UDC 517.53

P. V. FILEVYCH, O. B. HRYBEL

GENERALIZED AND MODIFIED ORDERS OF GROWTH FOR DIRICHLET SERIES ABSOLUTELY CONVERGENT IN A HALF-PLANE

P. V. Filevych, O. B. Hrybel. Generalized and modified orders of growth for Dirichlet series absolutely convergent in a half-plane, Mat. Stud. **61** (2024), 136–147.

Let $\lambda = (\lambda_n)_{n \in \mathbb{N}_0}$ be a non-negative sequence increasing to $+\infty$, $\tau(\lambda) = \overline{\lim}_{n \to \infty} (\ln n/\lambda_n)$, and $\mathcal{D}_0(\lambda)$ be the class of all Dirichlet series of the form $F(s) = \sum_{n=0}^{\infty} a_n(F) e^{s\lambda_n}$ absolutely convergent in the half-plane $\operatorname{Re} s < 0$ with $a_n(F) \neq 0$ for at least one integer $n \ge 0$. Also, let α be a continuous function on $[x_0, +\infty)$ increasing to $+\infty$, β be a continuous function on [a, 0)such that $\beta(\sigma) \to +\infty$ as $\sigma \uparrow 0$, and γ be a continuous positive function on [b, 0). In the article, we investigate the growth of a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ depending on the behavior of the sequence $(|a_n(F)|)$ in terms of its α, β, γ -orders determined by the equalities

$$R^*_{\alpha,\beta,\gamma}(F) = \overline{\lim_{\sigma \uparrow 0}} \frac{\alpha(\max\{x_0,\gamma(\sigma)\ln\mu(\sigma)\})}{\beta(\sigma)}, \quad R_{\alpha,\beta,\gamma}(F) = \overline{\lim_{\sigma \uparrow 0}} \frac{\alpha(\max\{x_0,\gamma(\sigma)\ln M(\sigma)\})}{\beta(\sigma)}$$

where $\mu(\sigma) = \max\{|a_n(F)|e^{\sigma\lambda_n} : n \ge 0\}$ and $M(\sigma) = \sup\{|F(s)|: \operatorname{Re} s = \sigma\}$ are the maximal term and the supremum modulus of the series F, respectively. In particular, if for every fixed t > 0 we have $\alpha(tx) \sim \alpha(x)$ as $x \to +\infty$, $\beta(t\sigma) \sim t^{-\rho}\beta(\sigma)$ as $\sigma \uparrow 0$ for some fixed $\rho > 0$, $0 < \underline{\lim}_{\sigma\uparrow 0} \gamma(t\sigma)/\gamma(\sigma) \le \overline{\lim}_{\sigma\uparrow 0} \gamma(t\sigma)/\gamma(\sigma) < +\infty$, $\Phi(\sigma) = \alpha^{-1}(\beta(\sigma))/\gamma(\sigma)$ for all $\sigma \in [\sigma_0, 0)$, $\widetilde{\Phi}(x) = \max\{x\sigma - \Phi(\sigma) : \sigma \in [\sigma_0, 0)\}$ for all $x \in \mathbb{R}$, and $\Delta_{\Phi}(\lambda) = \overline{\lim}_{n\to\infty}(-\ln n/\widetilde{\Phi}(\lambda_n))$, then: (a) for each Dirichlet series $F \in \mathcal{D}_0(\lambda)$ we have

$$R^*_{\alpha,\beta,\gamma}(F) = \lim_{n \to +\infty} \left(\frac{\ln^+ |a_n(F)|}{-\widetilde{\Phi}(\lambda_n)} \right)^{\rho};$$

(b) if $\tau(\lambda) > 0$, then for each $p_0 \in [0, +\infty]$ and any positive function Ψ on [c, 0) there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F) = p_0$ and $M(\sigma, F) \ge \Psi(\sigma)$ for all $\sigma \in [\sigma_0, 0)$; (c) if $\tau(\lambda) = 0$, then $(R_{\alpha,\beta,\gamma}(F))^{1/\rho} \le (R^*_{\alpha,\beta,\gamma}(F))^{1/\rho} + \Delta_{\Phi}(\lambda)$ for every Dirichlet series $F \in \mathcal{D}_0(\lambda)$; (d) if $\tau(\lambda) = 0$, then for each $p_0 \in [0, +\infty]$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$;

(d) if $\tau(\lambda) = 0$, then for each $p_0 \in [0, +\infty]$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F) = p_0$ and $(R_{\alpha,\beta,\gamma}(F))^{1/\rho} = (R^*_{\alpha,\beta,\gamma}(F))^{1/\rho} + \Delta_{\Phi}(\lambda)$.

1. Introduction. We denote by \mathbb{N}_0 the set of all non-negative integers, and denote by Λ the class of all non-negative sequences $\lambda = (\lambda_n)_{n \in \mathbb{N}_0}$ increasing to $+\infty$.

Let $\lambda = (\lambda_n)_{n \in \mathbb{N}_0}$ be a sequence from the class Λ . Consider a Dirichlet series of the form

$$F(s) = \sum_{n=0}^{\infty} a_n e^{s\lambda_n} \tag{1}$$

C P. V. Filevych, O. B. Hrybel, 2024

²⁰²⁰ Mathematics Subject Classification: 30B50, 30D15.

Keywords: Dirichlet series; abscissa of absolute convergence; supremum modulus; maximal term; Young-conjugate function; generalized order; modified order.

doi:10.30970/ms.61.2.136-147

and denote by $\sigma_a(F)$ the abscissa of absolute convergence of this series. Put

$$\sigma^*(F) = \lim_{n \to \infty} \frac{1}{\lambda_n} \ln \frac{1}{|a_n|}.$$

It is easy to see that if $\sigma < \sigma^*(F)$, then $|a_n|e^{\sigma\lambda_n} \to 0$ as $n \to \infty$. Therefore, for each such σ , we can determine the maximal term

$$\mu(\sigma, F) = \max\{|a_n|e^{\sigma\lambda_n} \colon n \in \mathbb{N}_0\}$$

of series (1). Note also that in the case when $\sigma > \sigma^*(F)$ we have $\overline{\lim}_{n\to\infty} |a_n| e^{\sigma\lambda_n} = +\infty$. If $\sigma_a(F) > -\infty$, then for all $\sigma < \sigma_a(F)$ we define the supremum modulus of series (1) by equality

$$M(\sigma, F) = \sup\{|F(s)|: \operatorname{Re} s = \sigma\}.$$

We denote by $\mathcal{D}_0^*(\lambda)$ the class of all Dirichlet series of the form (1), for which $\sigma^*(F) \geq 0$ and $a_n \neq 0$ at least for one value of $n \in \mathbb{N}_0$. By $\mathcal{D}_0(\lambda)$ we denote the class of all Dirichlet series of the form (1) such that $\sigma_a(F) \geq 0$ and $a_n \neq 0$ at least for one value of $n \in \mathbb{N}_0$. It is clear that $\mathcal{D}_0(\lambda) \subset \mathcal{D}_0^*(\lambda)$ and, as it is well known, $\mathcal{D}_0(\lambda) = \mathcal{D}_0^*(\lambda)$ if and only if $\tau(\lambda) = 0$, where

$$\tau(\lambda) = \lim_{n \to \infty} \frac{\ln n}{\lambda_n}.$$

Put

$$\mathcal{D}_0 = \bigcup_{\lambda \in \Lambda} \mathcal{D}_0(\lambda), \quad \mathcal{D}_0^* = \bigcup_{\lambda \in \Lambda} \mathcal{D}_0^*(\lambda).$$

For $A \in (-\infty, +\infty]$, we denote by Y_A the class of all real functions $\eta: D_\eta \to \mathbb{R}$ such that the domain D_η of η is an interval of the form [a, A).

