2®), W) := Zl<1k<n Y My, e RP,
and ({z,W)) := ((«W, W), ..., ("™, W)) € (R )™

Theorem B. Let n,m > 2, T € L("R],), s sh) = (sgk),... s yeR" (1 <k <m)and
s = (sM,...,sM) e (R")™. Suppose that ((s,W)) € Norm(T). If ‘T(W/ . Z;n)‘ < |7

forsomelgi;cgn, 1<k <m, thens(,,l):OOr~~ ors(, —

17 m

Proof. Let § > 0 be such that ‘T(Will’ . Wzlmﬂ +0 < |[T]. We define T, € L(™R],) be

such that T ((z, W)) = T((z, W)) £ 0z -+ 20" By Theorem A, | T%| = ||T|. It follows
that ' "

HTHzmax{‘TJr((s,W ‘ )T, (s, W) )} ’ 5W>>‘+5‘32>...8$>):
= 1T + 3]s 50

which implies that sV - - s(™ = 0. O
3t
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Theorem C. Letn,m > 2,T € L("R},),

if [T(Wiy,.. . W;,)| < L If Ty = (6

Norm(7') = Norm (7).

Proof. Note that ||T5|| = ||T'|| = 1 by Theorem A.
(Q). Let ((s,W)) € Norm(7'). Then

iy = Lif |[T(Wiy, ... W;,)| =1 and §;,..;,, =0
T(Wiy, ... Wi, ) i<ip<ni<k<m € L(™Rj), then,

Tt x>

1"'i7n

IT5]] =1 = ‘T(<3,W>)‘ —

|T(Wi1 ,...Wim) ‘<1

+ > T(Wiy,... Wi,) st os™

}T(Wil,...wim) ‘:1

ST T(Wi W) s
W,

(by Theorem B)

Z 5i1~--im T(WZUI/VZ ) S(l)"'S(m)‘l—

(51 im

+ Z 5i1'~'im T(Wil, W ) S(l) s SE:)

|7 (Wi Wi ) | =1
Thus, ({(s,W)) € Norm(Ty).
(D). Let ((s,W)) € Norm(Ty). Write
T((z, W)) = Ts({x, W)) + > T (Wi, ... W,

’T(Wil,...Wim)

Let T_ € L(™R”

i) be such that

T (W) =T W)= 3 T(Wo Wiy) o)yl
|T(Wi1,...Wim) ‘<1
By Theorem A, |T_|| = 1. It follows that
L2 [T W) = |Tls W)+ >0 (W Wy,) st s,
‘T(Wi17“-Wim)|<1
L2 |1 (s W) = T ) = Y (W W) s s,

‘T(Wzl,WZm) |<1

which implies that

1> [T )| +
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=1+ > T(Wiy, .. . Wi,) st s,
’T(Wil,...Wim) |<1
Thus,
> T(Wiy, .. . Wi,) s s =0
|T(W¢l,.‘.Wim) ’<1
and so 1= |T5((s,W))| = |T((s,W))|. Thus, ((s, W)) € Norm(T). O

The following shows that we can classify Norm(T') for every T" € L("R]) with ||T| =1

=Pyl v

1 =1bi,..i,,| for every 1 <ip <n,1 <k <m.
Theorem D. Let m,n > 2, T = (T(Wi,,... Wi, )i<iy<nickem € L("RY) with ||T]| = 1

St = (bir--im)lﬁikﬁn,lﬁkﬁm S ﬁ(mRﬁw by bil---im = T(I/Vil, L. VVlm) if |T(Wzl, W )| =
and b;,.;,, = 1 if |[T(W,;,,..W; )| <1, A={l,....,n} x - x{l,....,n} and M =
{(i1, . yim) € A: [T(Wyy, . W, )] < 1}, s® = (517 W) e R" (1 < k < m) and

s:= (sM, ..., sM) € (R")™. Then,

Norm(7T') = ﬂ {((s(l), W) — i, Wiy, (s, W), ..., (s™, W))7

(s, W), (s, W) = s, Wiy, (s, W), .. (5, W) -
(W), (50, W), (70, W), (509, W) = 53, Wi, )5 (5, W) € Norm(Sr) }.

<(s(1),W), (5@, W) — s, Wiy, (5@, W), ..., (s<m>,w>), o
(50, W), (89, W), (570, W), (50, W) = 53, W3, ) = (45, W) € Norm(Sr) }.

We will show that Norm(7") = F. Note that by Theorem A, ||Sz|| = 1.

(). Let ({(s,W)) € Norm(T'). Let (i1,...,i,) € M be fixed.
Note that ||(s®), W) — s;, W;, || < 1 for k € {1,...,m}. It follows that

Sr(ts W)= >0 sl S T(Wa W, )l =
(il---im)EM (lem)gM
- T(W,.. W, )50 o s(™ (by Theorem B)
(i1 ) £
= > T(Wi W )s s N T(Way, L W) s s =
(il"'im)eM (il"'im)¢M
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(by Theorem B) T((s, W) = |7 = 1.

so ((s,W)) € Norm(Sy) satisfying s - -- sg:) =0 if |aj,..;,,| < 1. Thus, for k € {1,...,m},

1

(50, W), (8570, W), (59, W) = 5, W, (8850, W), (50, W) ) € F.
(D). Let ((sW, W), (s® VW), (s® W) — s, Wy, (s*TD W), ... ('™ W)) € F for

some k € {1,...,m}. Note that

1= HTH = ‘T<<S(1)7 W)a R (S(kil)a W)7 (S(k)7 W) — S

k

Wi, (840, 1), (s, W) )| =
1

= ’ST<(S(1), W), - (s% D W), (s®, W) — s, Wi, (s*D, W), ..., (5™, W))

which implies that

(50, (550, W), (s, W) = s, Wiy, (50D, W), .. (59, W) ) € Norm(T),

k)

]

Theorem E. Let m,n > 2, T'€ L("R|,) with |T|| =1, e = (e1,...,¢e,) and Ly € L("I})
be such that
Lr({x,e)) = Z T(Wiy, ... W) xfll)x(m)

im

T L Shv >

Then,
Norm(T) = {<<5,W>> € (Say, )™ ({s.¢)) € Norm(LT)}.
Proof. Let M = {({s,W)) € (SRW-H)m: ((s,e)) € Norm(Lr)}. We will show that Norm(7") =
M. Note that ||Lr|| = ||T'|| = 1 by Theorem A.
(). Let ({s,W)) € Norm(T). Then >, ., 1s¥)| < 1for k€ {1,...,m}. It follows that

L= [T W) =| > T Wi,) sl s| = [ Lr(s.e)

St T v >

)

which shows that ((s,e)) € Norm(Lr). Thus, ((s, W)) € M.
(D). Let ((s,W)) € M. It follows that

T W)= S TWa W) s s = | Lr(s, )| = 12l = 1.
1<ip<n,1<k<m
Hence, ((s, W)) € Norm(T"). O

Theorem F. Let T € L("R?

{)- Define Sy € L("1}) by

St <t§”e1 +tMes, . e + tg%z) = T(tgﬂwl + W, W+ t§”>W2>,
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where e; = (1,0) and e3 = (0,1). The following assertions hold:

(@) ITllczz ) = I1Srllcm:

(b) Norm(T) = {(tg”wl 1 OWa, . W 4 t(Z")W2> :
(tgl)el +tMey, .t ™ey + tgm)@) € Norm(ST)}.

Proof. It is immediate. O
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