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Let λ = (λn)n∈N0
be a non-negative sequence increasing to +∞, τ(λ) = limn→∞(lnn/λn),

and D0(λ) be the class of all Dirichlet series of the form F (s) =
∑∞

n=0 an(F )esλn absolutely
convergent in the half-plane Re s < 0 with an(F ) ̸= 0 for at least one integer n ≥ 0. Also, let α
be a continuous function on [x0,+∞) increasing to +∞, β be a continuous function on [a, 0)
such that β(σ) → +∞ as σ ↑ 0, and γ be a continuous positive function on [b, 0). In the article,
we investigate the growth of a Dirichlet series F ∈ D0(λ) depending on the behavior of the
sequence (|an(F )|) in terms of its α, β, γ-orders determined by the equalities

R∗
α,β,γ(F ) = lim

σ↑0

α(max{x0, γ(σ) lnµ(σ)})
β(σ)

, Rα,β,γ(F ) = lim
σ↑0

α(max{x0, γ(σ) lnM(σ)})
β(σ)

,

where µ(σ) = max{|an(F )|eσλn : n ≥ 0} and M(σ) = sup{|F (s)| : Re s = σ} are the maximal
term and the supremum modulus of the series F , respectively. In particular, if for every fixed
t > 0 we have α(tx) ∼ α(x) as x → +∞, β(tσ) ∼ t−ρβ(σ) as σ ↑ 0 for some fixed ρ > 0,
0 < limσ↑0 γ(tσ)/γ(σ) ≤ limσ↑0 γ(tσ)/γ(σ) < +∞, Φ(σ) = α−1(β(σ))/γ(σ) for all σ ∈ [σ0, 0),
Φ̃(x) = max{xσ−Φ(σ) : σ ∈ [σ0, 0)} for all x ∈ R, and ∆Φ(λ) = limn→∞(− lnn/Φ̃(λn)), then:
(a) for each Dirichlet series F ∈ D0(λ) we have

R∗
α,β,γ(F ) = lim

n→+∞

(
ln+ |an(F )|
−Φ̃(λn)

)ρ

;

(b) if τ(λ) > 0, then for each p0 ∈ [0,+∞] and any positive function Ψ on [c, 0) there exists a
Dirichlet series F ∈ D0(λ) such that R∗

α,β,γ(F ) = p0 and M(σ, F ) ≥ Ψ(σ) for all σ ∈ [σ0, 0);
(c) if τ(λ) = 0, then (Rα,β,γ(F ))1/ρ ≤ (R∗

α,β,γ(F ))1/ρ + ∆Φ(λ) for every Dirichlet series
F ∈ D0(λ);
(d) if τ(λ) = 0, then for each p0 ∈ [0,+∞] there exists a Dirichlet series F ∈ D0(λ) such that
R∗

α,β,γ(F ) = p0 and (Rα,β,γ(F ))1/ρ = (R∗
α,β,γ(F ))1/ρ +∆Φ(λ).

1. Introduction. We denote by N0 the set of all non-negative integers, and denote by Λ
the class of all non-negative sequences λ = (λn)n∈N0 increasing to +∞.

Let λ = (λn)n∈N0 be a sequence from the class Λ. Consider a Dirichlet series of the form

F (s) =
∞∑
n=0

ane
sλn (1)
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and denote by σa(F ) the abscissa of absolute convergence of this series. Put

σ∗(F ) = lim
n→∞

1

λn

ln
1

|an|
.

It is easy to see that if σ < σ∗(F ), then |an|eσλn → 0 as n → ∞. Therefore, for each such σ,
we can determine the maximal term

µ(σ, F ) = max{|an|eσλn : n ∈ N0}

of series (1). Note also that in the case when σ > σ∗(F ) we have limn→∞ |an|eσλn = +∞.
If σa(F ) > −∞, then for all σ < σa(F ) we define the supremum modulus of series (1) by
equality

M(σ, F ) = sup{|F (s)| : Re s = σ}.

We denote by D∗
0(λ) the class of all Dirichlet series of the form (1), for which σ∗(F ) ≥ 0 and

an ̸= 0 at least for one value of n ∈ N0. By D0(λ) we denote the class of all Dirichlet series
of the form (1) such that σa(F ) ≥ 0 and an ̸= 0 at least for one value of n ∈ N0. It is clear
that D0(λ) ⊂ D∗

0(λ) and, as it is well known, D0(λ) = D∗
0(λ) if and only if τ(λ) = 0, where

τ(λ) = lim
n→∞

lnn

λn

.

Put
D0 =

⋃
λ∈Λ

D0(λ), D∗
0 =

⋃
λ∈Λ

D∗
0(λ).

For A ∈ (−∞,+∞], we denote by YA the class of all real functions η : Dη → R such that
the domain Dη of η is an interval of the form [a,A).

Let η ∈ Y+∞ be a positive measurable function on Dη. As in [1], we call the function η
slowly varying at the point +∞ if for every fixed number c > 0 we have η(cx) ∼ η(x) as
x → +∞, and we call the function η regularly varying at the point +∞ with index ρ ≥ 0, if
η(x) = xρζ(x) for all x ≥ x0, where ζ ∈ Y+∞ is a slowly varying function at the point +∞.

Let η ∈ Y0 be a positive measurable function on Dη. We call the function η slowly varying
at the point 0 if for every fixed number c > 0 we have η(cσ) ∼ η(σ) as σ ↑ 0, and we call
the function η regularly varying at the point 0 with index ρ ≥ 0, if η(σ) = |σ|−ρζ(σ) for all
σ ∈ [σ0, 0), where ζ ∈ Y0 is a slowly varying function at the point 0.