Let $\eta \in Y_{+\infty}$ be a positive measurable function on D_{η} . As in [1], we call the function η slowly varying at the point $+\infty$ if for every fixed number c > 0 we have $\eta(cx) \sim \eta(x)$ as $x \to +\infty$, and we call the function η regularly varying at the point $+\infty$ with index $\rho \ge 0$, if $\eta(x) = x^{\rho}\zeta(x)$ for all $x \ge x_0$, where $\zeta \in Y_{+\infty}$ is a slowly varying function at the point $+\infty$.

Let $\eta \in Y_0$ be a positive measurable function on D_η . We call the function η slowly varying at the point 0 if for every fixed number c > 0 we have $\eta(c\sigma) \sim \eta(\sigma)$ as $\sigma \uparrow 0$, and we call the function η regularly varying at the point 0 with index $\rho \ge 0$, if $\eta(\sigma) = |\sigma|^{-\rho} \zeta(\sigma)$ for all $\sigma \in [\sigma_0, 0)$, where $\zeta \in Y_0$ is a slowly varying function at the point 0.

We denote by L the sub-class of all functions $l \in Y_{+\infty}$ continuous and increasing to $+\infty$ on D_l .

We denote by C_0 the sub-class of all functions $\eta \in Y_0$ continuous on D_η , and denote by Ω_0 the sub-class of all functions $\Phi \in C_0$ such that $\Phi(\sigma) \to +\infty$ as $\sigma \uparrow 0$.

Let $\Phi \in \Omega_0$. Then, as it is well known, the function

$$\widetilde{\Phi}(x) = \max\{x\sigma - \Phi(\sigma) \colon \sigma \in D_{\Phi}\}, \quad x \in \mathbb{R},$$

is called the Young-conjugate of Φ , and this function has the following properties (see, for instance, [2]): $\widetilde{\Phi}$ is convex on \mathbb{R} ; the right-hand derivative φ of $\widetilde{\Phi}$ is a negative nondecreasing function on \mathbb{R} , $\varphi(x) \to 0$ as $x \to +\infty$, and

$$\varphi(x) = \max\{\sigma \in D_{\Phi} \colon x\sigma - \Phi(\sigma) = \Phi(x)\}, \quad x \in \mathbb{R};$$

if $x_0 = \inf\{x > 0: \Phi(\varphi(x)) > 0\}$, then $\overline{\Phi}(x) = \widetilde{\Phi}(x)/x$ increases to 0 on $(x_0, +\infty)$. It follows from these properties that $\widetilde{\Phi}$ is a decreasing continuous function on \mathbb{R} . It is also easy to prove that the range of the function $\widetilde{\Phi}$ is \mathbb{R} . In fact, if $\sigma_0 \in D_{\Phi}$ is a fixed number, then for all $x \in \mathbb{R}$ we have $\widetilde{\Phi}(x) \ge x\sigma_0 - \Phi(\sigma_0)$. Letting $x \to -\infty$, we obtain $\widetilde{\Phi}(-\infty) = +\infty$. In addition, if x > 0, then $\widetilde{\Phi}(x) = x\varphi(x) - \Phi(\varphi(x)) < -\Phi(\varphi(x))$. Letting $x \to +\infty$, we obtain $\widetilde{\Phi}(+\infty) = -\infty$. Therefore, the function $\widetilde{\Phi}$ assumes every value in \mathbb{R} .

Let $\alpha \in L$, $D_{\alpha} = [x_0, 0), \beta \in \Omega_0$, and let $\eta \in Y_0$ be a function non-decreasing on D_{η} . The quantity

$$R_{\alpha,\beta}[\eta] = \overline{\lim_{\sigma \uparrow 0}} \, \frac{\alpha(\max\{x_0, \eta(\sigma)\})}{\beta(\sigma)}$$

is called the generalized order $(\alpha, \beta$ -order) of the function η . Note that in the definition of the quantity $R_{\alpha,\beta}[\eta]$, the constant x_0 can be replaced by any other number from D_{α} , and if $b \in D_{\eta}$, then the function η can be replaced by the restriction of η to [b, 0). It is also clear that if $\zeta \in Y_0$ is a function non-decreasing on D_{ζ} and $\zeta(\sigma) \leq \eta(\sigma)$ for all $\sigma \in [c, 0)$, then $R_{\alpha,\beta}[\zeta] \leq R_{\alpha,\beta}[\eta]$.

For each Dirichlet series $F \in \mathcal{D}_0^*$, we set $R_{\alpha,\beta}^*(F) = R_{\alpha,\beta}[\eta]$, where $\eta(\sigma) = \ln \mu(\sigma, F)$ for all $\sigma \in [-1,0)$. If $F \in \mathcal{D}_0$, then we set $R_{\alpha,\beta}(F) = R_{\alpha,\beta}[\eta]$, where $\eta(\sigma) = \ln M(\sigma, F)$ for all $\sigma \in [-1,0)$; the quantity $R_{\alpha,\beta}(F)$ is called the *generalized order* $(\alpha, \beta$ -order) of the Dirichlet series F. It is clear that for each Dirichlet series $F \in \mathcal{D}_0$ we have $R_{\alpha,\beta}^*(F) \leq R_{\alpha,\beta}(F)$.

The growth of a Dirichlet series $F \in \mathcal{D}_0$ is usually identified with the growth of the function $\ln M(\sigma, F)$ as $\sigma \uparrow 0$. Important characteristics of the growth of such a series are its generalized orders $R_{\alpha,\beta}(F)$. Establishing various relations according to which the generalized order $R_{\alpha,\beta}(F)$ of a Dirichlet series $F \in \mathcal{D}_0$ of the form (1) can be expressed by the sequences of modules of its coefficients $(|a_n|)_{n\in\mathbb{N}_0}$, is a well-known classical problem. In connection with this problem, note that the generalized order $R^*_{\alpha,\beta}(F)$ of a Dirichlet series $F \in \mathcal{D}_0$ of the form (1) can be relatively simply expressed in terms of the sequence $(|a_n|)_{n\in\mathbb{N}_0}$ (see, for example, [2, 3]; see also below). In view of what has been said, the following problem arises.

Problem 1. Let $\alpha \in L$, $\beta \in \Omega_0$, and $\lambda \in \Lambda$. Find a necessary and sufficient condition on the sequence λ under which $R_{\alpha,\beta}(F) = R^*_{\alpha,\beta}(F)$ for each Dirichlet series $F \in \mathcal{D}_0(\lambda)$.

A similar problem for entire (absolutely convergent in \mathbb{C}) Dirichlet series was considered in [2, 4]. In [2], moreover, Problem 1 was completely solved in the case when $\alpha(x) = x$ for all $x \in [x_0, +\infty)$. Without going into details, we note that the results obtained in [2] also allow us to find a complete solution of Problem 1 in the case when $\alpha \in L$ is an arbitrary function regularly varying at the point $+\infty$ with index $\rho > 0$. This case is partially covered in this article.

We note also that by certain assumptions about the growth of functions $\alpha \in L$ and $\beta \in \Omega_0$, sufficient conditions on a sequence $\lambda \in \Lambda$ under which $R_{\alpha,\beta}(F) = R^*_{\alpha,\beta}(F)$ for any Dirichlet series $F \in \mathcal{D}_0(\lambda)$, were found in many works (see, for example, [5, 6, 7, 8, 9, 10, 11, 12]). In this article, Problem 1 is completely solved, in particular, in the case when $\alpha \in L$ is an arbitrary function slowly varying at the point $+\infty$ and $\beta \in \Omega_0$ is an arbitrary function regularly varying at the point 0 with index $\rho > 0$.

