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In this paper, we study a connection between the operator Riccati equation
S′(x) = KS(x) + S(x)K − 2S(x)KS(x), x ∈ R,

and the set of reflectionless Schrödinger operators with operator-valued potentials. Here K ∈
B(H), K > 0 and S : R → B(H), where B(H) is the Banach algebra of all linear continuous
operators acting in a separable Hilbert space H. Let S +(K) be the set of all solutions S of
the Riccati equation satisfying the conditions 0 < S(0) < I and S′(0) ≥ 0, with I being the
identity operator in H. We show that every solution S ∈ S +(K) generates a reflectionless
Schrödinger operator with some potential q that is an analytic function in the strip

ΠK :=
{
z = x+ iy | x, y ∈ R, |y| < π

2∥K∥

}
;

moreover,
∥q(x+ iy)∥ ≤ 2∥K∥2 cos−2(y∥K∥), (x+ iy) ∈ ΠK .

1. Introduction. In this paper, we show that there is a deep connection between a spe-
cial operator Riccati equation and reflectionless Schrödinger operators with operator-valued
potentials. This connection has many interesting aspects; here, we present the basic results
and will discuss further subtle issues elsewhere.

Let us start with notations and basic terminology. Let H be a separable Hilbert space, and
B(H) be the Banach algebra of all everywhere-defined linear continuous operators A : H →
H. Let Binv(H) be the group of all invertible operators in B(H), and B+(H) be the cone
of nonnegative operators A ∈ B(H). The domain, range, kernel, and the spectrum of a
linear operator will be denoted by dom(·), ran(·), ker(·), and σ(·), respectively. For arbitrary
operators A,B ∈ B(H), we write A < B if A ≤ B and ker(B − A) = {0}.

1.1. A special operator Riccati equation. We consider the Riccati equation

S ′(x) = KS(x) + S(x)K − 2S(x)KS(x), x ∈ R, (1)

where K ∈ B+(H), K > 0 and S : R → B(H). Denote by S (K) the set of all solutions S of
the equation (1) such that 0 < S(0) < I, with I being the identity operator in H.

Every function S ∈ S (K) is given by an explicit formula, namely

S(x) = exK(S−1(0)− I + e2xK)−1exK , x ∈ R. (2)
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It follows from (2) that for all function S ∈ S (K)
0 < S(x) < I, x ∈ R.

The equation (1) is nonlinear, but it can be reduced to a linear equation under certain
conditions. Indeed, let S ∈ S (K) and S(0) ∈ Binv(H). Then (see (2)) S(x) ∈ Binv(H) for
all x ∈ R, and the function Y (x) := S−1(x)− I is a solution of the Lyapunov equation

Y ′(x) = −KY (x)− Y (x)K, x ∈ R.
The functions S ∈ S (K) have an analytic continuation to a strip that depends only on the
norm of the operator K.

Let S ∈ S (K). Denote by Ω(S) the set of all z ∈ C, for which the operator
S−1(0)− I + e2zK has an inverse operator in B(H).

Proposition 1. Let S ∈ S (K). Then

(1) the set Ω(S) is open and symmetric with respect to the real axis, and the formula

S(z) = ezK(S−1(0)− I + e2zK)−1ezK , z ∈ Ω(S), (3)

is an analytic continuation of the function S;

(2) the set Ω(S) contains the strip
ΠK :=

{
z = x+ iy | x, y ∈ R, |y| < π

2∥K∥

}
,

moreover,
∥S(z)∥ ≤ [cos (y∥K∥)]−1, z ∈ ΠK , y = Im z.

Let Cb be the linear space of all bounded continuous functions f : R → B(H) equipped
with the locally convex topology generated by seminorms

ρh,E(f) := sup
x∈E

∥f(x)h∥, f ∈ Cb,

where h ∈ H and the set E is compact in R. If dimH < ∞, the topology in Cb is a topology
of uniform convergence on compact subsets of R.