We denote by L the sub-class of all functions l ∈ Y+∞ continuous and increasing to +∞
on Dl.

We denote by C0 the sub-class of all functions η ∈ Y0 continuous on Dη, and denote by
Ω0 the sub-class of all functions Φ ∈ C0 such that Φ(σ) → +∞ as σ ↑ 0.

Let Φ ∈ Ω0. Then, as it is well known, the function

Φ̃(x) = max{xσ − Φ(σ) : σ ∈ DΦ}, x ∈ R,

is called the Young-conjugate of Φ, and this function has the following properties (see, for
instance, [2]): Φ̃ is convex on R; the right-hand derivative φ of Φ̃ is a negative nondecreasing
function on R, φ(x) → 0 as x → +∞, and

φ(x) = max{σ ∈ DΦ : xσ − Φ(σ) = Φ̃(x)}, x ∈ R;
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if x0 = inf{x > 0: Φ(φ(x)) > 0}, then Φ(x) = Φ̃(x)/x increases to 0 on (x0,+∞). It follows
from these properties that Φ̃ is a decreasing continuous function on R. It is also easy to
prove that the range of the function Φ̃ is R. In fact, if σ0 ∈ DΦ is a fixed number, then for
all x ∈ R we have Φ̃(x) ≥ xσ0 − Φ(σ0). Letting x → −∞, we obtain Φ̃(−∞) = +∞. In
addition, if x > 0, then Φ̃(x) = xφ(x)− Φ(φ(x)) < −Φ(φ(x)). Letting x → +∞, we obtain
Φ̃(+∞) = −∞. Therefore, the function Φ̃ assumes every value in R.

Let α ∈ L, Dα = [x0, 0), β ∈ Ω0, and let η ∈ Y0 be a function non-decreasing on Dη. The
quantity

Rα,β[η] = lim
σ↑0

α(max{x0, η(σ)})
β(σ)

is called the generalized order (α, β-order) of the function η. Note that in the definition of
the quantity Rα,β[η], the constant x0 can be replaced by any other number from Dα, and if
b ∈ Dη, then the function η can be replaced by the restriction of η to [b, 0). It is also clear
that if ζ ∈ Y0 is a function non-decreasing on Dζ and ζ(σ) ≤ η(σ) for all σ ∈ [c, 0), then
Rα,β[ζ] ≤ Rα,β[η].

For each Dirichlet series F ∈ D∗
0, we set R∗

α,β(F ) = Rα,β[η], where η(σ) = lnµ(σ, F ) for
all σ ∈ [−1, 0). If F ∈ D0, then we set Rα,β(F ) = Rα,β[η], where η(σ) = lnM(σ, F ) for all
σ ∈ [−1, 0); the quantity Rα,β(F ) is called the generalized order (α, β-order) of the Dirichlet
series F . It is clear that for each Dirichlet series F ∈ D0 we have R∗

α,β(F ) ≤ Rα,β(F ).
The growth of a Dirichlet series F ∈ D0 is usually identified with the growth of the

function lnM(σ, F ) as σ ↑ 0. Important characteristics of the growth of such a series are its
generalized orders Rα,β(F ). Establishing various relations according to which the generalized
order Rα,β(F ) of a Dirichlet series F ∈ D0 of the form (1) can be expressed by the sequences
of modules of its coefficients (|an|)n∈N0 , is a well-known classical problem. In connection with
this problem, note that the generalized order R∗

α,β(F ) of a Dirichlet series F ∈ D0 of the form
(1) can be relatively simply expressed in terms of the sequence (|an|)n∈N0 (see, for example,
[2, 3]; see also below). In view of what has been said, the following problem arises.

Problem 1. Let α ∈ L, β ∈ Ω0, and λ ∈ Λ. Find a necessary and sufficient condition on
the sequence λ under which Rα,β(F ) = R∗

α,β(F ) for each Dirichlet series F ∈ D0(λ).

A similar problem for entire (absolutely convergent in C) Dirichlet series was considered
in [2, 4]. In [2], moreover, Problem 1 was completely solved in the case when α(x) = x for all
x ∈ [x0,+∞). Without going into details, we note that the results obtained in [2] also allow
us to find a complete solution of Problem 1 in the case when α ∈ L is an arbitrary function
regularly varying at the point +∞ with index ρ > 0. This case is partially covered in this
article.

We note also that by certain assumptions about the growth of functions α ∈ L and
β ∈ Ω0, sufficient conditions on a sequence λ ∈ Λ under which Rα,β(F ) = R∗

α,β(F ) for any
Dirichlet series F ∈ D0(λ), were found in many works (see, for example, [5, 6, 7, 8, 9, 10, 11,
12]). In this article, Problem 1 is completely solved, in particular, in the case when α ∈ L is
an arbitrary function slowly varying at the point +∞ and β ∈ Ω0 is an arbitrary function
regularly varying at the point 0 with index ρ > 0.