For every function $\Phi \in \Omega_0$ and each sequence $\lambda = (\lambda_n)_{n \in \mathbb{N}_0}$ from the class Λ , we put

$$\Delta_{\Phi}(\lambda) = \lim_{n \to \infty} \frac{\ln n}{-\widetilde{\Phi}(\lambda_n)}.$$

Theorem 1. Let $\alpha \in L$ be a function regularly varying at the point $+\infty$ with index $\rho_1 \geq 0$, $\beta \in \Omega_0$ be a function regularly varying at the point 0 with index $\rho_2 \geq 0$, $\rho = \rho_1 + \rho_2 > 0$, and $\Phi(\sigma) = \alpha^{-1}(\beta(\sigma))$ for all $\sigma \in [a, 0)$. Then the following statements are true: (a) for each Dirichlet series $F \in \mathcal{D}_0^*$ of the form (1) we have

$$R^*_{\alpha,\beta}(F) = \overline{\lim_{\sigma \uparrow 0}} \left(\frac{\ln^+ |a_n|}{-\widetilde{\Phi}(\lambda_n)} \right)^{\rho};$$

(b) if $\lambda \in \Lambda$ and $\tau(\lambda) > 0$, then for each $p_0 \in [0, +\infty]$ and any $\Psi \in \Omega_0$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta}(F) = p_0$ and $M(\sigma, F) \ge \Psi(\sigma)$ for all $\sigma \in [\sigma_0, 0)$;

(c) if $\lambda \in \Lambda$ and $\tau(\lambda) = 0$, then for each Dirichlet series $F \in \mathcal{D}_0(\lambda)$ the inequality $(R_{\alpha,\beta}(F))^{1/\rho} \leq (R^*_{\alpha,\beta}(F))^{1/\rho} + \Delta_{\Phi}(\lambda)$ holds;

(d) if $\lambda \in \Lambda$ and $\tau(\lambda) = 0$, then for each $p_0 \in [0, +\infty]$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F) = p_0$ and $(R_{\alpha,\beta,\gamma}(F))^{1/\rho} = (R^*_{\alpha,\beta,\gamma}(F))^{1/\rho} + \Delta_{\Phi}(\lambda)$.

Therefore, if $\lambda \in \Lambda$, then under the assumptions of Theorem 1 the equality $R_{\alpha,\beta}(F) = R^*_{\alpha,\beta}(F)$ holds for every Dirichlet series $F \in \mathcal{D}_0(\lambda)$ if and only if $\Delta_{\Phi}(\lambda) = 0$.

We obtain Theorem 1 from more general results proved below for modified orders of Dirichlet series from the class \mathcal{D}_0 .

2. Auxiliary results. The following two lemmas, which we will need later, are well known (see, for example, [2, 13]).

Lemma 1. Let $\Phi \in \Omega_0$, and let $F \in \mathcal{D}_0^*$ be a Dirichlet series of the form (1). Then the following conditions are equivalent:

(i) there exists a number $\sigma_0 < 0$ such that $\ln \mu(\sigma, F) \leq \Phi(\sigma)$ for all $\sigma \in [\sigma_0, 0)$;

(ii) there exists a number $n_0 \in \mathbb{N}_0$ such that $\ln |a_n| \leq -\widetilde{\Phi}(\lambda_n)$ for all integers $n \geq n_0$.

Lemma 2. Let $\Phi \in \Omega_0$, $D_{\Phi} = [a, 0)$, and p be a positive constant. Then for the function $\Psi(\sigma) = p\Phi(\sigma/p), \sigma \in [pa, 0)$, we have $\Psi \in \Omega_0$ and $\widetilde{\Psi}(x) = p\widetilde{\Phi}(x)$ for all $x \in \mathbb{R}$.

Theorem A ([2]). Let $\lambda = (\lambda_n)_{n \in \mathbb{N}_0}$ be a sequence from the class Λ with $\tau(\lambda) > 0$, and $G \in \mathcal{D}_0^*(\lambda) \setminus \mathcal{D}_0(\lambda)$ be a Dirichlet series of the form $G(s) = \sum_{n=0}^{\infty} b_n e^{s\lambda_n}$ with $b_n \ge 0$ for all $n \in \mathbb{N}_0$. Then for any function $\Psi \in \Omega_0$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ of the form (1) such that $a_n = b_n$ or $a_n = 0$ for each $n \in \mathbb{N}_0$, and $M(\sigma, F) = F(\sigma) \ge \Psi(\sigma)$ for all $\sigma \in [\sigma_0, 0)$.

3. Main results. Let $\Phi \in \Omega_0$, $l \in L$ be a function with $D_l = [0, +\infty)$ and l(0) = 0, and $\eta \in Y_0$ be a function non-decreasing on D_{η} . By $S_{\Phi,l}[\eta]$ denote the set of those p > 0 for which there exists $\sigma_0 = \sigma_0(p) < 0$ such that

$$\eta(\sigma) \le l(p)\Phi(\sigma/l(p)), \quad \sigma \in [\sigma_0, 0).$$
(2)

Note that if $\eta(0-0) < +\infty$, then $S_{\Phi,l}[\eta] = (0, +\infty)$. If $\eta(0-0) = +\infty$, $p \in S_{\Phi,l}[\eta]$, and q > p, then l(q) > l(p) and for all $\sigma < 0$ sufficiently close to 0 we have $\eta(l(q)\sigma)/l(q) \le \eta(l(p)\sigma)/l(p)$, and therefore $q \in S_{\Phi,l}[\eta]$. If $S_{\Phi,l}[\eta] = \emptyset$, we set $p_{\Phi,l}[\eta] = +\infty$, and let $p_{\Phi,l}[\eta] = \inf S_{\Phi,l}[\eta]$ in the opposite case. It is obvious that if $b \in D_{\eta}$, then in the definition of the quantity $p_{\Phi,l}[\eta]$, the function η can be replaced by the restriction of η to [b, 0). It is also clear that if $\zeta \in Y_0$ is a function non-decreasing on D_{ζ} and $\zeta(\sigma) \le \eta(\sigma)$ for all $\sigma \in [c, 0)$, then $p_{\Phi,l}[\zeta] \le p_{\Phi,l}[\eta]$. For a Dirichlet series $F \in \mathcal{D}_0^*$ of the form (1), we set $S_{\Phi,l}^*(F) = S_{\Phi,l}[\eta]$ and $p_{\Phi,l}^*(F) = p_{\Phi,l}[\eta]$, where $\eta(\sigma) = \ln \mu(\sigma, F)$ for all $\sigma \in [-1, 0)$, and let

$$k_{\Phi}(F) = \lim_{n \to +\infty} \frac{\ln^+ |a_n|}{-\widetilde{\Phi}(\lambda_n)}.$$

For every Dirichlet series $F \in \mathcal{D}_0$, we put $S_{\Phi,l}(F) = S_{\Phi,l}[\eta]$ and $p_{\Phi,l}(F) = p_{\Phi,l}[\eta]$, where $\eta(\sigma) = \ln M(\sigma, F)$ for all $\sigma \in [-1, 0)$. Note that $p_{\Phi}^*(F) \leq p_{\Phi}(F)$ for an arbitrary $\Phi \in \Omega_0$ and any Dirichlet series $F \in \mathcal{D}_0$.

Using Lemmas 1 and 2, it is easy to prove the following statement.

Proposition 1. Let $\Phi \in \Omega_0$, $l \in L$ be a function with $D_l = [0, +\infty)$ and l(0) = 0, and let $F \in \mathcal{D}_0^*$ be a Dirichlet series of the form (1). Then $p_{\Phi,l}^*(F) = l^{-1}(k_{\Phi}(F))$.

