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The paper is devoted to Fermi–Pasta–Ulam type system that describe an infinite system
of nonlinearly coupled particles with nonlocal interaction on a two dimensional integer-valued
lattice. It is assumed that each particle interacts nonlinearly with several neighbors horizontally
and vertically on both sides. This system forms an infinite system of ordinary differential
equations and is representative of a wide class of systems called lattice dynamical systems,
which have been extensively studied in recent decades. Among the solutions of such systems,
traveling waves deserve special attention. The main result concerns the existence of traveling
waves solutions with periodic velocity profiles. Note that the profiles of such waves are not
necessarily periodic. The problem of the existence of such solutions is reduced to a variational
problem for the action functionals. We obtain sufficient conditions for the existence of such
solutions with the aid of the critical point method and the Linking Theorem for functionals
satisfying the Palais–Smale condition and possessing linking geometry. We prove that under
natural assumptions there exist subsonic traveling waves. While in our previous paper [12], the
existence of supersonic periodic traveling waves in this system was established using variational
techniques and a corresponding version of the Mountain Pass Theorem for action functionals
that satisfy the Cerami condition instead of the Palais–Smale condition.

1. Introduction. Recently, considerable attention has been paid to models that are discrete
in the spatial variables. The discrete Klein–Gordon type equations and the Fermi–Pasta–
Ulam type systems are examples of equations that describe such models. We note that these
systems are representative of a wide class of systems called lattice dynamical systems, which
extensively studied in recent decades. These systems are of interest in view of numerous
applications in physics ([1, 15–17,21]).

Among the solutions of such systems, traveling waves deserve special attention. The
existence of periodic and solitary traveling waves in discrete Klein–Gordon type equati-
ons with local interaction on 1D and 2D–lattices is studied in [4–6, 14, 19, 22–24]. Periodic
and solitary traveling waves in Fermi–Pasta–Ulam type systems with local interaction on
1D-lattice is studied in many works, but a comprehensive presentation of existing results on
traveling waves is given by A. Pankov in [26]. While in papers [7–9, 11] traveling waves in
Fermi–Pasta–Ulam type systems with local interaction on 2D–lattice are studied.
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However, the existence of traveling waves in such systems with nonlocal interaction is not
well-studied. Sufficient conditions for the existence of supersonic periodic traveling waves in
discrete equations of the Klein-Gordon type are established in [10]. The existence of periodic
and solitary traveling waves in Fermi–Pasta–Ulam type systems with nonlocal interaction on
1D–lattice is studied in [25] and [28]. G. Friesecke and K. Matthies ([20]) showed the existence
of solitary traveling waves for a two-dimensional elastic lattice of particles interacting via
harmonic springs between nearest and diagonal neighbors. While in the present paper we
study the Fermi–Pasta–Ulam type system that describes an infinite system of nonlinearly
coupled particles on a two dimensional lattice with nonlocal interaction, i.e., each particle
interacts with l neighbors horizontally and vertically on each side. The equations of motion
of the system considered are of the form

q̈n,m(t) =
l∑

j=1

(
W ′

1j(qn+j,m(t)− qn,m(t))−W ′
1j(qn,m(t)− qn−j,m(t))+

+W ′
2j(qn,m+j(t)− qn,m(t))−W ′

2j(qn,m(t)− qn,m−j(t))
)
, (n,m) ∈ Z2, (1)

where qn,m(t) is the coordinate of the (n,m)-th particle at time t, W1j,W2j ∈ C1(R;R) are
the potentials of interaction (j ∈ {1, 2, . . . , l}), in particular, W11,W21 are the potentials of
the horizontal and vertical interaction, respectively, of the (n,m)-th particle with nearest
neighbors, W12,W22 with second nearest neighbors, and so on. In the case l = 1 we obtain
the Fermi–Pasta–Ulam type system on a two dimensional lattice with local interaction.
Equations (1) form an infinite system of ordinary differential equations.