For every function Φ ∈ Ω0 and each sequence λ = (λn)n∈N0 from the class Λ, we put

∆Φ(λ) = lim
n→∞

lnn

−Φ̃(λn)
.
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Theorem 1. Let α ∈ L be a function regularly varying at the point +∞ with index ρ1 ≥ 0,
β ∈ Ω0 be a function regularly varying at the point 0 with index ρ2 ≥ 0, ρ = ρ1 + ρ2 > 0,
and Φ(σ) = α−1(β(σ)) for all σ ∈ [a, 0). Then the following statements are true:
(a) for each Dirichlet series F ∈ D∗

0 of the form (1) we have

R∗
α,β(F ) = lim

σ↑0

(
ln+ |an|
−Φ̃(λn)

)ρ

;

(b) if λ ∈ Λ and τ(λ) > 0, then for each p0 ∈ [0,+∞] and any Ψ ∈ Ω0 there exists a Dirichlet
series F ∈ D0(λ) such that R∗

α,β(F ) = p0 and M(σ, F ) ≥ Ψ(σ) for all σ ∈ [σ0, 0);
(c) if λ ∈ Λ and τ(λ) = 0, then for each Dirichlet series F ∈ D0(λ) the inequality
(Rα,β(F ))1/ρ ≤ (R∗

α,β(F ))1/ρ +∆Φ(λ) holds;
(d) if λ ∈ Λ and τ(λ) = 0, then for each p0 ∈ [0,+∞] there exists a Dirichlet series F ∈ D0(λ)
such that R∗

α,β,γ(F ) = p0 and (Rα,β,γ(F ))1/ρ = (R∗
α,β,γ(F ))1/ρ +∆Φ(λ).

Therefore, if λ ∈ Λ, then under the assumptions of Theorem 1 the equality Rα,β(F ) =
R∗

α,β(F ) holds for every Dirichlet series F ∈ D0(λ) if and only if ∆Φ(λ) = 0.
We obtain Theorem 1 from more general results proved below for modified orders of

Dirichlet series from the class D0.

2. Auxiliary results. The following two lemmas, which we will need later, are well known
(see, for example, [2, 13]).

Lemma 1. Let Φ ∈ Ω0, and let F ∈ D∗
0 be a Dirichlet series of the form (1). Then the

following conditions are equivalent:
(i) there exists a number σ0 < 0 such that lnµ(σ, F ) ≤ Φ(σ) for all σ ∈ [σ0, 0);
(ii) there exists a number n0 ∈ N0 such that ln |an| ≤ −Φ̃(λn) for all integers n ≥ n0.

Lemma 2. Let Φ ∈ Ω0, DΦ = [a, 0), and p be a positive constant. Then for the function
Ψ(σ) = pΦ(σ/p), σ ∈ [pa, 0), we have Ψ ∈ Ω0 and Ψ̃(x) = pΦ̃(x) for all x ∈ R.

Theorem A ([2]). Let λ = (λn)n∈N0 be a sequence from the class Λ with τ(λ) > 0, and
G ∈ D∗

0(λ)\D0(λ) be a Dirichlet series of the form G(s) =
∑∞

n=0 bne
sλn with bn ≥ 0 for

all n ∈ N0. Then for any function Ψ ∈ Ω0 there exists a Dirichlet series F ∈ D0(λ) of the
form (1) such that an = bn or an = 0 for each n ∈ N0, and M(σ, F ) = F (σ) ≥ Ψ(σ) for all
σ ∈ [σ0, 0).

3. Main results. Let Φ ∈ Ω0, l ∈ L be a function with Dl = [0,+∞) and l(0) = 0, and
η ∈ Y0 be a function non-decreasing on Dη. By SΦ,l[η] denote the set of those p > 0 for which
there exists σ0 = σ0(p) < 0 such that

η(σ) ≤ l(p)Φ(σ/l(p)), σ ∈ [σ0, 0). (2)

Note that if η(0−0) < +∞, then SΦ,l[η] = (0,+∞). If η(0−0) = +∞, p ∈ SΦ,l[η], and q > p,
then l(q) > l(p) and for all σ < 0 sufficiently close to 0 we have η(l(q)σ)/l(q) ≤ η(l(p)σ)/l(p),
and therefore q ∈ SΦ,l[η]. If SΦ,l[η] = ∅, we set pΦ,l[η] = +∞, and let pΦ,l[η] = inf SΦ,l[η] in
the opposite case. It is obvious that if b ∈ Dη, then in the definition of the quantity pΦ,l[η],
the function η can be replaced by the restriction of η to [b, 0). It is also clear that if ζ ∈ Y0

is a function non-decreasing on Dζ and ζ(σ) ≤ η(σ) for all σ ∈ [c, 0), then pΦ,l[ζ] ≤ pΦ,l[η].
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For a Dirichlet series F ∈ D∗
0 of the form (1), we set S∗

Φ,l(F ) = SΦ,l[η] and p∗Φ,l(F ) = pΦ,l[η],
where η(σ) = lnµ(σ, F ) for all σ ∈ [−1, 0), and let

kΦ(F ) = lim
n→+∞

ln+ |an|
−Φ̃(λn)

.

For every Dirichlet series F ∈ D0, we put SΦ,l(F ) = SΦ,l[η] and pΦ,l(F ) = pΦ,l[η], where
η(σ) = lnM(σ, F ) for all σ ∈ [−1, 0). Note that p∗Φ(F ) ≤ pΦ(F ) for an arbitrary Φ ∈ Ω0 and
any Dirichlet series F ∈ D0.

Using Lemmas 1 and 2, it is easy to prove the following statement.

Proposition 1. Let Φ ∈ Ω0, l ∈ L be a function with Dl = [0,+∞) and l(0) = 0, and let
F ∈ D∗

0 be a Dirichlet series of the form (1). Then p∗Φ,l(F ) = l−1(kΦ(F )).