Proof. First, we prove the inequality $l(p_{\Phi,L}^*(F)) \leq k_{\Phi}(F)$. This inequality is trivial in the case when $k_{\Phi}(F) = +\infty$. Suppose that $k_{\Phi}(F) < +\infty$, and let $k > k_{\Phi}(F)$ be an arbitrary fixed number. Note that $k_{\Phi}(F) \geq 0$, and therefore k > 0. Setting $p = l^{-1}(k)$, from the definition of the quantity $k_{\Phi}(F)$ for some $n_0 \in \mathbb{N}_0$ we obtain

$$\ln^{+}|a_{n}| \leq -l(p)\Phi(\lambda_{n}), \quad n \geq n_{0}.$$
(3)

Then by Lemmas 1 and 2 for some $\sigma_0 < 0$ we have

$$\ln \mu(\sigma, F) \le l(p)\Phi(\sigma/l(p)), \quad \sigma \in [\sigma_0, 0), \tag{4}$$

that is, $p \in S^*_{\Phi,l}(F)$. Thus, $p^*_{\Phi,l}(F) \leq p$, and hence $l(p^*_{\Phi,l}(F)) \leq l(p) = k$. Since $k > k_{\Phi}(F)$ is arbitrary, we obtain $l(p^*_{\Phi,l}(F)) \leq k_{\Phi}(F)$.

Now we prove the opposite inequality $l^{-1}(k_{\Phi}(F)) \leq p_{\Phi,l}^*(F)$. This inequality is trivial in the case when $p_{\Phi,l}^*(F) = +\infty$. Suppose that $p_{\Phi,l}^*(F) < +\infty$, and let $p > p_{\Phi,l}^*(F)$ be an arbitrary fixed number. From the definition of the quantity $p_{\Phi,l}^*(F)$ for some $\sigma_0 < 0$ we have (4). Since $-\widetilde{\Phi}(x) \to +\infty$ as $x \to +\infty$, by Lemmas 1 and 2 for some $n_0 \in \mathbb{N}_0$ we obtain (3), and therefore $k_{\Phi}(F) \leq l(p)$, i.e. $l^{-1}(k_{\Phi}(F)) \leq p$. Since $p > p_{\Phi,l}^*(F)$ is arbitrary, we obtain $l^{-1}(k_{\Phi}(F)) \leq p_{\Phi,l}^*(F)$.

Proposition 2. Let $\lambda = (\lambda_n)_{n \in \mathbb{N}_0}$ be a sequence from the class Λ with $\tau(\lambda) > 0$, and let $\Psi \in \Omega_0$ be an arbitrary function. Then:

(i) there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ of the form (1) such that $a_n = 1$ or $a_n = 0$ for every $n \in \mathbb{N}_0$ and $M(\sigma, F) \ge \Psi(\sigma)$ for all $\sigma \in [\sigma_0, 0)$;

(ii) for each $k_0 \in [0, +\infty]$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $k_{\Phi}(F) = k_0$ and $M(\sigma, F) \ge \Psi(\sigma)$ for all $\sigma \in [\sigma_0, 0)$.

Proof. Let $k_0 \in [0, +\infty]$. In the case when $k_0 < +\infty$ for all $n \in \mathbb{N}_0$ we set $b_n = e^{-k_0 \Phi(\lambda_n)}$, and in the case when $k_0 = +\infty$ for all $n \in \mathbb{N}_0$ we put $b_n = e^{-\lambda_n \delta_n}$, where $(\delta_n)_{n \in \mathbb{N}_0}$ is an arbitrary sequence increasing to 0 such that $\overline{\Phi}(\lambda_n) = o(\delta_n)$ as $n \to \infty$.

Consider the Dirichlet series $G(s) = \sum_{n=0}^{\infty} b_n e^{s\lambda_n}$. It is easy to verify that $\sigma^*(G) = 0$, and therefore $G \in \mathcal{D}_0^*(\lambda)$. Let's fix some $\sigma \in (-\tau(\lambda), 0)$. Then $\tau(\lambda) > -\sigma$, and hence the set $E = \{k \in \mathbb{N}_0 : \ln k \ge -\sigma\lambda_k\}$ is infinite. For an arbitrary sufficiently large $k \in E$ we have

$$\sum_{n=[k/2]}^{k} a_n e^{\sigma \lambda_n} \ge \sum_{n=[k/2]}^{k} e^{\sigma \lambda_n} \ge \sum_{n=[k/2]}^{k} e^{\sigma \lambda_k} \ge \frac{k}{2} e^{\sigma \lambda_k} \ge \frac{k}{2} e^{-\ln k} = \frac{1}{2}$$

Therefore, the series G is divergent at the point $s = \sigma$, and hence $G \in \mathcal{D}_0^*(\lambda) \setminus \mathcal{D}_0(\lambda)$. Then, according to Theorem A, there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ of the form (1) such that $a_n = b_n$ or $a_n = 0$ for each $n \in \mathbb{N}_0$, and $M(\sigma, F) = F(\sigma) \ge \Psi(\sigma)$ for all $\sigma \in [\sigma_0, 0)$. In addition, as it is not difficult to verify, $k_{\Phi}(F) = k_0$. This proves (ii), and also (i) if $k_0 = 0$. \Box

From Proposition 2 we see that if $\tau(\lambda) > 0$, then the growth of a Dirichlet series from the class $\mathcal{D}_0(\lambda)$ can be arbitrarily fast even under the condition of boundedness its maximal term.

Theorem 2. Let $\Phi \in \Omega_0$, $l \in L$ be a function with $D_l = [0, +\infty)$ and l(0) = 0, and let $\lambda = (\lambda_n)_{n \in \mathbb{N}_0}$ be a sequence from class Λ with $\tau(\lambda) = 0$. Then:

(i) for each Dirichlet series $F \in \mathcal{D}_0(\lambda)$ we have $l(p_{\Phi,l}(F)) \leq l(p_{\Phi,l}^*(F)) + \Delta_{\Phi}(\lambda)$;

(ii) for every $p_0 \in [0, +\infty]$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $p_{\Phi,l}^*(F) = p_0$ and $l(p_{\Phi,l}(F)) = l(p_{\Phi,l}^*(F)) + \Delta_{\Phi}(\lambda)$.

Proof. To prove (i), we consider a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ of the form (1) and note that the inequality $l(p_{\Phi,l}(F)) \leq l(p_{\Phi,l}^*(F)) + \Delta_{\Phi}(\lambda)$ does not need proof if $p_{\Phi,l}^*(F) = +\infty$ or $\Delta_{\Phi}(\lambda) = +\infty$. Suppose that $p_{\Phi,l}^*(F) < +\infty$ and $\Delta_{\Phi}(\lambda) < +\infty$ and fix an arbitrary $b > l(p_{\Phi}^*(F)) + \Delta_{\Phi}(\lambda)$. It is clear that then there exist constants $c > l(p_{\Phi}^*(F))$ and $\Delta > \Delta_{\Phi}(\lambda)$ such that $c + \Delta < b$. From Proposition 1, the definition of the quantity $\Delta_{\Phi}(\lambda)$, and the obvious inequality $(b-c)/\Delta > 1$, it follows the existence of a number $n_0 \in \mathbb{N}_0$ such that for all integers $n \geq n_0$ the following inequalities $|a_n| \leq e^{-c\tilde{\Phi}(\lambda_n)}$, $n \leq e^{-\Delta\tilde{\Phi}(\lambda_n)}$ hold and, in addition,

$$\sum_{n \ge n_0} \frac{1}{n^{(b-c)/\Delta}} \le \frac{1}{2}.$$

Consider the auxiliary Dirichlet series

$$G(s) = \sum_{n \ge n_0} e^{-c\widetilde{\Phi}(\lambda_n)} e^{s\lambda_n}.$$

It is easy to verify that $\sigma^*(G) = 0$, that is, $G \in \mathcal{D}_0(\lambda)$. In addition, Lemmas 1 and 2 imply the existence of a constant $\sigma_0 < 0$ such that $\ln \mu(\sigma, G) \leq c\Phi(\sigma/c)$ for all $\sigma \in [\sigma_0, 0)$. Therefore, using the above inequalities, for all $\sigma \in [b\sigma_0/c, 0)$ we obtain

$$M(\sigma,G) = \sum_{n \ge n_0} e^{-c\tilde{\Phi}(\lambda_n)} e^{\sigma\lambda_n} = \sum_{n \ge n_0} \left(e^{-c\tilde{\Phi}(\lambda_n)} e^{(c\sigma/b)\lambda_n} \right)^{b/c} \frac{1}{e^{-(b-c)\tilde{\Phi}(\lambda_n)}} \le \\ \le (\mu(c\sigma/b,G))^{b/c} \sum_{n \ge n_0} \frac{1}{e^{-(b-c)\tilde{\Phi}(\lambda_n)}} \le e^{b\Phi(\sigma/b)} \sum_{n \ge n_0} \frac{1}{n^{(b-c)/\Delta}} \le \frac{1}{2} e^{b\Phi(\sigma/b)}.$$