We are interested in classical solutions of system (1) in the form of traveling waves
qn,m(t) = u(n cosφ+m sinφ− ct), (2)

where the function u(s), s ∈ R, is called the profile function, or simply profile, of the wave,
the vector

−→
l (cosφ, sinφ) defines the direction of wave propagation, and the constant c ̸= 0

is called the speed of the wave. If c < 0, then the wave moves to the opposite direction
corresponding c > 0. Therefore, we always assume that c > 0.

We consider the case of periodic traveling waves. The profile function of such wave satisfies
the following condition

u′(s+ 2k) = u′(s), s ∈ R, (3)

where k > 0 is a real number. Note that the profile of such wave is not necessarily peri-
odic. But the velocity profile u′(s) is periodic. Therefore, such waves are also called peri-
odic (see [26]).

An important role is played by some quantity c0 called the speed of sound in this system
(see [26]). The sufficient conditions for the existence of periodic traveling waves with the speed
c > c0, i.e., the case of supersonic periodic traveling waves, were obtained in [12]. This was
done using the critical point method and a suitable version of the Mountain Pass Theorem
for functionals satisfying the Cerami condition instead of the Palais–Smale condition. While
in the present paper we study periodic traveling waves with the speed 0 < c ≤ c0, i.e., the
case of subsonic periodic traveling waves with the aid of the Linking Theorem instead of
the Mountain Pass Theorem. We note that in [13] sufficient conditions for the existence of
supersonic solitary traveling waves in (1) are established.

2. Formulation of the main result. We assume that:

(i) Wij(r) =
c2ij
2
r2 + fij(r), where cij ∈ R, fij ∈ C1(R;R), moreover, fij(0) = f ′

ij(0) = 0
and f ′

ij(r) = o(r) as r → 0, i ∈ {1, 2}, j ∈ {1, 2, . . . , l};
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(ii) there exists µ > 2 such that 0 ≤ µfij(r) ≤ rf ′
ij(r) for r ̸= 0, i ∈ {1, 2}, j ∈ {1, 2, . . . , l}.

Note that the last condition is called the Ambrosetti-Rabinowitz condition.
For example we consider the following functions fij(r) = d2ij|r|µ, where dij ∈ R, µ > 2.

It is easy to see that the functions fij(r) satisfy the assumptions (i) and (ii).
We define c0 by the equality

c0 = c0(φ) :=

(
l∑

j=1

(c21j cos
2 φ+ c22j sin

2 φ)j2

)1/2

.

The main result of this paper is the following theorem that establishes the existence of
subsonic periodic waves.

Theorem 1. Assume (i) and (ii). Then for every c ∈ (0, c0] there exists a nonconstant
traveling wave solution of (1) with profile u(s) satisfying (3).

3. Auxiliary statements. To obtain the main result, we will need the Linking Theorem.
Let I : H → R be a C1-functional on a Hilbert space H with the scalar product (·, ·) and

corresponding norm ∥ · ∥. We say that I satisfies the Palais-Smale condition, if the following
condition is satisfied (see [26, 27,29]):

(PS) If the sequence {un} ⊂ H is such that {I(un)} is convergent and I ′(un) → 0, n → ∞,
then {un} contains a convergent subsequence.

Let H = Y ⊕ Z, ρ > r > 0 and z ∈ Z be given such that ∥z∥ = r. Define
Mz := {u = y + λz : y ∈ Y, λ ≥ 0, ∥u∥ ≤ ρ}

and ∂Mz = {u = y + λz : y ∈ Y, λ ≥ 0 and ∥u∥k = ρ, or y ∈ Y, λ = 0 and ∥u∥k ≤ ρ}, i.e.,
∂Mz is the boundary of Mz. Let N := {u ∈ Z : ∥u∥ = r}.

