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In the paper, we explore the simplex and the MacDonald codes over the finite ring ZpR1R2.

Our investigation focuses on the unique properties of these codes, with the particular attenti-
on to their weight distributions and Gray images. The weight distribution is a crucial aspect
as it provides insights into the error-detection and error-correction capabilities of the codes.
Gray images play a significant role in understanding the structure and behavior of these codes.
By examining the dual Gray images of simplex and MacDonald codes over ZpR1R2, we aim
to develop efficient secret sharing schemes. These schemes benefit from the inherent properti-
es of the codes, such as minimal weight and redundancy, which are essential for secure and
reliable information sharing. Understanding the access structure of these schemes is vital, as
it determines which subsets of participants can reconstruct the secret. Our study draws on
various properties to elucidate this access structure, ensuring that the schemes are secure and
efficient. Through this comprehensive analysis, we contribute to the field of coding theory
by demonstrating how simplex and MacDonald codes over ZpR1R2 can be effectively utili-
zed in cryptographic applications, particularly in designing robust and reliable secret sharing
mechanisms.

1. Introduction. The linear simplex and the MacDonald codes are integral components
of the theoretical framework in coding theory, serving as powerful tools for ensuring the
accuracy and security of data transmission and storage. As linear block codes, they systemati-
cally encode data into fixed-size blocks, allowing for efficient error detection and correction
mechanisms. These codes find extensive application across diverse fields like telecommunicati-
ons, where reliable communication is paramount, and digital data storage, where maintaining
the accuracy and consistency of data is essential over prolonged durations. In cryptography,
they contribute significantly to securing sensitive information against unauthorized access
and malicious tampering. Furthermore, in network coding, they play a crucial role in opti-
mizing bandwidth usage and enhancing resilience against network disruptions. The study
and optimization of linear simplex and MacDonald codes are essential for advancing the
capabilities of error-correcting codes, enabling researchers to develop increasingly sophisti-
cated techniques for combating transmission errors and ensuring robust data integrity. By
continually refining their properties and exploring new applications, researchers contribute
to the ongoing evolution of coding theory, bolstering the foundation of secure and efficient
data communication systems, see [2, 4–9,11–13].

This article aims to provide an in-depth study of advanced topics in coding theory
and cryptography, specifically over the finite ring ZpR1R2. This includes investigating the
structure and properties of Linear Simplex and MacDonald Codes over ZpR1R2, exploring
the concept and utility of Gray Images of linear codes over ZpR1R2, and analyzing the
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Hamming weight distributions of these Gray Images to understand their error-detection and
correction capabilities. Additionally, the article aims to construct and examine the properti-
es of a minimal linear code over ZpR1R2, emphasizing its efficiency and reliability. Finally,
the study aims to develop secret sharing schemes based on the minimal linear simplex and
MacDonald codes over ZpR1R2, demonstrating how these codes can be effectively utilized to
create secure and robust methods for sharing confidential information among multiple parti-
es. Through this comprehensive analysis, the article seeks to advance the understanding and
practical application of these coding theory concepts in cryptography.

The structure of this paper is organized to lead the reader for the complexities of
secret-sharing schemes and the application of advanced coding theory over the finite ri-
ng ZpR1R2. Section 2 begins by laying the groundwork with a comprehensive discussion on
the fundamentals of secret sharing schemes. These include a study of the basic principles
and essential requirements that underpin these cryptographic protocols. Additionally, we
provide a thorough overview of linear codes over ZpR1R2, with a particular emphasis on the
properties and significance of linear Gray image codes. These Gray image codes are crucial
for understanding the encoding and error-correction capabilities inherent in the linear codes
used throughout our study. Moving forward, Section 3 delves into the specifics of simplex and
MacDonald codes over ZpR1R2. Here, we examine the properties of these codes in detail,
with a special focus on their weight distributions and Gray images. The weight distribution
analysis provides insight into the error detection of these codes. At the same time, the study of
Gray images helps to visualize and understand the structural nuances of the codes in questi-
on. In Section 4, we introduce the core of our research: the proposed secret sharing scheme
that leverages the minimal linear simplex and MacDonald codes over ZpR1R2. This secti-
on outlines the encoding process, demonstrating how linear simplex and MacDonald codes
generate shares from the original secret. We then explain the methodology for constructing
the minimal access secret set of the secret sharing scheme. This involves detailing the criteria
and processes that ensure only authorized subsets of participants can reconstruct the origi-
nal secret, thereby maintaining the confidentiality and integrity of the information shared.
Overall, this paper aims to provide a cohesive and detailed exposition on applying linear
coding theory to enhance the security and efficiency of secret sharing schemes, with each
section building upon the previous to offer a comprehensive understanding of the subject
matter.