Then, by taking $q = l^{-1}(b)$, for all $\sigma < 0$ sufficiently close to 0 we have

$$M(\sigma, F) \le \sum_{n \ge n_0} |a_n| e^{\sigma \lambda_n} + M(\sigma, G) \le e^{b\Phi(\sigma/b)} = e^{l(q)\Phi(\sigma/l(q))}$$

Therefore, $q \in S_{\Phi,l}(F)$, and hence $l(p_{\Phi,l}(F)) \leq l(q) = b$. The required inequality follows from the arbitrariness of $b > l(p_{\Phi,l}^*(F)) + \Delta_{\Phi}(\lambda)$.

Now we prove (ii). The proof is trivial if $p_0 = +\infty$ or $\Delta_{\Phi}(\lambda) = 0$. Suppose that $p_0 < +\infty$ and $\Delta_{\Phi}(\lambda) > 0$, and set $c = l(p_0)$. Let us choose arbitrary positive sequences $(c_k)_{k \in \mathbb{N}_0}$, $(\delta_k)_{k\in\mathbb{N}_0}$ and $(\Delta_k)_{k\in\mathbb{N}_0}$ such that $c_k \to c$ for $k \to \infty$, $(\delta_k)_{k\in\mathbb{N}_0}$ decreases to 1, and $(\Delta_k)_{k\in\mathbb{N}_0}$ increases to $\Delta_{\Phi}(\lambda)$. It is easy to justify the existence of an increasing sequence $(n_k)_{k\in\mathbb{N}_0}$ of positive integers such that for it, as well as for the sequence $(m_k)_{k\in\mathbb{N}_0}$, where $m_k = [(n_k+1)/2]$ for all $k \in \mathbb{N}_0$, we have

$$n_k < m_{k+1}, \quad \frac{\ln(n_k - m_k + 1)}{-\widetilde{\Phi}(\lambda_{n_k})} \ge \Delta_k, \quad \frac{\ln m_k}{-\widetilde{\Phi}(\lambda_{m_k})} \le \delta_k \frac{\ln n_k}{-\widetilde{\Phi}(\lambda_{n_k})} \tag{5}$$

for each $k \in \mathbb{N}_0$.

Let $n \in \mathbb{N}_0$. Put $a_n = e^{-c_k \tilde{\Phi}(\lambda_n)}$ if $n \in [m_k, n_k]$ for some $k \in \mathbb{N}_0$, and let $a_n = 0$ in the opposite case. Consider the Dirichlet series F of the form (1) with the coefficients a_n defined in this way. It is easy to verify that $\sigma^*(F) = 0$, that is, $F \in \mathcal{D}_0(\lambda)$, and $k_{\Phi}(F) = c$. According to Proposition 1 we have $p_{\Phi,l}^*(F) = l^{-1}(c) = p_0$. Note also that the constructed series can be written in the form

$$F(s) = \sum_{k=0}^{\infty} \sum_{n=m_k}^{n_k} e^{-c_k \tilde{\Phi}(\lambda_n)} e^{s\lambda_n}$$

For each $k \in \mathbb{N}_0$, we set $b_k = (n_k - m_k + 1)e^{-c_k \widetilde{\Phi}(\lambda_{m_k})}$, and consider the auxiliary Dirichlet series $H(s) = \sum_{k=0}^{\infty} b_k e^{s\lambda_{n_k}}$. If $\sigma < 0$ and $k \in \mathbb{N}_0$, then

$$\sum_{n=m_k}^{n_k} e^{-c_k \tilde{\Phi}(\lambda_n)} e^{\sigma \lambda_n} \ge \sum_{n=m_k}^{n_k} e^{-c_k \tilde{\Phi}(\lambda_{m_k})} e^{\sigma \lambda_{n_k}} = b_k e^{\sigma \lambda_{n_k}},$$

and therefore $H \in \mathcal{D}_0$. In addition, $M(\sigma, F) = F(\sigma) \ge H(\sigma) = M(\sigma, H)$ for each $\sigma < 0$ and, according to (5),

$$k_{\Phi}(H) = \lim_{k \to +\infty} \frac{\ln^+ |b_k|}{-\widetilde{\Phi}(\lambda_{n_k})} = \lim_{k \to +\infty} \left(\frac{\ln(n_k - m_k + 1)}{-\widetilde{\Phi}(\lambda_{n_k})} + c_k \frac{\widetilde{\Phi}(\lambda_{m_k})}{\widetilde{\Phi}(\lambda_{n_k})} \right) \ge \Delta_{\Phi}(\lambda) + c_k \frac{\widetilde{\Phi}(\lambda_{m_k})}{\widetilde{\Phi}(\lambda_{n_k})} = 0$$

Therefore, $l(p_{\Phi,l}(F)) \ge l(p_{H,l}(F)) \ge l(p_{H,l}^*(F)) = k_{\Phi}(H) \ge l(p_{\Phi,l}^*(F)) + \Delta_{\Phi}(\lambda)$. It remains to use statement (i) of this theorem.

Let $\alpha \in L$, $D_{\alpha} = [x_0, 0), \beta \in \Omega_0, \gamma \in C_0$ be a function positive on D_{γ} , and $\eta \in Y_0$ be a function non-decreasing on D_{η} . The quantity

$$R_{\alpha,\beta,\gamma}[\eta] = \overline{\lim_{\sigma \uparrow 0}} \, \frac{\alpha(\max\{x_0,\gamma(\sigma)\eta(\sigma)\})}{\beta(\sigma)}$$

is called the *modified order* $(\alpha, \beta, \gamma$ -order) of the function η . Note that in the definition of the quantity $R_{\alpha,\beta}[\eta]$, the constant x_0 can be replaced by any other number from D_{α} , and if $b \in D_{\eta}$, then the function η can be replaced by the restriction of η to [b, 0). It is also clear that if $\zeta \in Y_0$ is a function non-decreasing on D_{ζ} and $\zeta(\sigma) \leq \eta(\sigma)$ for all $\sigma \in [c, 0)$, then $R_{\alpha,\beta,\gamma}[\zeta] \leq R_{\alpha,\beta,\gamma}[\eta]$.

For any Dirichlet series $F \in \mathcal{D}_0^*$, we set $R^*_{\alpha,\beta,\gamma}(F) = R_{\alpha,\beta,\gamma}[\eta]$, where $\eta(\sigma) = \ln \mu(\sigma, F)$ for all $\sigma \in [-1,0)$. If $F \in \mathcal{D}_0$, we put $R_{\alpha,\beta,\gamma}(F) = R_{\alpha,\beta,\gamma}[\eta]$, where $\eta(\sigma) = \ln M(\sigma, F)$ for all $\sigma \in [-1,0)$; the quantity $R_{\alpha,\beta,\gamma}(F)$ is called the *modified order* $(\alpha,\beta,\gamma\text{-order})$ of the Dirichlet series F. It is clear that $R^*_{\alpha,\beta,\gamma}(F) \leq R_{\alpha,\beta,\gamma}(F)$ for every Dirichlet series $F \in \mathcal{D}_0$.

In connection with Problem 1, it is natural to consider the following more general problem.