We suppose that β := inf
u∈N

I(u) > α := sup
u∈∂Mz

I(u). In this situation we say that I

possesses the linking geometry.
Next, we will need Linking Theorem, which we will present in a form convenient for us.

Proposition 1 (Linking Theorem, [26, 27, 29]). Suppose that a C1-functional I : H → R
satisfies the Palais-Smale condition and possesses the linking geometry. Then there exists a
nontrivial critical point u ∈ H of the functional I.

4. Proof of the main result. Substituting (2) into (1), we obtain the following equation
for the profile function

c2u′′(s) =
l∑

j=1

[
W ′

1j(A
+
j u(s))−W ′

1j(A
−
j u(s)) +W ′

2j(B
+
j u(s))−W ′

2j(B
−
j u(s))

]
, (4)

where s = n cosφ+m sinφ− ct,

A+
j u(s) := u(s+ j cosφ)− u(s), A−

j u(s) := u(s)− u(s− j cosφ),

B+
j u(s) := u(s+ j sinφ)− u(s), B−

j u(s) := u(s)− u(s− j sinφ).

Thus, our problem is reduced to problem (4), (3). It is easy to see that if we have a solution
u(s) of (4) satisfying (3), then u(s) + C is also a solution of this problem. Therefore, to
obtain the main result, we impose an additional condition

u(0) = 0. (5)

In what follows, a solution of (4) is understood as a function u(s) from the space C2(R;R)
satisfying (4) for all s ∈ R.
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We denote by Ek the Hilbert space Ek = {u ∈ H1
loc(R) : u′(s+ 2k) = u′(s), u(0) = 0}

with the scalar product (u, v)k =
∫ k

−k
u′(s)v′(s)ds and corresponding norm ∥u∥k = (u, u)

1
2 .

The norm in the dual space E∗
k is denoted by ∥·∥k,∗. By the embedding theorem, Ek ⊂ C(R),

where C(R) is the space of continuous functions on R.
Note that the difference operators A±

j and B±
j are bounded linear operators on Ek,

moreover, these operators satisfy the inequalities (see [3], Lemma 6.1)

∥A±
j u∥L∞(−k,k) ≤ l1(k)j

1/2∥u∥k, ∥A±
j u∥L2(−k,k) ≤ | cosφ|j∥u∥k,

∥B±
j u∥L∞(−k,k) ≤ l2(k)j

1/2∥u∥k, ∥B±
j u∥L2(−k,k) ≤ | sinφ|j∥u∥k, (6)

∥A±
j u∥2H1(−k,k) + ∥B±

j u∥2H1(−k,k) ≤ (j2 + 8)∥u∥2k,

where

l1(k) =

{
| cosφ|

√[
1
2k

]
+ 1, 0 < 2k < 1;

| cosφ|, 2k ≥ 1,
l2(k) =

{
| sinφ|

√[
1
2k

]
+ 1, 0 < 2k < 1;

| sinφ|, 2k ≥ 1,

and
[

1
2k

]
is the integer part of 1

2k
.

On the space Ek, we consider the functional

Jk(u) =

∫ k

−k

[c2
2
(u′(s))2 −

l∑
j=1

(
W1j(A

+
j u(s)) +W2j(B

+
j u(s))

) ]
ds ≡

∫ k

−k

[c2
2
(u′(s))2−

−
l∑

j=1

(
c21j
2
(A+

j u(s))
2 +

c22j
2
(B+

j u(s))
2

)
−

l∑
j=1

(
f1j(A

+
j u(s)) + f2j(B

+
j u(s))

)]
ds. (7)

Remark 1. It is easily verified that, under the assumptions imposed, the functional Jk is
well-defined C1-functional on Ek, and its derivative is given by the formula (see [12])

⟨J ′
k(u), h⟩ =

∫ k

−k

[
c2u′(s)h′(s)−

l∑
j=1

(
W ′

1j(A
+
j u(s))A

+
j h(s) +W ′

2j(B
+
j u(s))B

+
j h(s)

) ]
ds =

=

∫ k

−k

[
c2u′(s)h′(s)−

l∑
j=1

(
c21jA

+
j u(s)A

+
j h(s) + c22jB

+
j u(s)B

+
j h(s)

)
−

−
l∑

j=1

(
f ′
1j(A

+
j u(s))A

+
j h(s) + f ′

2j(B
+
j u(s))B

+
j h(s)

) ]
ds

for u, h ∈ Ek. Moreover, any critical point of the functional Jk is a C2-solution of (4)
satisfying (3).