2. Preliminaries. The purpose of this section is to equip the reader with a solid understandi-
ng of the preliminaries needed to appreciate the subsequent analysis of the ring

ZpR1R2 = Zp (Zp + v1Zp) (Zp + v2Zp + v3Zp + v2v3Zp).
By establishing these fundamentals, we set the stage for exploring profound properties,
examples, and applications of this ring in coding theory. Let the ring

ZpR1R2 = Zp (Zp + v1Zp) (Zp + v2Zp + v3Zp + v2v3Zp) ,

then
ZpR1R2 =

{
ς = (η1, η2, η3) : η1 ∈ Zp, η2 ∈ R1 = Zp + v1Zp,

η3 ∈ R2 = Zp + v2Zp + v3Zp + v2v3Zp, v
2
i = 0 for 1 ≤ i ≤ 3

}
,

it is known that the ring Zp is a subring of the ring R1 and the ring R1 is a subring of the
ring R2. We say that C is a ZpR1R2-additive code if it is a subgroup of Zγ

4 × Rδ1
1 × Rδ2

2 .
A code C is called separable if C is the direct product of Cγ, Cδ1 and Cδ2 , i.e.,

C = Cγ × Cδ1 × Cδ2 .

The Lee weight of c = (λ, µ, ν) ∈ ZpR1R2 is defined as
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wLee ((λ, µ, ν)) = wtLee(λ) + wtLee(µ) + wtLee(ν).
We will define the Gray map and then construct the weight in such a way that will give us
a distance-preserving isometry

Φ: Zp ×R1 ×R2 → Z7
p

(λ, µ, ν) 7→ Φ (λ, µ, ν) ,
where Φ (λ, µ, ν) = (λ, µ0, µ0 + µ1, ν4, ν2 + ν4, ν3 + ν4, ν1 + ν2 + ν3 + ν4) , with µ = µ0+ v1µ1

and ν = ν1 + v2ν2 + v3ν3 + v2v3ν4.
If extending Φ naturally from Zγ

p ×Rδ1
1 ×Rδ2

2 to Zn=γ+2δ1+4δ2
p , we check that Φ is a linear

isometry.

Theorem 1. If C is a linear code over ZpR1R2 of length n and minimum Lee weight d,
then Φ(C) is a linear code with the parameters [7n, k, dLee = dH ].

The weight perspective provides a sufficient condition for a linear code to be minimal,
based on comparing the minimum weight of the code with the minimum nonzero weight of
any nonzero codeword. The following lemma establishes that if a linear code is minimal, all
codewords of weight equal to the minimum distance are minimal codewords.

Lemma 1 ([3]). Let C be an [n, k, dH ]-linear code over Fp, and let wmin and wmax be the
minimum and maximum nonzero weights of C, respectively. If wmin/wmax ⩾ (p− 1)/p, then
all nonzero codewords of C are minimal.

We require the idea of minimal codewords in order to find the minimal access sets.

Definition 1 ([10]). The support of a codeword c = (c0, c1, · · · , cn−1) ∈ Zn
q is defined as

supp(c) = {0 ⩽ i ⩽ n− 1; ci ̸= 0}.
Let c1 and c2 be two codewords of the code C. We say that c1 covers c2 if supp(c2) ⊆ supp(c1).

Remark 1. A non-zero codeword c ∈ C is said to be minimal if the only codewords that
cover it are scalar multiples of c.

Consider the systematic code C[n, k, d] corrects t =
⌊
d−1
2

⌋
errors, so its generator matrix

is G = [Ik | A], and its parity-check matrix is H = [−At | In−k]. This code can be used to
establish secret-sharing schemes.

Secret sharing schemes based on linear codes. According to [1], let a dealer P0 and P =
{P1, P2, . . . , Pn−1} be a set of n−1 participants. Also, let Ap be the set of all access elements
on P . In the secret sharing scheme based on C, to compute shares for all the participants,
the dealer randomly chooses a vector u = (u0, . . . , uk) ∈ Fk

p such that s = ug0. There are pk−1

such vectors u ∈ Fk
p. Therefore, the dealer treats u as an information vector and calculates

the corresponding codeword v = uG = (v0, v1, . . . , vn−1), where G = [g0, g1, . . . , gn−1] is
a generator matrix of C. Consequently, it then gives vi to party Pi as their share for each
1 ≤ i ≤ n− 1. If s = v0 = ug0, then a set of shares (vi1 , vi2 , . . . , vim) determines the secret s
if and only if column g0 of G is a linear combination of the columns

g0 =
m∑
j=1

ηjgij .