Problem 2. Let $\alpha \in L$, $\beta \in \Omega_0$, $\gamma \in C_0$ be a function positive on D_{γ} , and $\lambda \in \Lambda$. Find a necessary and sufficient condition on the sequence $\lambda \in \Lambda$ under which $R_{\alpha,\beta,\gamma}(F) = R^*_{\alpha,\beta,\gamma}(F)$ for each Dirichlet series $F \in \mathcal{D}_0(\lambda)$.

Below we will obtain solutions of Problem 2 under fairly general assumptions about the behavior of the functions $\alpha \in L$, $\beta \in \Omega_0$, and $\gamma \in C_0$.

Proposition 3. Let $\alpha \in L$, $\beta \in \Omega_0$, and $\gamma \in C_0$ be a function positive on D_{γ} . If the condition

$$\forall c > 0: \quad \underline{\lim}_{\sigma \uparrow 0} \alpha^{-1}(c\beta(\sigma)) / \gamma(\sigma) < +\infty$$
(6)

holds, then for any sequence $\lambda = (\lambda_n)_{n \in \mathbb{N}_0}$ from the class Λ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ of the form (1) such that $a_n = 1$ or $a_n = 0$ for each $n \in \mathbb{N}_0$ and $R_{\alpha,\beta,\gamma}(F) = +\infty$.

Proof. In the case when $\tau(\lambda) > 0$, it is enough to use Proosition 2.

Let $\tau(\lambda) = 0$. Consider the series $F(s) = \sum_{n=0}^{\infty} e^{s\lambda_n}$. It is clear that $F \in \mathcal{D}_0(\lambda)$, $R^*_{\alpha,\beta,\gamma}(F) = 0$ and $M(\sigma,F) \uparrow +\infty$ as $\sigma \uparrow 0$. Suppose that $R_{\alpha,\beta,\gamma}(F) < c$ for some c > 0. Then, from the definition of the quantity $R_{\alpha,\beta,\gamma}(F)$, we have $\ln M(\sigma,F) \leq \alpha^{-1}(c\beta(\sigma))/\gamma(\sigma)$ for all $\sigma \in [\sigma_0, 0)$, which contradicts (6). Therefore, $R_{\alpha,\beta,\gamma}(F) = +\infty$.

Theorem 3. Let $\alpha \in L$, $\beta \in \Omega_0$, and $\gamma \in C_0$ be a function positive on D_{γ} . Suppose that condition (6) is not satisfied, and a function $\Phi \in C_0$ is such that

$$\forall t > 0: \quad \lim_{\sigma \uparrow 0} \gamma(\sigma) \Phi(\sigma/t) = +\infty \tag{7}$$

and for every t > 0 there exists a finite limit

$$h(t) := \lim_{\sigma \uparrow 0} \frac{\alpha(\gamma(\sigma)t\Phi(\sigma/t))}{\beta(\sigma)},\tag{8}$$

and h(t) is a continuously function increasing to $+\infty$ on $(0, +\infty)$ with h(0) = h(0+0) = 0. Then $\Phi \in \Omega_0$ and if t = l(p) is the inverse function of the function p = h(t), then:

(a) for every function $\eta \in Y_0$ non-decreasing on D_{η} , we have $R_{\alpha,\beta,\gamma}[\eta] = p_{\Phi,l}[\eta]$;

(b) for each Dirichlet series $F \in \mathcal{D}_0^*$ we have $R^*_{\alpha,\beta,\gamma}(F) = h(k_{\Phi}(F));$

(c) if $\lambda \in \Lambda$ and $\tau(\lambda) > 0$, then for every $p_0 \in [0, +\infty]$ and any $\Psi \in \Omega_0$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F) = p_0$ and $M(\sigma,F) \ge \Psi(\sigma)$ for all $\sigma \in [\sigma_0,0)$; (d) if $\lambda \in \Lambda$ and $\tau(\lambda) = 0$, then for every Dirichlet series $F \in \mathcal{D}_0(\lambda)$ the inequality $l(R_{\alpha,\beta,\gamma}(F)) \le l(R^*_{\alpha,\beta,\gamma}(F)) + \Delta_{\Phi}(\lambda)$ holds;

(e) if $\lambda \in \Lambda$ and $\tau(\lambda) = 0$, then for each $p_0 \in [0, +\infty]$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F) = p_0$ and $l(R_{\alpha,\beta,\gamma}(F)) = l(R^*_{\alpha,\beta,\gamma}(F)) + \Delta_{\Phi}(\lambda)$.

Proof. If (6) is not satisfied, then for some c > 0 we have $\alpha^{-1}(c\beta(\sigma))/\gamma(\sigma) \to +\infty$ as $\sigma \uparrow 0$. Let's choose the number t > 0 so that the inequality h(t) > c holds. Then, according to (8), there exists $\sigma_0 < 0$ such that $t\Phi(\sigma/t) \ge \alpha^{-1}(c\beta(\sigma))/\gamma(\sigma)$ for all $\sigma \in [\sigma_0, 0)$. Therefore, $\Phi(\sigma) \to +\infty$ as $\sigma \uparrow 0$, and hence $\Phi \in \Omega_0$.

Let's prove (a). Let $\eta \in Y_0$ be a function non-decreasing on D_{η} . First, we show that $R_{\alpha,\beta,\gamma}[\eta] \leq p_{\Phi,l}[\eta]$. This inequality is trivial if $p_{\Phi,l}[\eta] = +\infty$. Suppose that $p_{\Phi,l}[\eta] < +\infty$,

and let $p > p_{\Phi,l}[\eta]$ be an arbitrary fixed number. Then there exists a number $\sigma_0 < 0$ such that (2) holds. Therefore, using (2) and (7), we obtain

$$R_{\alpha,\beta,\gamma}[\eta] \le \overline{\lim_{\sigma \uparrow 0}} \, \frac{\alpha(\gamma(\sigma)l(p)\Phi(\sigma/l(p)))}{\beta(\sigma)} = h(l(p)) = p,$$

and the required inequality follows from the arbitrariness of $p > p_{\Phi,l}[\eta]$.

Now we prove that $p_{\Phi,l}[\eta] \leq R_{\alpha,\beta,\gamma}[\eta]$. This inequality is trivial if $R_{\alpha,\beta,\gamma}[\eta] = +\infty$. Suppose that $R_{\alpha,\beta,\gamma}[\eta] < +\infty$, and let $p > R_{\alpha,\beta,\gamma}[\eta]$ be an arbitrary fixed number, and $q \in (R_{\alpha,\beta,\gamma}[\eta], p)$. From the definition of the quantity $R_{\alpha,\beta,\gamma}[\eta]$ for some $\sigma_1 < 0$ we have

$$\gamma(\sigma)\eta(\sigma) \le \alpha^{-1}(q\beta(\sigma)), \quad \sigma \in [\sigma_1, 0).$$
 (9)

In addition, since

$$\lim_{\sigma \uparrow 0} \frac{\alpha(\gamma(\sigma)l(p)\Phi(\sigma/l(p)))}{\beta(\sigma)} = h(l(p)) = p > q,$$

for some $\sigma_2 < 0$ we obtain

$$q\beta(\sigma) \le \alpha(\gamma(\sigma)l(p)\Phi(\sigma/l(p))), \quad \sigma \in [\sigma_2, 0).$$
(10)

Taking $\sigma_0 = \max\{\sigma_1, \sigma_2\}$, from (9) and (10) we see that (2) is fulfilled, i.e. $p \in S_{\Phi,l}[\eta]$. Therefore, $p_{\Phi,l}[\eta] \leq p$. Since $p > R_{\alpha,\beta,\gamma}[\eta]$ is arbitrary, we have $p_{\Phi,l}[\eta] \leq R_{\alpha,\beta,\gamma}[\eta]$.