Thus, to establish the existence of solutions to (4) satisfying (3), it is suffice to prove the
existence of nontrivial critical points of the functional Jk.

Lemma 1. Under the assumptions of Theorem 1 the functional Jk satisfies the Palais-Smale
condition.

Proof. Let {un} ⊂ Ek be a Palais-Smale sequence at some level b, i.e., I(un) → b and
I ′(un) → 0 as n → ∞.
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Step 1. First we show that {un} is bounded. Choose β ∈ (µ−1, 2−1). Then for n large enough
we have

b+ 1 + β∥un∥k ≥ Jk(un)− β⟨J ′
k(un), un⟩ =

=

(
1

2
− β

)∫ k

−k

[
c2(u′

n(s))
2 −

l∑
j=1

(
c21j(A

+
j u(s))

2 + c22j(B
+
j u(s))

2
) ]

ds+

+

∫ k

−k

l∑
j=1

[
β(f ′

1j(A
+
j un(s))A

+
j un(s) + f ′

2j(B
+
j un(s))B

+
j un(s))−

−f1j(A
+
j un(s))− f2j(B

+
j un(s))

]
ds =

(
1

2
− β

)∫ k

−k

c2(u′
n(s))

2ds−

−
(
1

2
− β

) l∑
j=1

∫ k

−k

(
c21j(A

+
j u(s))

2 + c22j(B
+
j u(s))

2
)
ds+

+
l∑

j=1

∫ k

−k

[
β(f ′

1j(A
+
j un(s))A

+
j un(s) + f ′

2j(B
+
j un(s))B

+
j un(s))−

−f1j(A
+
j un(s))− f2j(B

+
j un(s))

]
ds ≥

≥
(
1

2
− β

)
c2∥un∥2k −

(
1

2
− β

) l∑
j=1

[
c21j∥A+

j un∥2L2(−k,k) + c22j∥B+
j un∥2L2(−k,k)

]
+

+(βµ− 1)
l∑

j=1

∫ k

−k

[
f1j(A

+
j un(s)) + f2j(B

+
j un(s))

]
ds ≥

≥
(
1

2
− β

)
c2∥un∥2k −

(
1

2
− β

) l∑
j=1

[
c21j∥A+

j un∥2L2(−k,k) + c22j∥B+
j un∥2L2(−k,k)

]
+

+C(βµ− 1)
l∑

j=1

[
∥A+

j un∥µLµ(−k,k) + ∥B+
j un∥µLµ(−k,k)

]
− C0.

Since µ > 2, we have
c21j∥A+

j un∥2L2(−k,k) + c22j∥B+
j un∥2L2(−k,k) ≤ C

[
∥A+

j un∥2Lµ(−k,k) + ∥B+
j un∥2Lµ(−k,k)

]
≤

≤ K(ε) + ε
[
∥A+

j un∥µLµ(−k,k) + ∥B+
j un∥µLµ(−k,k)

]
,

where K(ε) → ∞ as ε → 0. Then

b+ 1 + β∥un∥k ≥
(
1

2
− β

)
c2∥un∥2k −

(
1

2
− β

)
lK(ε)−

(
1

2
− β

)
ε

l∑
j=1

[
∥A+

j un∥µLµ(−k,k)+

+∥B+
j un∥µLµ(−k,k)

]
+ C(βµ− 1)

l∑
j=1

[
∥A+

j un∥µLµ(−k,k) + ∥B+
j un∥µLµ(−k,k)

]
− C0.