Then the secret s is recovered by computing s =
m∑
j=1

ηjvij .
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3. Linear simplex and MacDonald codes over ZpR1R2. In this section, we delve into the
detailed study of linear simplex and MacDonald codes over finite ring ZpR1R2.These codes
play a pivotal role in coding theory, providing a system for error detection and correction,
which are crucial for reliable data transmission. By exploring their concepts and construction,
we gain insights into how these codes can be effectively implemented and optimized within
the algebraic structure of ZpR1R2. The linear simplex codes are renowned for their strai-
ghtforward construction and effectiveness in simpler coding, while MacDonald codes offer
enhanced error-correcting capabilities suitable for more complex applications. This section
aims to provide a comprehensive understanding of these coding techniques, demonstrating
their adaptability and utility in various applications. Based on the definitions and frameworks
established in [4], we have:

Definition 2. The generator matrix of Sα
k , simplex codes of type α over ZpR1R2, as the

concatenation of p6k copies of the generator matrix of Sα
Zp,k

, p5k copies of the generator matrix
of Sα

R1,k
and p3k copies of the generator matrix of Sα

R2,k
, given by

Ωα
k =

[
1p6k ⊗Gα

Zp,k
1p5k ⊗Gα

R1,k
1p3k ⊗Gα

R2,k

]
, for k ≥ 1.

Definition 3. The generator matrix of Sβ
k is the concatenation of pk+1 copies of the generator

matrix of Sβ
Zp,k

, pk copies of the generator matrix of Sβ
R1,k

and pk−1 copies of the generator
matrix of Sβ

R2,k
given by

Ωβ
k =

[
1pk+1 ⊗Gβ

Zp,k
1pk ⊗Gβ

R1,k
1pk−1 ⊗Gβ

R2,k

]
, for k ≥ 2.

Remark 2. 1. Simplex codes Sα
k of length n = 3p7k and distance minimal

d = (p− 1)(pk−1 + 2p2(k−1) + 4p4(k−1)).

2. Simplex codes Sβ
k of length n =

(
pk−1
p−1

) [
pk+1 + p2k−1 + p4(k−1)

]
and distance minimal

d = (p− 1)(pk−1 + 2p2(k−1) + 4p4(k−1)).

Definition 4. MacDonald codes Mα
k,t is a linear code over ZpR1R2 of length

n = 3p7k −
(
p6k+t + p5k+2t + p3k+4t

)
,

generated by

Ωα
k,t =

[
1p6k ⊗Gα

Zp,k,t
1p5k ⊗Gα

R1,k,t
1p3k ⊗Gα

R2,k,t

]
, for k > 1 and 1 ≤ t ≤ k − 1.

MacDonald codes Mβ
k,t is a linear code over ZpR1R2 of length

n =
( pk

p− 1

)
[(pk − 1)(p+ pk−1 + p3k−4)− (pt − 1)(p+ pt−1 + p3t−4)],

generated by Ωβ
k,t =

[
1pk+1 ⊗Gβ

Zp,k,t
1pk ⊗Gβ

R1,k,t
1pk−1 ⊗Gβ

R2,k,t

]
.

3.1. Gray images of linear codes over ZpR1R2. In this subsection, we explore the
concept of gray images of linear simplex and MacDonald codes over the finite ring ZpR1R2.

Theorem 2. Let Sα
k be a ZpR1R2-simplex code of type α with the minimum Lee weight

dL, then Φ(Sα
k ) is a simplex code over Zp with the length

[
7p7k; k

]
.
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Proof. If Ωα
k is generator matrix of the ZpR1R2-simplex code Sα

k , then Φ(Ωα
k ) has the form

Φ(Ωα
k ) =

[
17p6k ⊗Gα

Zp,k

]
,

where Gα
Zp,k

is a generator matrix of the simplex code Sα
Zp,k

. The result then follows by
induction on k.

Theorem 3. Let Sβ
k be a ZpR1R2-simplex code of type β with the minimum Lee weight

dL. Then Φ(Sβ
k ) is a simplex code over Zp with the parameters[(pk − 1

p− 1

)[
1 + 2pk−1 + 4p3(k−1)

]
; k
]
.

Proof. The proof follows a similar approach as that of Theorem 2.