The set S (K) is considered as a topological subspace in Cb, i.e., it is equipped with the
topology induced by Cb. We will show that every solution S ∈ S (K) is naturally related
with some Schödinger operator; moreover, the functions S from the subset

S +(K) := {S ∈ S (K) | S ′(0) ≥ 0} (4)

correspond to reflectionless Schrödinger operators.
We observe that the shift by a ∈ R of the function S,

S{a}(x) := S(x+ a), x ∈ R, (5)

and the “mirror” reflection,
S◦(x) := I − S(−x), x ∈ R,

are continuous automorphisms both of the set S (K) and its subset S +(K).
It turns out that every function S ∈ S +(K) has a nonnegative derivative (S ′(x) ≥ 0 for

all x ∈ R), and therefore is nondecreasing on R, i.e., S(x1) ≤ S(x2), x1 ≤ x2.

1.2. Reflectionless potentials of Schrödinger operators. The authors are unaware
of previous work on reflectionless Schrödinger operators with operator-valued potentials.
However, there are many papers on reflectionless Schrödinger operators in the scalar case.
In the context of current research, the work of Marchenko [1] plays a pivotal role, and [1]–[6]
mark further important progress in the field.
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Let H := L2(R, H) be the Hilbert space of square integrable functions f : R → H with
the inner product

(f | g)H :=

∫
R
(f(x) | g(x)) dx, f, g ∈ H,

where (· | ·) is the inner product in H, which is linear in the first argument.
We associate every potential q ∈ Cb with the Schrödinger operator Tq : H → H that is

defined by the formula
Tqf = −f ′′ + qf (6)

on the domain domTq := W 2
2 (R, H), where W 2

2 (R, H) is the Sobolev space. If the potential
q belongs to the set

Cb,s := {q ∈ Cb | ∀x ∈ R q∗(x) = q(x)},
the operator Tq is self-adjoint. Here q∗(x) = (q(x))∗.

Let q ∈ Cb,s and z ∈ C. Let us consider the equation

−y′′ + qy = zy. (7)

As shown in [7], for every z ∈ C \ R there exist the Weyl–Titchmarsh B(H)-valued right
f+(z, ·) and left f−(z, ·) normalized solutions of the equation (7), i.e., the solutions that
satisfy the condition

f+(z, 0) = f−(z, 0) = I,
and for every h ∈ H ∫

R±

∥f±(z, x)h∥2 dx < ∞.

The functions
m±(z) := f ′

±(z, 0), z ∈ C \ R,
are called the Weyl–Titchmarsh m-functions of the equation (7) on the half-lines R±.

Let q ∈ Cb,s and m± be the Weyl–Titchmarsh m-functions of the equation (7). A potential
q (an operator Tq) is called reflectionless if the function

g(λ) :=

{
m+(λ

2), Imλ > 0, Reλ ̸= 0;
m−(λ

2), Imλ < 0, Reλ ̸= 0

has an analytic continuation to the domain C \ iR.
Denote by Q the set of all reflectionless potentials q ∈ Cb,s and equip Q with the topology

induced by Cb.
In the scalar case, these definitions are equivalent to the definitions given in the works [1]

and [2].

1.3. The formulation of the main result. The main aim of this paper is to construct
a natural mapping

S +(K) ∋ S 7→ Υ(S) ∈ Q
from the solutions S ∈ S +(K) of the Riccati equation to reflectionless Schrödinger operators.
Namely, starting from S ∈ S +(K), we construct the following analytic functions on Ω(S):

L(z) := ezK(I − S(z)) + e−zKS(z), Ψ(z) := (S ′(0))1/2L(z),

q(z) := −4Ψ(z)KΨ∗(z̄) =: Υ(S), (8)

with Ψ∗(z) := (Ψ(z))∗.
The main result of this paper is the following theorem.
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Theorem 1. Let S ∈ S +(K) and q = Υ(S). Then

(1) the operator Tq is reflectionless, i.e., q ∈ Q;

(2) the function q is analytic in ΠK and

∥q(z)∥ ≤ 2∥K∥2

cos2(y∥K∥)
, z ∈ ΠK , y = Im z.

The structure of the paper is as follows. In Section 2, we investigate the function S ∈
S +(K) and discuss its main properties. In Section 3, we establish some properties of the
functions Ψ and q, and prove part (2) of Theorem 1. Finally, in Section 4, we complete the
proof of the main result of the paper. Some auxiliary results that are used in Sections 2 and
3 are collected in Appendix.