Proof. First, we prove the inequality l(p∗Φ,L(F )) ≤ kΦ(F ). This inequality is trivial in the
case when kΦ(F ) = +∞. Suppose that kΦ(F ) < +∞, and let k > kΦ(F ) be an arbitrary
fixed number. Note that kΦ(F ) ≥ 0, and therefore k > 0. Setting p = l−1(k), from the
definition of the quantity kΦ(F ) for some n0 ∈ N0 we obtain

ln+ |an| ≤ −l(p)Φ̃(λn), n ≥ n0. (3)

Then by Lemmas 1 and 2 for some σ0 < 0 we have

lnµ(σ, F ) ≤ l(p)Φ(σ/l(p)), σ ∈ [σ0, 0), (4)

that is, p ∈ S∗
Φ,l(F ). Thus, p∗Φ,l(F ) ≤ p, and hence l(p∗Φ,l(F )) ≤ l(p) = k. Since k > kΦ(F ) is

arbitrary, we obtain l(p∗Φ,l(F )) ≤ kΦ(F ).
Now we prove the opposite inequality l−1(kΦ(F )) ≤ p∗Φ,l(F ). This inequality is trivial

in the case when p∗Φ,l(F ) = +∞. Suppose that p∗Φ,l(F ) < +∞, and let p > p∗Φ,l(F ) be an
arbitrary fixed number. From the definition of the quantity p∗Φ,l(F ) for some σ0 < 0 we
have (4). Since −Φ̃(x) → +∞ as x → +∞, by Lemmas 1 and 2 for some n0 ∈ N0 we
obtain (3), and therefore kΦ(F ) ≤ l(p), i.e. l−1(kΦ(F )) ≤ p. Since p > p∗Φ,l(F ) is arbitrary,
we obtain l−1(kΦ(F )) ≤ p∗Φ,l(F ).

Proposition 2. Let λ = (λn)n∈N0 be a sequence from the class Λ with τ(λ) > 0, and let
Ψ ∈ Ω0 be an arbitrary function. Then:
(i) there exists a Dirichlet series F ∈ D0(λ) of the form (1) such that an = 1 or an = 0 for
every n ∈ N0 and M(σ, F ) ≥ Ψ(σ) for all σ ∈ [σ0, 0);
(ii) for each k0 ∈ [0,+∞] there exists a Dirichlet series F ∈ D0(λ) such that kΦ(F ) = k0 and
M(σ, F ) ≥ Ψ(σ) for all σ ∈ [σ0, 0).

Proof. Let k0 ∈ [0,+∞]. In the case when k0 < +∞ for all n ∈ N0 we set bn = e−k0Φ̃(λn), and
in the case when k0 = +∞ for all n ∈ N0 we put bn = e−λnδn , where (δn)n∈N0 is an arbitrary
sequence increasing to 0 such that Φ(λn) = o(δn) as n → ∞.

Consider the Dirichlet series G(s) =
∑∞

n=0 bne
sλn . It is easy to verify that σ∗(G) = 0,

and therefore G ∈ D∗
0(λ). Let’s fix some σ ∈ (−τ(λ), 0). Then τ(λ) > −σ, and hence the set

E = {k ∈ N0 : ln k ≥ −σλk} is infinite. For an arbitrary sufficiently large k ∈ E we have

k∑
n=[k/2]

ane
σλn ≥

k∑
n=[k/2]

eσλn ≥
k∑

n=[k/2]

eσλk ≥ k

2
eσλk ≥ k

2
e− ln k =

1

2
.
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Therefore, the series G is divergent at the point s = σ, and hence G ∈ D∗
0(λ)\D0(λ). Then,

according to Theorem A, there exists a Dirichlet series F ∈ D0(λ) of the form (1) such
that an = bn or an = 0 for each n ∈ N0, and M(σ, F ) = F (σ) ≥ Ψ(σ) for all σ ∈ [σ0, 0). In
addition, as it is not difficult to verify, kΦ(F ) = k0. This proves (ii), and also (i) if k0 = 0.

From Proposition 2 we see that if τ(λ) > 0, then the growth of a Dirichlet series from
the class D0(λ) can be arbitrarily fast even under the condition of boundedness its maximal
term.

Theorem 2. Let Φ ∈ Ω0, l ∈ L be a function with Dl = [0,+∞) and l(0) = 0, and let
λ = (λn)n∈N0 be a sequence from class Λ with τ(λ) = 0. Then:
(i) for each Dirichlet series F ∈ D0(λ) we have l(pΦ,l(F )) ≤ l(p∗Φ,l(F )) + ∆Φ(λ);
(ii) for every p0 ∈ [0,+∞] there exists a Dirichlet series F ∈ D0(λ) such that p∗Φ,l(F ) = p0
and l(pΦ,l(F )) = l(p∗Φ,l(F )) + ∆Φ(λ).

Proof. To prove (i), we сonsider a Dirichlet series F ∈ D0(λ) of the form (1) and note
that the inequality l(pΦ,l(F )) ≤ l(p∗Φ,l(F )) + ∆Φ(λ) does not need proof if p∗Φ,l(F ) = +∞
or ∆Φ(λ) = +∞. Suppose that p∗Φ,l(F ) < +∞ and ∆Φ(λ) < +∞ and fix an arbitrary
b > l(p∗Φ(F ))+∆Φ(λ). It is clear that then there exist constants c > l(p∗Φ(F )) and ∆ > ∆Φ(λ)
such that c+∆ < b. From Proposition 1, the definition of the quantity ∆Φ(λ), and the obvious
inequality (b−c)/∆ > 1, it follows the existence of a number n0 ∈ N0 such that for all integers
n ≥ n0 the following inequalities |an| ≤ e−cΦ̃(λn), n ≤ e−∆Φ̃(λn) hold and, in addition,∑

n≥n0

1

n(b−c)/∆
≤ 1

2
.