Theorem 4. Let Mα
k,t be a ZpR1R2 MacDonald code of type α and minimum Lee weight

dL. Then Φ(Mα
k,t) is a MacDonald code over Zp, with the parameters[(

pk + 2p2k + 4p4k
)
−
(
pt + 2p2t + 4p4t

)
; k
]
.

Proof. The proof employs a similar methodology to that of Theorem 2.

Theorem 5. Let Mβ
k,u be a ZpR1R2 MacDonald code of type α and minimum Lee weight

dL. Then Φ(Mβ
k,t) is the MacDonald code over Zp, with the parameters[(

pk − 1

p− 1

)[
1 + 2pk−1 + 4p3(k−1)

]
−
(
pt − 1

p− 1

)[
1 + 2pt−1 + 4p3(t−1)

]
; k

]
.

Proof. The proof utilizes a comparable methodology to that of Theorem 2.

Using the format of the generator matrices of the linear codes Φ(Sα
k ), Φ(S

β
k ), Φ(Mα

k,t)
and Φ(Mα

k,t), we have the following results that give the Hamming weights distributions.

3.2. Hamming weights distributions of Φ(Sα
k ), Φ(S

β
k ), Φ(Mα

k,t) and Φ(Mα
k,t). To gain

a deeper understanding of the linear codes Φ(Sα
k ), Φ(S

β
k ), Φ(Mα

k,t) and Φ(Mα
k,t), as well

as the distances between their codewords, we analyze their Hamming weight distributions.
These distributions provide critical information about the number of non-zero elements in the
codewords, which directly relates to their error detection and error correction capabilities. By
examining the Hamming weights, we can construct tables that summarize the distribution
of these weights, offering valuable insights into the structure and performance of the codes.
This detailed analysis allows us to evaluate the efficiency and reliability of the codes in
various applications, ensuring they meet the desired criteria for effective data transmission
and storage.

wH Number of
distinct codewords

Φ(Sα
k ),Φ(S

β
k ) 0 1

Φ(Sα
k ),Φ(S

β
k ) (p− 1)(pk−1 + 2p2(k−1) + 4p4(k−1)) (pk − 1) + 2(p2k − 1) + 4(p4k − 1)

Table 1: The Hamming Weight Distribution of Linear Codes Φ(Sα
k ) and Φ(Sβ

k ).
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wH Number of
distinct codewords

Φ(Mα
k ) 0 1

Φ(Mα
k ) (pk−1 + 2p2k−1 + 4p4k−1)− (pt−1 + 2p2t−1 + 4p4t−1) 7pk − 7pk−t

Φ(Mα
k ) pk−1 + 2p2k−1 + 4p4k−1 7(pk−t − 1)

Table 2: The Hamming Weight Distribution of Linear Codes Φ(Mα
k ).

wH Number of
distinct codewords

Φ(Mβ
k) 0 1

Φ(Mβ
k) (pk−1 + 2p2k−2 + 4p4k−4)− (pt−1 + 2p2t−2 + 4p4t−4) 7pk − 7pk−t

Φ(Mβ
k) pk−1 + 2p2k−2 + 4p4k−4 7(pk−t − 1)

Table 3: The Hamming Weight Distribution of Linear Codes Φ(Mβ
k).

3.3. A minimal linear code over ZpR1R2. In this subsection, we investigate the concept
of a minimal linear code over the ring ZpR1R2 and its substantial applications in secret
sharing schemes. Minimal linear codes are characterized by their simplicity and optimality
in terms of the number of codewords required to achieve specific coding objectives. When
applied within the framework of ZpR1R2, these codes exhibit unique properties that enhance
their effectiveness in secure communications. Specifically, in secret-sharing schemes, mini-
mal linear codes play a crucial role in distributing a secret among multiple participants so
that only authorized subsets can reconstruct the secret, while unauthorized subsets gain no
information. By exploring these codes’ theoretical underpinnings and practical applications,
we demonstrate their importance in designing efficient and secure cryptographic protocols.

Theorem 6. All nonzero codewords of codes Φ(Sβ
k ), Φ(Mα

k,t) and Φ(Mβ
k,t) over Zp are

minimal.

Proof. Using Table and Lemma 1, the code Φ(Mβ
k,t) over Zp satisfied

wmin

(
Φ(Mβ

k,t)
)

wmax

(
Φ(Mβ

k,t)
) =

(
(pk−1 + 2p2k−2 + 4p4k−4)− (pt−1 + 2p2t−2 + 4p4t−4)

)
pk−1 + 2p2k−2 + 4p4k−4

≥ p− 1

p
.

This theorem leads us to the following remark.