2. The main properties of the function S. We start this section by establishing properti-
es of the function S.

Proof of Proposition 1. The fact that the function S(z) is an analytic continuation of (2)
whenever the operator in the parenthesis is invertible (i.e., whenever z ∈ Ω(S)) is strai-
ghtforward, as is the fact that the set Ω(S) is open and symmetric with respect to the real
line.

We will next justify the second part. Let S ∈ S (K) and 0 < y < π
2∥K∥ . Let us consider

the operators
Γ := S−1(0)− I, W := Γ + e2iyK .

Since the operator Γ is self-adjoint and positive, yK ∈ B+(H) and ∥yK∥ < π/2, then in
view of Lemma 8, the operator W = S−1(0) − I + e2iyK has an inverse operator W−1 in
the algebra B(H) and ∥W−1∥ ≤ [cos (y∥K∥)]−1. This implies (see definition of Ω(S)) that
iy ∈ Ω(S) and ∥S(iy)∥ ≤ [cos (y∥K∥)]−1. Note that for an arbitrary x ∈ R the shift S{x}
belongs to S (K), and hence ∥S(x+ iy)∥ = ∥S{x}(iy)∥ ≤ [cos (y∥K∥)]−1. Since the set Ω(S)
is symmetrical about the real axis and S(z̄) = (S(z))∗, we obtain the second part of the
proposition.

A function S ∈ S +(K) is called regular if the operators S(0) and I − S(0) belong to
Binv(H). Denote by S +

reg(K) the set of all regular functions S ∈ S +(K).

Lemma 1. Let S ∈ S +(K), B := S(0) and ε ∈ (0, 1/2). Put by definition

Sε(x) = exK(B−1
ε − I + e2xK)−1exK , x ∈ R, (9)

where Bε := εI + (1− 2ε)B. Then Sε ∈ S +
reg(K) for all ε ∈ (0, 1/2).

Proof. It is obvious that the function Sε is a solution of the equation (1), moreover,
Sε(0) = Bε, S ′

ε(0) = KBε +BεK − 2BεKBε.

Since 0 < B < I, we get that εI ≤ Bε ≤ (1 − ε)I. Thus the operators Sε(0) and I − Sε(0)
belong to Binv(H). Using straightforward calculations, we obtain

KBε +BεK − 2BεKBε = (1− 2ε)2(KB +BK − 2BKB) + 2(ε− ε2)K ≥ 0.

Here we took into account that KB + BK − 2BKB = S ′(0) ≥ 0. Therefore, S ′
ε(0) ≥ 0,

which also means that Sε ∈ S +
reg(K) for all ε ∈ (0, 1/2).
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Proposition 2. Let S ∈ S +(K) and Sε be defined by the formula (9). Then
∥S(z)− Sε(z)∥ = o(1), ε → +0,

uniformly on compact sets in ΠK .

Proof. Let us put S0 := S. Obviously, it suffices to prove the existence of a continuous
function C : ΠK → R+, for which

∥S0(z)− Sε(z)∥ ≤ C(z)ε, z ∈ ΠK , ε ∈ [0, 1/2). (10)

Fix an arbitrary z ∈ ΠK and let c := [cos (y∥K∥)]−1 + e2∥zK∥, y = Im z. Let us consider the
operators Nε(z) := (B−1

ε − I + e2zK)−1, ε ∈ [0, 1/2). By definitions Sε(z) = ezKNε(z)e
zK ,

Nε(z) = e−zKSε(z)e
−zK . Thus

∥S0(z)− Sε(z)∥ ≤ c∥N0(z)−Nε(z)∥. (11)

According to Proposition 1, ∥Sε(z)∥ ≤ c, and hence

∥Nε(z)∥ ≤ c∥Sε(z)∥ ≤ c2, ε ∈ [0, 1/2). (12)

It follows from the definitions of the operators Nε that

Nε(z)B
−1
ε = I +Nε(z)(I − e2zK), B−1N0(z) = I + (I − e2zK)N0(z).

Therefore, taking into account (12), we obtain the estimates

∥Nε(z)B
−1
ε ∥ ≤ 1 + c∥Nε(z)∥ ≤ 2c3, ∥B−1N0(z)∥ ≤ 1 + c∥N0(z)∥ ≤ 2c3. (13)

It is easy to check that

N0(z)−Nε(z) = Nε(z)(B
−1
ε −B−1)N0(z), B−1

ε −B−1 = εB−1
ε (2B − I)B−1.