Consider the auxiliary Dirichlet series

G(s) =
∑
n≥n0

e−cΦ̃(λn)esλn .

It is easy to verify that σ∗(G) = 0, that is, G ∈ D0(λ). In addition, Lemmas 1 and 2 imply the
existence of a constant σ0 < 0 such that lnµ(σ,G) ≤ cΦ(σ/c) for all σ ∈ [σ0, 0). Therefore,
using the above inequalities, for all σ ∈ [bσ0/c, 0) we obtain

M(σ,G) =
∑
n≥n0

e−cΦ̃(λn)eσλn =
∑
n≥n0

(
e−cΦ̃(λn)e(cσ/b)λn

)b/c 1

e−(b−c)Φ̃(λn)
≤

≤ (µ(cσ/b,G))b/c
∑
n≥n0

1

e−(b−c)Φ̃(λn)
≤ ebΦ(σ/b)

∑
n≥n0

1

n(b−c)/∆
≤ 1

2
ebΦ(σ/b).

Then, by taking q = l−1(b), for all σ < 0 sufficiently close to 0 we have

M(σ, F ) ≤
∑
n≥n0

|an|eσλn +M(σ,G) ≤ ebΦ(σ/b) = el(q)Φ(σ/l(q)).

Therefore, q ∈ SΦ,l(F ), and hence l(pΦ,l(F )) ≤ l(q) = b. The required inequality follows from
the arbitrariness of b > l(p∗Φ,l(F )) + ∆Φ(λ).

Now we prove (ii). The proof is trivial if p0 = +∞ or ∆Φ(λ) = 0. Suppose that p0 < +∞
and ∆Φ(λ) > 0, and set c = l(p0). Let us choose arbitrary positive sequences (ck)k∈N0 ,
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(δk)k∈N0 and (∆k)k∈N0 such that ck → c for k → ∞, (δk)k∈N0 decreases to 1, and (∆k)k∈N0

increases to ∆Φ(λ). It is easy to justify the existence of an increasing sequence (nk)k∈N0 of
positive integers such that for it, as well as for the sequence (mk)k∈N0 , where mk = [(nk+1)/2]
for all k ∈ N0, we have

nk < mk+1,
ln(nk −mk + 1)

−Φ̃(λnk
)

≥ ∆k,
lnmk

−Φ̃(λmk
)
≤ δk

lnnk

−Φ̃(λnk
)

(5)

for each k ∈ N0.
Let n ∈ N0. Put an = e−ckΦ̃(λn) if n ∈ [mk, nk] for some k ∈ N0, and let an = 0 in the

opposite case. Consider the Dirichlet series F of the form (1) with the coefficients an defined
in this way. It is easy to verify that σ∗(F ) = 0, that is, F ∈ D0(λ), and kΦ(F ) = c. According
to Proposition 1 we have p∗Φ,l(F ) = l−1(c) = p0. Note also that the constructed series can be
written in the form

F (s) =
∞∑
k=0

nk∑
n=mk

e−ckΦ̃(λn)esλn .

For each k ∈ N0, we set bk = (nk −mk + 1)e−ckΦ̃(λmk
), and consider the auxiliary Dirichlet

series H(s) =
∑∞

k=0 bke
sλnk . If σ < 0 and k ∈ N0, then

nk∑
n=mk

e−ckΦ̃(λn)eσλn ≥
nk∑

n=mk

e−ckΦ̃(λmk
)eσλnk = bke

σλnk ,

and therefore H ∈ D0. In addition, M(σ, F ) = F (σ) ≥ H(σ) = M(σ,H) for each σ < 0 and,
according to (5),

kΦ(H) = lim
k→+∞

ln+ |bk|
−Φ̃(λnk

)
= lim

k→+∞

(
ln(nk −mk + 1)

−Φ̃(λnk
)

+ ck
Φ̃(λmk

)

Φ̃(λnk
)

)
≥ ∆Φ(λ) + c.

Therefore, l(pΦ,l(F )) ≥ l(pH,l(F )) ≥ l(p∗H,l(F )) = kΦ(H) ≥ l(p∗Φ,l(F )) +∆Φ(λ). It remains to
use statement (i) of this theorem.

Let α ∈ L, Dα = [x0, 0), β ∈ Ω0, γ ∈ C0 be a function positive on Dγ, and η ∈ Y0 be a
function non-decreasing on Dη. The quantity

Rα,β,γ[η] = lim
σ↑0

α(max{x0, γ(σ)η(σ)})
β(σ)

is called the modified order (α, β, γ-order) of the function η. Note that in the definition of
the quantity Rα,β[η], the constant x0 can be replaced by any other number from Dα, and if
b ∈ Dη, then the function η can be replaced by the restriction of η to [b, 0). It is also clear
that if ζ ∈ Y0 is a function non-decreasing on Dζ and ζ(σ) ≤ η(σ) for all σ ∈ [c, 0), then
Rα,β,γ[ζ] ≤ Rα,β,γ[η].