Further, according to the part of the theorem that has already been proved, for each Dirichlet series $F \in \mathcal{D}_0^*$ we obtain $R^*_{\alpha,\beta,\gamma}(F) = p^*_{\Phi,l}(F)$, and for each Dirichlet series $F \in \mathcal{D}_0$ we have $R_{\alpha,\beta,\gamma}(F) = p_{\Phi,l}(F)$. Therefore, (b) follows from Proposition 1, and (c) follows from Proposition 2. In addition, for an arbitrary sequence $\lambda \in \Lambda$ with $\tau(\lambda) = 0$, according to Theorem 2, we have (d) and (e).

4. Corollaries. Let us give some consequences from the results proved above.

Theorem 4. Let $\alpha \in L$ be a function slowly varying at the point $+\infty$, $\beta \in \Omega_0$ be a function regularly varying at the point 0 with index $\rho > 0$, $\gamma \in C_0$ be a function positive on D_{γ} such that for each fixed t > 0 the inequalities

$$0 < \underline{\lim}_{\sigma \uparrow 0} \frac{\gamma(t\sigma)}{\gamma(\sigma)} \le \overline{\lim}_{\sigma \uparrow 0} \frac{\gamma(t\sigma)}{\gamma(\sigma)} < +\infty$$
(11)

hold, and $\Phi \in C_0$ be a function such that $\Phi(\sigma) = \alpha^{-1}(\beta(\sigma))/\gamma(\sigma)$ for all $\sigma \in [\sigma_0, 0)$. Then $\Phi \in \Omega_0$ and the following statements are true:

(a) for every Dirichlet series $F \in \mathcal{D}_0^*$ we have

$$R^*_{\alpha,\beta,\gamma}(F) = \overline{\lim_{\sigma \uparrow 0}} \left(\frac{\ln^+ |a_n|}{-\widetilde{\Phi}(\lambda_n)} \right)^{\rho};$$

(b) if $\lambda \in \Lambda$ and $\tau(\lambda) > 0$, then for every $p_0 \in [0, +\infty]$ and any $\Psi \in \Omega_0$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F) = p_0$ and $M(\sigma,F) \ge \Psi(\sigma)$ for all $\sigma \in [\sigma_0,0)$; (c) if $\lambda \in \Lambda$ and $\tau(\lambda) = 0$, then for every Dirichlet series $F \in \mathcal{D}_0(\lambda)$ the inequality $(R_{\alpha,\beta,\gamma}(F))^{1/\rho} \le (R^*_{\alpha,\beta,\gamma}(F))^{1/\rho} + \Delta_{\Phi}(\lambda)$ holds;

(d) if $\lambda \in \Lambda$ and $\tau(\lambda) = 0$, then for each $p_0 \in [0, +\infty]$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F) = p_0$ and $(R_{\alpha,\beta,\gamma}(F))^{1/\rho} = (R^*_{\alpha,\beta,\gamma}(F))^{1/\rho} + \Delta_{\Phi}(\lambda)$. Proof. Let $D_{\gamma} = [a, 0)$. From the conditions satisfied by the function γ , for some constant d > 1 and all $\sigma \in [a/2, 0)$ we have $\gamma(\sigma) \leq d\gamma(2\sigma)$. Let $M = \max\{\gamma(\sigma) : \sigma \in [a, a/2]\},$ $q = \log_2 d$ and $c = M|a|^q$. Then for all $\sigma \in [a, 0)$ we have $\gamma(\sigma) \leq c|\sigma|^{-q}$. In fact, if $\sigma \in [a/2^n, a/2^{n+1}]$ for some $n \in \mathbb{N}_0$, then

$$\gamma(\sigma) \le d^n \gamma(2^n \sigma) \le 2^{qn} M \le M |a|^q |\sigma|^{-q} = c |\sigma|^{-q}.$$

Let's fix an arbitrary constant $\rho_0 \in (0, \rho)$ and choose a constant r > 0 so that the inequality $r\rho_0 > q$ holds. According to the well-known properties of regularly varying functions, there exist constants $\sigma_1 < 0$ and $x_0 > 0$ such that $\beta(\sigma) \ge |\sigma|^{-\rho_0}$ for all $\sigma \in [\sigma_1, 0)$ and $\alpha^{-1}(x) \ge x^r$ for all $x \in [x_0, +\infty)$. Then there exists a constant $\sigma_2 < 0$ such that $\alpha^{-1}(\beta(\sigma)) \ge (\beta(\sigma))^r \ge |\sigma|^{-r\rho_0}$ for all $\sigma \in [\sigma_2, 0)$. Therefore, using the above estimate for the γ function, we obtain $\Phi(\sigma) \to +\infty$ as $\sigma \uparrow 0$. From this, in particular, we see that $\Phi \in \Omega_0$, condition (6) is not satisfied, and (11) implies (7). In addition, using the conditions satisfied by the functions α , β , and γ , for each fixed t > 0 we have

$$\lim_{\sigma \uparrow 0} \frac{\alpha(\gamma(\sigma)t\Phi(\sigma/t))}{\beta(\sigma)} = \lim_{\sigma \uparrow 0} \frac{\alpha(\gamma(\sigma)\Phi(\sigma))}{\beta(t\sigma)} = \lim_{\sigma \uparrow 0} \frac{\beta(\sigma)}{\beta(t\sigma)} = t^{\rho}$$

Therefore, all the conditions of Theorem 3 are satisfied with $h(t) = t^{\rho}$ for all t > 0, and (a), (b), (c), and (d) are consequences of the corresponding statements of Theorem 3.

Theorem 5. Let $\alpha \in L$ be an arbitrary function, $\beta \in \Omega_0$ be a function regularly varying at the point 0 with index $\rho > 0$, $\gamma(\sigma) = |\sigma|^{-1}$ for all $\sigma \in [-1, 0)$, and $\Phi \in C_0$ be a function such that $\Phi(\sigma) = |\sigma| \alpha^{-1}(\beta(\sigma))$ for all $\sigma \in [\sigma_0, 0)$. Then:

(i) if $\Phi \notin \Omega_0$, then for every sequence $\lambda \in \Lambda$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F) = 0$, but $R_{\alpha,\beta,\gamma}(F) = +\infty$;

(ii) if $\Phi \in \Omega_0$, then statements (a), (b), (c), and (d) of Theorem 4 are true.

Proof. Noting that the condition $\Phi \notin \Omega_0$ is equivalent to condition (6), from Proposition 3 we obtain (i).

Let $\Phi \in \Omega_0$. Then, as it is easy to see, (7) holds. In addition, for every fixed t > 0 we have

$$\lim_{\sigma \uparrow 0} \frac{\alpha(\gamma(\sigma)t\Phi(\sigma/t))}{\beta(\sigma)} = \lim_{\sigma \uparrow 0} \frac{\alpha(|\sigma|^{-1}t\Phi(\sigma/t))}{\beta(\sigma)} = \lim_{\sigma \uparrow 0} \frac{\alpha(|\sigma|^{-1}\Phi(\sigma))}{\beta(t\sigma)} = \lim_{\sigma \uparrow 0} \frac{\beta(\sigma)}{\beta(t\sigma)} = t^{\rho}$$

Therefore, all the conditions of Theorem 3 are satisfied with $h(t) = t^{\rho}$ for all t > 0. This implies (ii).

Theorem 6. Let $\alpha \in L$ be an arbitrary function such that

$$\forall q > 1: \quad \underline{\lim}_{y \to +\infty} \alpha^{-1}(qy) / \alpha^{-1}(y) > 1, \tag{12}$$

 $\beta \in \Omega_0$ be a function regularly varying at the point 0 with index $\rho > 0$, $\gamma \in C_0$ be a function regularly varying at the point 0 with index 1, and $\Phi \in C_0$ be a function such that $\Phi(\sigma) = \alpha^{-1}(\beta(\sigma))/\gamma(\sigma)$ for all $\sigma \in [\sigma_0, 0)$. Then statements (i) and (ii) of Theorem 5 are true.