Thus N0(z) − Nε(z) = εNε(z)B
−1
ε (2B − I)B−1N0(z). Using the estimates (13) and the

inequality ∥2B − I∥ ≤ 1, we get

∥N0(z)−Nε(z)∥ = ε∥Nε(z)B
−1
ε ∥ · ∥2B − I∥ · ∥B−1N0(z)|| ≤ 4c6.

Taking into account (11), we have

∥S0(z)− Sε(z)∥ ≤ c∥N0(z)−Nε(z)∥ ≤ 4c7.

Therefore, the inequality (10) holds if the function C is defined by the formula

C(z) := 4([cos (y∥K∥)]−1 + e2∥zK∥)7.

Lemma 2. Let S ∈ S (K). Then for all x ∈ R

S(0)L(x) = e−xKS(x). (14)
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Proof. Let S ∈ S (K) and (see (2)) X(x) := e−xKS(x) = (S−1(0)− I + e2xK)−1exK , x ∈ R.
Then S(0)(S−1(0)− I + e2xK)X(x) = S(0)exK , and hence

S(0)(e2xK − I)X(x) = S(0)exK −X(x).

Using this equality, we obtain S(0)L(x) = S(0)[exK − (exK − e−xK)S(x)] = S(0)exK −
−S(0)(e2xK − I)X(x) = X(x) = e−xKS(x).

Lemma 3. Let S ∈ S +(K). Then for an arbitrary ε > 0

∥(S ′(0))1/2(K + εI)−1(S ′(0))1/2∥ ≤ 1/2.

Proof. Let ε > 0 and A =
√
2(K + εI)−1/2. In view of (1), we have

S ′(0) = S(0)K +KS(0)− 2S(0)KS(0). (15)

Multiplying (15) on the right and left by the operator A, we get

AS ′(0)A = AS(0)KA+ AKS(0)A− 2AS(0)KS(0)A =

= I − (I − AS(0)KA)(I − AKS(0)A)− AS(0)(2K −K2A2)S(0)A.

Since 2K − K2A2 = 2K[I − K(K + εI)−1] ≥ 0, (I − AS(0)KA)(I − AKS(0)A) ≥ 0, we
deduce that AS ′(0)A ≤ I. This means that 2(S ′(0))1/2(K + εI)−1(S ′(0))1/2 ≤ I, ε > 0.

Lemma 4. Let S ∈ S +(K). Then S ′(x) ≥ 0 for all x ∈ R, moreover,

S ′(x) = L∗(x)S ′(0)L(x) = Ψ∗(x)Ψ(x), x ∈ R. (16)

Proof. Multiplying the equality (15) on the left by L∗(x) and on the right by L(x), we get
(see (14))

L∗(x)S ′(0)L(x) = L∗(x)KS(0)L(x) + L∗(x)S(0)KL(x)− 2L∗(x)S(0)KS(0)L(x) =

= L∗(x)Ke−xKS(x) + S(x)e−xKKL(x)− 2S(x)e−2xKKS(x).

In view of (8), we have e−xKL(x) = I−S(x)+e−2xKS(x), L∗(x)e−xK = I−S(x)+S(x)e−2xK .
Thus the equalities

L∗(x)Ke−xKS(x) = KS(x)− S(x)KS(x) + S(x)e−2xKKS(x),

S(x)e−xKKL(x) = S(x)K − S(x)KS(x) + S(x)e−2xKKS(x)

hold. Therefore, taking into account (1), we obtain
L∗(x)S ′(0)L(x) = S(x)K +KS(x)− 2S(x)KS(x) = S ′(x).

Since S ′(0) ≥ 0, we have S ′(x) = L∗(x)S ′(0)L(x) ≥ 0, x ∈ R. In view of the definitions
(see (8)), Ψ∗(x)Ψ(x) = L∗(x)S ′(0)L(x) = S ′(x).

3. The main properties of the functions Ψ and q. Let S ∈ S +(K) and Sε (ε ∈ (0, 1/2))
be defined by the formula (9). Let us agree to denote by Ψε and qε the functions Ψ and q,
respectively, which are associated with the function Sε.