For any Dirichlet series F ∈ D∗
0, we set R∗

α,β,γ(F ) = Rα,β,γ[η], where η(σ) = lnµ(σ, F )
for all σ ∈ [−1, 0). If F ∈ D0, we put Rα,β,γ(F ) = Rα,β,γ[η], where η(σ) = lnM(σ, F ) for all
σ ∈ [−1, 0); the quantity Rα,β,γ(F ) is called the modified order (α, β, γ-order) of the Dirichlet
series F . It is clear that R∗

α,β,γ(F ) ≤ Rα,β,γ(F ) for every Dirichlet series F ∈ D0.
In connection with Problem 1, it is natural to consider the following more general problem.
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Problem 2. Let α ∈ L, β ∈ Ω0, γ ∈ C0 be a function positive on Dγ, and λ ∈ Λ. Find
a necessary and sufficient condition on the sequence λ ∈ Λ under which Rα,β,γ(F ) = R∗

α,β,γ(F )
for each Dirichlet series F ∈ D0(λ).

Below we will obtain solutions of Problem 2 under fairly general assumptions about the
behavior of the functions α ∈ L, β ∈ Ω0, and γ ∈ C0.

Proposition 3. Let α ∈ L, β ∈ Ω0, and γ ∈ C0 be a function positive on Dγ. If the condition

∀c > 0: lim
σ↑0

α−1(cβ(σ))/γ(σ) < +∞ (6)

holds, then for any sequence λ = (λn)n∈N0 from the class Λ there exists a Dirichlet series
F ∈ D0(λ) of the form (1) such that an = 1 or an = 0 for each n ∈ N0 and Rα,β,γ(F ) = +∞.

Proof. In the case when τ(λ) > 0, it is enough to use Proosition 2.
Let τ(λ) = 0. Consider the series F (s) =

∑∞
n=0 e

sλn . It is clear that F ∈ D0(λ),
R∗

α,β,γ(F ) = 0 and M(σ, F ) ↑ +∞ as σ ↑ 0. Suppose that Rα,β,γ(F ) < c for some c > 0.
Then, from the definition of the quantity Rα,β,γ(F ), we have lnM(σ, F ) ≤ α−1(cβ(σ))/γ(σ)
for all σ ∈ [σ0, 0), which contradicts (6). Therefore, Rα,β,γ(F ) = +∞.

Theorem 3. Let α ∈ L, β ∈ Ω0, and γ ∈ C0 be a function positive on Dγ. Suppose that
condition (6) is not satisfied, and a function Φ ∈ C0 is such that

∀t > 0: lim
σ↑0

γ(σ)Φ(σ/t) = +∞ (7)

and for every t > 0 there exists a finite limit

h(t) := lim
σ↑0

α(γ(σ)tΦ(σ/t))

β(σ)
, (8)

and h(t) is a continuously function increasing to +∞ on (0,+∞) with h(0) = h(0 + 0) = 0.
Then Φ ∈ Ω0 and if t = l(p) is the inverse function of the function p = h(t), then:
(a) for every function η ∈ Y0 non-decreasing on Dη, we have Rα,β,γ[η] = pΦ,l[η];
(b) for each Dirichlet series F ∈ D∗

0 we have R∗
α,β,γ(F ) = h(kΦ(F ));

(c) if λ ∈ Λ and τ(λ) > 0, then for every p0 ∈ [0,+∞] and any Ψ ∈ Ω0 there exists a
Dirichlet series F ∈ D0(λ) such that R∗

α,β,γ(F ) = p0 and M(σ, F ) ≥ Ψ(σ) for all σ ∈ [σ0, 0);
(d) if λ ∈ Λ and τ(λ) = 0, then for every Dirichlet series F ∈ D0(λ) the inequality
l(Rα,β,γ(F )) ≤ l(R∗

α,β,γ(F )) + ∆Φ(λ) holds;
(e) if λ ∈ Λ and τ(λ) = 0, then for each p0 ∈ [0,+∞] there exists a Dirichlet series F ∈ D0(λ)
such that R∗

α,β,γ(F ) = p0 and l(Rα,β,γ(F )) = l(R∗
α,β,γ(F )) + ∆Φ(λ).

Proof. If (6) is not satisfied, then for some c > 0 we have α−1(cβ(σ))/γ(σ) → +∞ as σ ↑ 0.
Let’s choose the number t > 0 so that the inequality h(t) > c holds. Then, according to
(8), there exists σ0 < 0 such that tΦ(σ/t) ≥ α−1(cβ(σ))/γ(σ) for all σ ∈ [σ0, 0). Therefore,
Φ(σ) → +∞ as σ ↑ 0, and hence Φ ∈ Ω0.

Let’s prove (a). Let η ∈ Y0 be a function non-decreasing on Dη. First, we show that
Rα,β,γ[η] ≤ pΦ,l[η]. This inequality is trivial if pΦ,l[η] = +∞. Suppose that pΦ,l[η] < +∞,
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and let p > pΦ,l[η] be an arbitrary fixed number. Then there exists a number σ0 < 0 such
that (2) holds. Therefore, using (2) and (7), we obtain

Rα,β,γ[η] ≤ lim
σ↑0

α(γ(σ)l(p)Φ(σ/l(p)))

β(σ)
= h(l(p)) = p,

and the required inequality follows from the arbitrariness of p > pΦ,l[η].
Now we prove that pΦ,l[η] ≤ Rα,β,γ[η]. This inequality is trivial if Rα,β,γ[η] = +∞.