Choosing ε > 0 small enough, we obtain

b+ 1 + β∥un∥k ≥
(1
2
− β

)
c2∥un∥2k + C(βµ− 1)

l∑
j=1

[
∥A+

j un∥µLµ(−k,k) + ∥B+
j un∥µLµ(−k,k)

]
− C0.

Since βµ − 1 > 0, b + 1 + β∥un∥k ≥
(
1
2
− β

)
c2∥un∥2k − C0. The last inequality implies that

{un} is bounded.
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Step 2. Since {un} is bounded in Hilbert space Ek we have, up to a subsequence (with the
same denotation), un → u weakly in Ek, hence, A+

j un → A+
j u and B+

j un → B+
j u (j ∈

{1, 2, . . . , l}) weakly in Ek, and strongly in L2(−k, k) and C([−k, k]) (by the compactness of
Sobolev embedding, [2, 26]). A straightforward calculation shows that

c2∥un − u∥2k =
∫ k

−k

(
c2(u′

n(s)− u′(s))2 + c2(un(s)− u(s))2
)
ds =

= ⟨J ′
k(un)− J ′

k(u), un − u⟩+
l∑

j=1

[
c21j∥A+

j un − A+
j u∥2L2(−k,k) + c22j∥B+

j un −B+
j u∥2L2(−k,k)

]
+

+
l∑

j=1

∫ k

−k

(
f ′
1j(A

+
j un(s))− f ′

1j(A
+
j u(s))

) (
A+

j un(s)− A+
j u(s)

)
ds+

+
l∑

j=1

∫ k

−k

(
f ′
1j(B

+
j un(s))− f ′

1j(B
+
j u(s))

) (
B+

j un(s)−B+
j u(s)

)
ds.

Obviously that all the terms on the right hand part converge to 0 (first, fourth and fifth
by weak convergence, second and third terms converge to 0 by strong convergence). Thus,
∥un − u∥k → 0 as n → ∞, and proof is complete.
Lemma 2. Under the assumptions of Theorem 1 the functional Jk possesses the linking
geometry.
Proof. First we note that the space Ek splits into orthogonal sum of the 1-dimensional
subspace generated by the function h0(s) = s and the space H1

k,0 of all 2k-periodic functions
from Ek with zero mean value (see [26]). Consider the operator L defined by

(Lu)(s) := c2u′′(s)−
l∑

j=1

[
c21j(A

+
j u)(s) + c21j(B

+
j u)(s)

]
.

Elementary Fourier analysis shows that L is a self-adjoint operator in L2(−k; k), bounded
below and that L has discrete spectrum which accumulated at +∞ (see [18, 26]). All ei-
genvalues, λj, with nonconstant eigenfunctions are double. Denote by h±

j ∈ H1
k,0 linearly

independent pairs of eigenfunctions with the eigenvalues λj.
Let Z be the subspace of H1

k,0 generated by the functions of the operator L with posi-
tive eigenvalues and Y be the subspace of Ek generated by the functions with non-positive
eigenvalues and the function h0. It is readily verified that Y ⊥ Z and Ek = Y ⊕ Z.
Step 1. Denote by Qk the quadratic part of the functional Jk

Qk(u) =
1

2

∫ k

−k

[
c2(u′(s))2 −

l∑
j=1

(
c21j(A

+
j u(s))

2 + c21j(B
+
j u(s))

2
) ]

ds.