Proposition 2 implies the following corollary.

Corollary 1. Let S ∈ S +(K). Then

∥Ψ(z)−Ψε(z)∥ = o(1), ∥q(z)− qε(z)∥ = o(1), ε → +0,

uniformly on compact sets in ΠK .
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Let S ∈ S +
reg(K). Then the operators Γ and R := (S ′(0))1/2S−1(0) belong to B(H),

moreover, Γ > 0. It follows from (2) that

S(z) = (I + e−zKΓe−zK)−1, z ∈ ΠK . (17)

By the formulas (14), we have that L(z) = S−1(0)e−zKS(z), and hence (see (8)),

Ψ(z) = Re−zKS(z), z ∈ ΠK . (18)

Multiplying the equality (15) on the right and left by the operator S−1(0), we get

KΓ + ΓK = R∗R. (19)

Lemma 5. Let S ∈ S +(K) and ξ ∈ R. Denote by Ψ{ξ}, q{ξ}, R{ξ},Γ{ξ} the functions and
the operators, which are associated with the function S{ξ}. Then

∥Ψ{ξ}(z)∥ = ∥Ψ(z + ξ)∥, ∥q{ξ}(z)∥ = ∥q(z + ξ)∥, z ∈ ΠK .

Proof. In view of Corollary 1, we can assume that S ∈ S +
reg(K). Taking into account (17),

we have Γ{ξ} = S−1
{ξ}(0)− I = e−ξKΓe−ξK . Thus (see (19))

R∗
{ξ}R{ξ} = KΓ{ξ} + Γ{ξ}K = e−ξK(KΓ + ΓK)e−ξK = e−ξKR∗Re−ξK .

Using the polar decomposition, it can be easily shown that R{ξ} = WRe−ξK , where the
operator W is a partial isometry of the subspaces ranR and ranR{ξ}. Taking into account
(18), we obtain

Ψ{ξ}(z) := R{ξ}e
−zKS{ξ}(z) = WRe−(z+ξ)KS(z + ξ) = WΨ(z + ξ), z ∈ ΠK .

thus (see (8)) q{ξ}(z) = −4Ψ{ξ}(z)KΨ∗
{ξ}(z) = Wq(z + ξ)W ∗, z ∈ ΠK . It follows from the

above that ∥Ψ{ξ}(z)∥ = ∥Ψ(z + ξ)∥, ∥q{ξ}(z)∥ = ∥q(z + ξ)∥, z ∈ ΠK .

Proposition 3. Let S ∈ S +(K). Then for the functions Ψ and q the inequalities

∥Ψ(z)∥ ≤ π∥K∥1/2

2 cos(y∥K∥)
, ∥q(z)∥ ≤ 2∥K∥2

cos2(y∥K∥)
, y = Im z, (20)

hold in the strip ΠK .

Proof. In view of Corollary 1, we can assume that S ∈ S +
reg(K). Lemma 5 implies that it is

sufficient to prove the estimates (20) for z ∈ ΠK that lie on the imaginary axis. Denote by
Ψ◦ and q◦ the functions, which are associated with the function S◦. Since S◦ ∈ S +

reg(K) and
Ψ◦(z) = Ψ(−z) and q◦(z) = q(−z), it is sufficient to prove the estimates for z ∈ iR+.

Let y ∈ R+ and ∥yK∥ < π/2. Then (see (3), (18) and (8))
Ψ(iy) = R(e2iyK + Γ)−1eiyK , q(iy) = −4Ψ(iy)KΨ∗(−iy).

Therefore, it is sufficient to prove the estimates

∥Ψ(iy)∥ ≤ π∥K∥1/2

2 cos(y∥K∥)
, ∥Ψ(iy)K1/2∥ ≤ ∥K∥√

2 cos(y∥K∥)
. (21)

Put K̃ := yK, R̃ :=
√
yR, F̃ := R̃(e2iK̃+Γ)−1. Since KΓ+ΓK = R∗R, then K̃Γ+ΓK̃ = R̃∗R̃.