Remark 3. The codes Φ(Sβ
k ), Φ(Mα

k,t) and Φ(Mβ
k,t) over Zp are minimal.

4. Secret sharing schemes based on the minimal linear simplex and MacDonald
codes.We previously noted that identifying the access structure of a secret sharing scheme
derived from a linear code can be complex. However, when utilizing minimal linear simplex
and MacDonald codes, the construction of secret sharing schemes becomes more manageable
and efficient. Minimal linear codes simplify the process by ensuring that each codeword’s mi-
nimality directly correlates with the scheme’s access structure, making it easier to determine
which subsets of participants can reconstruct the secret. These specific types of codes, with
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their well-defined properties and minimality, provide a structured and reliable foundation for
designing robust secret sharing schemes, enhancing both security and ease of implementation.
Theorem 7. Let Φ(Sβ

k ) be the linear code over Zp. Then in the secret sharing scheme based
on Φ(Sβ

k )
⊥, there are τ1 =

(
pk−1
p−1

) [
2pk−1 + 4p3(k−1)

]
participants. Moreover, each participant

Pi is involved in (p− 1)p(k−2) out of p(k−1) minimal access sets.
Proof. The result follows from Lemma 1 and Theorem 6.
Theorem 8. Let Φ(Mα

k ) be the linear torsion code over Zp. Then in the secret sharing
scheme based on Φ(Mα

k )
⊥, there are τ2 =

(
pk + 2p2k + 4p4k

)
− (pt + 2p2t + 4p4t)− 1 partici-

pants. Moreover, each participant Pi is involved in (p− 1)p(k−2) out of p(k−1) minimal access
sets.
Proof. By considering Lemma 1 and Theorem 6, we can derive the desired outcome.
Theorem 9. Let Φ(Mβ

k) be the linear torsion code over Zp. Then in the secret sharing
scheme based on Φ(Mβ

k)
⊥, there are

τ3 =
(pk − 1

p− 1

) [
1 + 2pk−1 + 4p3(k−1)

]
−
(pt − 1

p− 1

) [
1 + 2pt−1 + 4p3(t−1)

]
− 1

participants. Moreover, each participant Pi is involved in (p− 1)p(k−2) out of p(k−1) minimal
access sets.
Proof. The result can be obtained based on the conditions outlined in Theorem 6 and
Lemma 1.

Next, we provide an example showcasing the Gray images of linear simplex and Mac-
Donald codes, along with the corresponding access structure of the secret sharing scheme.
Example 1. Let us consider the ring ZpR1R2 = Z13(Z13 + v1Z13)(Z13 + v2Z13 + v3Z13 +

v2v3Z13), the code Φ(Sβ
2 ) over Z13 of length n = 123410 generated by

Φ
(
Ωβ

2

)
= 18815 ⊗

[
1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 2 3 4 5 6 7 8 9 10 11 12

]
.

In the access structure, there are 123409 participants and 13 minimal qualifed sets. Each
participant Pi, 1 ≤ i ≤ 123409 in the set ⟨123409⟩, where ⟨123409⟩ = {1, 2, . . . , 123409} is
in 13 minimal access sets.
Example 2. Consider the ring ZpR1R2 = Z5(Z5 + v1Z5)(Z5 + v2Z5 + v3Z5 + v2v3Z5), the
code Φ(Mα

3,2) over Z5 of length n = 975030100 generated by Φ
(
Ωα

3,2

)
defined as follows

19750301⊗
[

1111111111111111111111111 2222222222222222222222222 3333333333333333333333333 4444444444444444444444444
0000011111222223333344444 0000011111222223333344444 0000011111222223333344444 0000011111222223333344444
0123401234012340123401234 0123401234012340123401234 0123401234012340123401234 0123401234012340123401234

]
.

In the access structure, there are 975030099 participants and 25 minimal qualifed sets. Each
participant Pi, 1 ≤ i ≤ 975030099 in the set ⟨975030099⟩ is in 25 minimal access sets.

5. Conclusion. In conclusion, this study offered significant insights into the construction
and applications of Linear Simplex and MacDonald Codes over ZpR1R2. By examining Gray
images, Hamming weight distributions, and the concept of minimal codes, we deepened our
understanding of these codes’ characteristics and their importance in secret-sharing schemes.
The findings underscore the role of these codes in enhancing secure data transmission and
developing robust cryptographic protocols across various fields. This research lays a foundati-
on for future exploration, aiming to optimize these codes for improved security and effici-
ency in practical applications, thereby contributing to the ongoing advancement of secure
communication technologies.
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