Obviously, Qk(y + z) = Qk(y) +Qk(z), where y ∈ Y , z ∈ Z.
Note that the quadratic form Qk is positive definite on Z, i.e., Qk(u) ≥ α∥u∥2k, with

α > 0. Assumption (i) implies that, given ε > 0, there exists r0 > 0 such that |fij(r)| ≤ εr2

as |r| ≤ r0 (i ∈ {1, 2}; j ∈ {1, 2, . . . , l}). Then, by (6),
Jk(u) ≥ Qk(u)−

−ε

∫ k

−k

l∑
j=1

[
(A+

j u(s))
2 + (B+

j u(s))
2
]
ds = Qk(u)− ε

l∑
j=1

∫ k

−k

[
(A+

j u(s))
2 + (B+

j u(s))
2
]
ds ≥

≥ Qk(u)− ε∥u∥2k
l∑

j=1

j2 = Qk(u)− ε
l(l + 1)(2l + 1)

6
∥u∥2k ≥ δ∥u∥2k,
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where δ > 0. Hence, Jk(u) > 0 on N = {u ∈ Z : ∥u∥k = r} provided r > 0 is small enough.
Step 2. Now we fix z ∈ Z, ∥z∥k = 1 and set Mz = {u = y + λz : y ∈ Y, λ ≥ 0, ∥u∥k ≤ ρ}.
We prove that Jk(u) ≤ 0 on ∂Mz provided that ρ is large enough. Recall that

∂Mz = {u = y + λz : y ∈ Y, λ ≥ 0 and ∥u∥k = ρ, or y ∈ Y, λ = 0 and ∥u∥k ≤ ρ}.

Since, by assumptions (i) and (ii), there exist constants d > 0, d0 ≥ 0 (see [3], Lemma 3.1)
such that fij(r) ≥ d|r|µ−d0, µ > 2 (i ∈ {1, 2}; j ∈ {1, 2, . . . , l}), then, given that Qk(y) ≤ 0,

Jk(y + λz) = Qk(y + λz)−
∫ k

−k

l∑
j=1

[
f1j(A

+
j (y + λz)) + f2j(B

+
j (y + λz))

]
ds =

≤ Qk(y) + λ2Qk(z)−
l∑

j=1

∫ k

−k

[
f1j(A

+
j (y + λz)) + f2j(B

+
j (y + λz))

]
ds ≤

≤ λ2Qk(z)−
l∑

j=1

∫ k

−k

[
d|A+

j (y + λz)|µ + d|B+
j (y + λz)|µ − 2d0

]
ds =

= λ2γ0 + 4kld0 − d
l∑

j=1

[
∥A+

j (y + λz)∥µLµ(−k,k) + ∥B+
j (y + λz)|µLµ(−k,k)

]
ds,

where γ0 = Qk(z). Since ρ2 = ∥y + λz∥2k = ∥y∥2k + λ2, then λ2 ≤ ρ2. Furthermore, on finite
dimensional spaces all norms are equivalent. Then ∥y + λz∥Lµ(−k,k) ≥ c∥y + λz∥k = cρ.
Therefore, we have that Jk(y+λz) ≤ γ0ρ

2 +4kld0 −Cρµ with some C > 0. Since µ > 2, the
right-hand side part here is negative if ρ is large enough. Hence, Jk(y+λz) ≤ 0. If u ∈ ∂Mz,
∥u∥k ≤ ρ and λ = 0, then u = y ∈ Y and, obviously, Jk(u) ≤ 0.

Thus, Jk possesses the linking geometry, and the lemma is proved.

Due to Lemma 1 and Lemma 2, the functional Jk satisfies all conditions of the Linking
Theorem (see Proposition 1). Hence, Jk has a nontrivial critical point u ∈ Ek. By Remark 1,
u is a C2-solution of (4) that satisfy (3), and hence, (1) has a nontrivial periodic traveling
wave solution. This solution is nonconstant due to the condition (5). Thus, the proof of
Theorem 1 is complete.
Conclusion. In the present paper we obtain some result on the existence of non-constant
subsonic traveling waves with periodic velocity profiles in Fermi-Pasta-Ulam type systems
with nonlocal interaction on a two-dimensional lattice.
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