Proof. By the assumptions of the theorem, the condition $\Phi \notin \Omega_0$ is equivalent to condition (6), and therefore from Proposition 3 we obtain statement (i) of Theorem 5.

Let $\Phi \in \Omega_0$. Then, as it is easy to see, (7) holds. Next, we note that condition (12) is satisfied if and only if for any function $\delta \in C_0$ such that $\delta(x) \to 1$ as $x \to +\infty$, we have $\alpha(x\delta(x)) \sim \alpha(x)$ as $x \to +\infty$. Using this fact, for every fixed t > 0 we have

$$\lim_{\sigma \uparrow 0} \frac{\alpha(\gamma(\sigma)t\Phi(\sigma/t))}{\beta(\sigma)} = \lim_{\sigma \uparrow 0} \frac{\alpha(\gamma(t\sigma)t\Phi(\sigma))}{\beta(t\sigma)} = \lim_{\sigma \uparrow 0} \frac{\alpha(\gamma(\sigma)\Phi(\sigma))}{t^{-\rho}\beta(\sigma)} = t^{\rho}$$

Therefore, all the conditions of Theorem 3 are satisfied with $h(t) = t^{\rho}$ for all t > 0. This implies statement (ii) of Theorem 5.

Theorem 7. Let $\alpha \in L$ be a function regularly varying at the point $+\infty$ with index $\rho_1 > 0$, $\beta \in \Omega_0$ be a function regularly varying at the point 0 with index $\rho_2 \geq 0$, $\gamma \in C_0$ be a function regularly varying at the point 0 with index $\rho_3 \in \mathbb{R}$, $\rho = \rho_1 + \rho_2 - \rho_1 \rho_3$, and $\Phi \in C_0$ be a function such that $\Phi(\sigma) = \alpha^{-1}(\beta(\sigma))/\gamma(\sigma)$ for all $\sigma \in [\sigma_0, 0)$. Then:

(i) if $\rho_2 - \rho_1 \rho_3 < 0$ or simultaneously the conditions $\rho_2 - \rho_1 \rho_3 = 0$ and $\Phi \notin \Omega_0$ are satisfied, then for any sequence $\lambda \in \Lambda$ there exists a Dirichlet series $F \in \mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F) = 0$ and $R_{\alpha,\beta,\gamma}(F) = +\infty$;

(ii) if simultaneously the conditions $\rho_2 - \rho_1 \rho_3 = 0$ and $\Phi \in \Omega_0$ are satisfied or $\rho_2 - \rho_1 \rho_3 > 0$, then statements (a), (b), (c), and (d) of Theorem 4 are true.

Proof. For every fixed t > 0 we have

$$\Phi(t\sigma) = \frac{\alpha^{-1}(\beta(t\sigma))}{\gamma(t\sigma)} \sim \frac{\alpha^{-1}(t^{-\rho_2}\beta(\sigma))}{t^{-\rho_3}\gamma(\sigma)} \sim \frac{t^{-\rho_2/\rho_1}}{t^{-\rho_3}} \Phi(\sigma) = t^{-(\rho_2-\rho_1\rho_3)/\rho_1} \Phi(\sigma), \quad \sigma \uparrow 0,$$

i.e. Φ is a function regularly varying at the point 0 with index $(\rho_2 - \rho_1 \rho_3)/\rho_1$. We note that in the case when $\rho_2 - \rho_1 \rho_3 < 0$ we have $\Phi \notin \Omega_0$, in the case when $\rho_2 - \rho_1 \rho_3 > 0$ we have $\Phi \in \Omega_0$, and in the case when $\rho_2 - \rho_1 \rho_3 = 0$ both the situations $\Phi \notin \Omega_0$ or $\Phi \in \Omega_0$ are possible.

Therefore, all the conditions of (i) reduce to the condition $\Phi \notin \Omega_0$, and all the conditions of (ii) reduce to the condition $\Phi \in \Omega_0$.

Noting that the condition $\Phi \notin \Omega_0$ is equivalent to condition (6), from Proposition 3 we obtain statement (i).

Let $\Phi \in \Omega_0$. Then, as it is easy to see, $\rho > 0$ and (7) holds. In addition, for every fixed t > 0 we have

$$\lim_{\sigma \uparrow 0} \frac{\alpha(\gamma(\sigma)t\Phi(\sigma/t))}{\beta(\sigma)} = \lim_{\sigma \uparrow 0} \frac{t^{\rho_1}\alpha(t^{-\rho_3}\gamma(\sigma)\Phi(\sigma))}{\beta(t\sigma)} = \lim_{\sigma \uparrow 0} \frac{t^{\rho_1-\rho_1\rho_3}\alpha(\gamma(\sigma)\Phi(\sigma))}{t^{-\rho_2}\beta(\sigma)} = t^{\rho_1}$$

Therefore, all the conditions of Theorem 3 are satisfied with $h(t) = t^{\rho}$ for all t > 0. This implies statement (ii).

Finally, note that Theorem 1 is a consequence of Theorems 4 and 7 in the case when $\gamma(\sigma) = 1$ for all $\sigma \in [-1, 0)$.

REFERENCES

- 1. E. Seneta, Regularly varying functions, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
- T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), №2, 172–187. https://doi.org/10.15330/cmp.7.2.172-187
- P.V. Filevych, O.B. Hrybel, The growth of the maximal term of Dirichlet series, Carpathian Math. Publ., 10 (2018), №1, 79–81. https://doi: 10.15330/cmp.10.1.79-81
- T.Ya. Hlova, P.V. Filevych, The growth of entire Dirichlet series in terms of generalized orders, Sb. Math., 209 (2018), №2, 241–257. https://doi.org/10.1070/SM8644
- 5. Yu.M. Hal', M.M. Sheremeta, On the growth of analytic in a half-plane functions represented by Dirichlet series, Dokl. AN UkrSSR. Ser. A., (1978), №12, 1065–1067. (in Russian)
- M.M. Sheremeta, On the maximum of the modulus and the maximal term of Dirichlet series, Math. Notes, 73 (2003), №3-4, 402-407. https://doi.org/10.1023/A:1023222229539
- O.M. Mulyava, M.M. Sheremeta, A remark to the growth of positive functions and its application to Dirichlet series, Mat. Stud., 44 (2015), №2, 161–170. https://doi.org/10.15330/ms.44.2.161-170
- L.V. Kulyavetc', O.M. Mulyava, On the growth of a class of Dirichlet Series absolutely convergent in half-plane, Carpathian Math. Publ., 9 (2017), №1, 63–71. https://doi.org/10.15330/cmp.9.1.63-71
- M.M. Sheremeta, O.M. Mulyava, The Hadamard compositions of Dirichlet series absolutely converging in half-plane, Mat. Stud., 53 (2020), №1, 13–28. https://doi.org/10.30970/ms.53.1.13-28
- O.M. Mulyava, On the relative growth of Dirichlet series with zero abscissa of absolute convergence, Mat. Stud., 55 (2021), №1, 44–50. https://doi.org/10.30970/ms.55.1.44-50
- A.I. Bandura, O.M. Mulyava, M.M. Sheremeta, On Dirichlet series similar to Hadamard compositions in half-plane, Carpathian Math. Publ., 15 (2023), №1, 180–195. https://doi.org/10.15330/cmp.15.1.180-195
- P.V. Filevych, O.B. Hrybel, Global estimates for sums of absolutely convergent Dirichlet series in a halfplane, Mat. Stud., 59 (2023), №1, 60–67. https://doi.org/10.30970/ms.59.1.60-67
- P.V. Filevych, O.B. Hrybel, On regular variation of entire Dirichlet series, Mat. Stud., 58 (2022), №2, 174–181. https://doi.org/10.30970/ms.58.2.174-181

Department of Mathematics, Lviv Polytechnic National University Lviv, Ukraine p.v.filevych@gmail.com

Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine olha.hrybel@gmail.com

> Received 15.12.2023 Revised 08.06.2024