Suppose that Rα,β,γ[η] < +∞, and let p > Rα,β,γ[η] be an arbitrary fixed number, and
q ∈ (Rα,β,γ[η], p). From the definition of the quantity Rα,β,γ[η] for some σ1 < 0 we have

γ(σ)η(σ) ≤ α−1(qβ(σ)), σ ∈ [σ1, 0). (9)

In addition, since

lim
σ↑0

α(γ(σ)l(p)Φ(σ/l(p)))

β(σ)
= h(l(p)) = p > q,

for some σ2 < 0 we obtain

qβ(σ) ≤ α(γ(σ)l(p)Φ(σ/l(p))), σ ∈ [σ2, 0). (10)

Taking σ0 = max{σ1, σ2}, from (9) and (10) we see that (2) is fulfilled, i.e. p ∈ SΦ,l[η].
Therefore, pΦ,l[η] ≤ p. Since p > Rα,β,γ[η] is arbitrary, we have pΦ,l[η] ≤ Rα,β,γ[η].

Further, according to the part of the theorem that has already been proved, for each
Dirichlet series F ∈ D∗

0 we obtain R∗
α,β,γ(F ) = p∗Φ,l(F ), and for each Dirichlet series F ∈ D0

we have Rα,β,γ(F ) = pΦ,l(F ). Therefore, (b) follows from Proposition 1, and (c) follows from
Proposition 2. In addition, for an arbitrary sequence λ ∈ Λ with τ(λ) = 0, according to
Theorem 2, we have (d) and (e).

4. Corollaries. Let us give some consequences from the results proved above.

Theorem 4. Let α ∈ L be a function slowly varying at the point +∞, β ∈ Ω0 be a function
regularly varying at the point 0 with index ρ > 0, γ ∈ C0 be a function positive on Dγ such
that for each fixed t > 0 the inequalities

0 < lim
σ↑0

γ(tσ)

γ(σ)
≤ lim

σ↑0

γ(tσ)

γ(σ)
< +∞ (11)

hold, and Φ ∈ C0 be a function such that Φ(σ) = α−1(β(σ))/γ(σ) for all σ ∈ [σ0, 0). Then
Φ ∈ Ω0 and the following statements are true:
(a) for every Dirichlet series F ∈ D∗

0 we have

R∗
α,β,γ(F ) = lim

σ↑0

(
ln+ |an|
−Φ̃(λn)

)ρ

;

(b) if λ ∈ Λ and τ(λ) > 0, then for every p0 ∈ [0,+∞] and any Ψ ∈ Ω0 there exists a
Dirichlet series F ∈ D0(λ) such that R∗

α,β,γ(F ) = p0 and M(σ, F ) ≥ Ψ(σ) for all σ ∈ [σ0, 0);
(c) if λ ∈ Λ and τ(λ) = 0, then for every Dirichlet series F ∈ D0(λ) the inequality
(Rα,β,γ(F ))1/ρ ≤ (R∗

α,β,γ(F ))1/ρ +∆Φ(λ) holds;
(d) if λ ∈ Λ and τ(λ) = 0, then for each p0 ∈ [0,+∞] there exists a Dirichlet series F ∈ D0(λ)
such that R∗

α,β,γ(F ) = p0 and (Rα,β,γ(F ))1/ρ = (R∗
α,β,γ(F ))1/ρ +∆Φ(λ).
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Proof. Let Dγ = [a, 0). From the conditions satisfied by the function γ, for some constant
d > 1 and all σ ∈ [a/2, 0) we have γ(σ) ≤ dγ(2σ). Let M = max{γ(σ) : σ ∈ [a, a/2]},
q = log2 d and c = M |a|q. Then for all σ ∈ [a, 0) we have γ(σ) ≤ c|σ|−q. In fact, if σ ∈
[a/2n, a/2n+1] for some n ∈ N0, then

γ(σ) ≤ dnγ(2nσ) ≤ 2qnM ≤ M |a|q|σ|−q = c|σ|−q.

Let’s fix an arbitrary constant ρ0 ∈ (0, ρ) and choose a constant r > 0 so that the
inequality rρ0 > q holds. According to the well-known properties of regularly varying functi-
ons, there exist constants σ1 < 0 and x0 > 0 such that β(σ) ≥ |σ|−ρ0 for all σ ∈ [σ1, 0)
and α−1(x) ≥ xr for all x ∈ [x0,+∞). Then there exists a constant σ2 < 0 such that
α−1(β(σ)) ≥ (β(σ))r ≥ |σ|−rρ0 for all σ ∈ [σ2, 0). Therefore, using the above estimate for
the γ function, we obtain Φ(σ) → +∞ as σ ↑ 0. From this, in particular, we see that Φ ∈ Ω0,
condition (6) is not satisfied, and (11) implies (7). In addition, using the conditions satisfied
by the functions α, β, and γ, for each fixed t > 0 we have

lim
σ↑0

α(γ(σ)tΦ(σ/t))

β(σ)
= lim

σ↑0

α(γ(σ)Φ(σ))

β(tσ)
= lim

σ↑0

β(σ)

β(tσ)
= tρ.

Therefore, all the conditions of Theorem 3 are satisfied with h(t) = tρ for all t > 0, and (a),
(b), (c), and ( d) are consequences of the corresponding statements of Theorem 3.

Theorem 5. Let α ∈ L be an arbitrary function, β ∈ Ω0 be a function regularly varying
at the point 0 with index ρ > 0, γ(σ) = |σ|−1 for all σ ∈ [−1, 0), and Φ ∈ C0 be a function
such that Φ(σ) = |σ|α−1(β(σ)) for all σ ∈ [σ0, 0). Then:
(i) if Φ /∈ Ω0, then for every sequence λ ∈ Λ there exists a Dirichlet series F ∈ D0(λ) such
that R∗

α,β,γ(F ) = 0, but Rα,β,γ(F ) = +∞;
(ii) if Φ ∈ Ω0, then statements (a), (b), (c), and (d) of Theorem 4 are true.

Proof. Noting that the condition Φ /∈ Ω0 is equivalent to condition (6), from Proposition 3
we obtain (i).

Let Φ ∈ Ω0. Then, as it is easy to see, (7) holds. In addition, for every fixed t > 0 we
have

lim
σ↑0

α(γ(σ)tΦ(σ/t))

β(σ)
= lim

σ↑0

α(|σ|−1tΦ(σ/t))

β(σ)
= lim

σ↑0

α(|σ|−1Φ(σ))

β(tσ)
= lim

σ↑0

β(σ)

β(tσ)
= tρ.

Therefore, all the conditions of Theorem 3 are satisfied with h(t) = tρ for all t > 0. This
implies (ii).

Theorem 6. Let α ∈ L be an arbitrary function such that

∀q > 1: lim
y→+∞

α−1(qy)/α−1(y) > 1, (12)

β ∈ Ω0 be a function regularly varying at the point 0 with index ρ > 0, γ ∈ C0 be a
function regularly varying at the point 0 with index 1, and Φ ∈ C0 be a function such that
Φ(σ) = α−1(β(σ))/γ(σ) for all σ ∈ [σ0, 0). Then statements (i) and (ii) of Theorem 5 are
true.
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Proof. By the assumptions of the theorem, the condition Φ /∈ Ω0 is equivalent to condition
(6), and therefore from Proposition 3 we obtain statement (i) of Theorem 5.

Let Φ ∈ Ω0. Then, as it is easy to see, (7) holds. Next, we note that condition (12) is
satisfied if and only if for any function δ ∈ C0 such that δ(x) → 1 as x → +∞, we have
α(xδ(x)) ∼ α(x) as x → +∞. Using this fact, for every fixed t > 0 we have

lim
σ↑0

α(γ(σ)tΦ(σ/t))

β(σ)
= lim

σ↑0

α(γ(tσ)tΦ(σ))

β(tσ)
= lim

σ↑0

α(γ(σ)Φ(σ))

t−ρβ(σ)
= tρ.

Therefore, all the conditions of Theorem 3 are satisfied with h(t) = tρ for all t > 0. This
implies statement (ii) of Theorem 5.

Theorem 7. Let α ∈ L be a function regularly varying at the point +∞ with index ρ1 > 0,
β ∈ Ω0 be a function regularly varying at the point 0 with index ρ2 ≥ 0, γ ∈ C0 be a function
regularly varying at the point 0 with index ρ3 ∈ R, ρ = ρ1 + ρ2 − ρ1ρ3, and Φ ∈ C0 be a
function such that Φ(σ) = α−1(β(σ))/γ(σ) for all σ ∈ [σ0, 0). Then:

(i) if ρ2 − ρ1ρ3 < 0 or simultaneously the conditions ρ2 − ρ1ρ3 = 0 and Φ /∈ Ω0 are satisfied,
then for any sequence λ ∈ Λ there exists a Dirichlet series F ∈ D0(λ) such that R∗

α,β,γ(F ) = 0
and Rα,β,γ(F ) = +∞;

(ii) if simultaneously the conditions ρ2 − ρ1ρ3 = 0 and Φ ∈ Ω0 are satisfied or ρ2 − ρ1ρ3 > 0,
then statements (a), (b), (c), and (d) of Theorem 4 are true.

Proof. For every fixed t > 0 we have

Φ(tσ) =
α−1(β(tσ))

γ(tσ)
∼ α−1(t−ρ2β(σ))

t−ρ3γ(σ)
∼ t−ρ2/ρ1

t−ρ3
Φ(σ) = t−(ρ2−ρ1ρ3)/ρ1Φ(σ), σ ↑ 0,

i.e. Φ is a function regularly varying at the point 0 with index (ρ2 − ρ1ρ3)/ρ1. We note that
in the case when ρ2 − ρ1ρ3 < 0 we have Φ /∈ Ω0, in the case when ρ2 − ρ1ρ3 > 0 we have
Φ ∈ Ω0, and in the case when ρ2 − ρ1ρ3 = 0 both the situations Φ /∈ Ω0 or Φ ∈ Ω0 are
possible.

Therefore, all the conditions of (i) reduce to the condition Φ /∈ Ω0, and all the conditions
of (ii) reduce to the condition Φ ∈ Ω0.

Noting that the condition Φ /∈ Ω0 is equivalent to condition (6), from Proposition 3 we
obtain statement (i).

Let Φ ∈ Ω0. Then, as it is easy to see, ρ > 0 and (7) holds. In addition, for every fixed
t > 0 we have

lim
σ↑0

α(γ(σ)tΦ(σ/t))

β(σ)
= lim

σ↑0

tρ1α(t−ρ3γ(σ)Φ(σ))

β(tσ)
= lim

σ↑0

tρ1−ρ1ρ3α(γ(σ)Φ(σ))

t−ρ2β(σ)
= tρ.

Therefore, all the conditions of Theorem 3 are satisfied with h(t) = tρ for all t > 0. This
implies statement (ii).

Finally, note that Theorem 1 is a consequence of Theorems 4 and 7 in the case when
γ(σ) = 1 for all σ ∈ [−1, 0).
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