It is easy to check that the inequalities
∥Ψ(iy)∥2 ≤ ∥Ψ(iy)Ψ∗(iy)∥ = y−1∥F̃ F̃ ∗∥, ∥Ψ(iy)K1/2∥2 ≤ ∥Ψ(iy)KΨ∗(iy)∥ = y−2∥F̃ K̃F̃ ∗∥
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hold, and for the operators K̃, R̃, F̃ and Γ̃ := Γ the conditions of Lemma 9 are satisfied.
Thus (see Lemma 9)

∥F̃ F̃ ∗∥ ≤ π2∥K̃∥
4 cos2(∥K̃∥)

=
π2y∥K∥

4 cos2(∥yK∥)
, ∥F̃ K̃F̃ ∗∥ ≤ ∥K̃∥2

2 cos2(∥K̃∥)
=

y2∥K∥2

2 cos2(∥yK∥)
.

Taking into account these estimates, we get (21).

Lemma 6. Let S ∈ S (K), and Ψ and q be defined by the formula (8). Then

−Ψ′′(x) + q(x)Ψ(x) = −Ψ(x)K2, x ∈ R. (22)

Proof. Let X(x) := e−xKS(x), x ∈ R. Taking into account (1), we obtain that
X ′(x) = e−xKS(x)(K − 2KS(x)) = X(x)(K − 2KS(x)),

and hence X ′′(x) = X(x)[(K − 2KS(x))2 − 2KS ′(x)]. Using (1), we get that
(K − 2KS(x))2 = K2 − 2K[KS(x) + S(x)K − 2S(x)KS(x)] = K2 − 2KS ′(x).

Thus
X ′′(x) = X(x)K2 − 4X(x)KS ′(x). (23)

In view of (14), we have X(x) = e−xKS(x) = S(0)L(x). And hence the equality (23) can
be rewritten as S(0)[L′′(x)− L(x)K2 + 4L(x)KS ′(x)] = 0. Since the operator S(0) has the
trivial kernel, we conclude that

L′′(x)− L(z)K2 + 4L(x)KS ′(x) = 0. (24)

Multiplying the equality (24) on the left by the operator (S ′(0))1/2, we get
Ψ′′(x) + 4Ψ(x)KS ′(x)−Ψ(x)K2 = 0.

Therefore, taking into account (8) and (16), we have that
−Ψ′′(x) + q(x)Ψ(x) + Ψ(x)K2 = −Ψ′′(x)− 4Ψ(x)KΨ∗(x)Ψ(x) + Ψ(x)K2 =

= −Ψ′′(x)− 4Ψ(x)KS ′(x) + Ψ(x)K2 = 0.

Lemma 7. Let S ∈ S +(K), and L be defined by the formula (8). Then the function L
satisfies the equality

L′(x) sh(xK) + L(x)K ch(xK) = L(x)KL∗(x), x ∈ R. (25)

Proof. Let us introduce the notations A := sh(xK), B := ch(xK). Then A + B = exK . It
follows from the definitions that L = A+B − 2AS, L′ = K(A+B)− 2KBS − 2AS ′. Using
the equality (1), we have L′ = K(A+B)− 2KBS − 2A[KS + SK − 2SKS]. Thus

L′A+ LKB = K(A+B)A− 2KBSA−
−2A[KS + SK − 2SKS]A+ (A+B)KB − 2ASKB =

= K(A+B)2 − 2(A+B)KSA− 2ASK(A+B) + 4ASKSA. (26)

On the other hand,

LKL∗ = (A+B − 2AS)K(A+B − 2SA) =

= K(A+B)2 − 2ASK(A+B)− 2(A+B)KSA+ 4ASKSA. (27)

Since the right-hand sides of (26) and (27) are equal, we get L′A+ LKB = LKL∗.
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Lemma 7 implies the following corollary.

Corollary 2. The equality

−4[Ψ′(x) sh(xK) + Ψ(x)K ch(xK)]Ψ∗(0) = −4Ψ(x)KΨ∗(x) = q(x), x ∈ R, (28)

holds.

Proof. Let us multiply the equality (25) on the left by the operator Ψ(0) and on the right
by Ψ∗(0). Since Ψ(0) = (S ′(0))1/2, we get

[Ψ′(x) sh(xK) + Ψ(x)K ch(xK)]Ψ∗(0) = Ψ(x)KΨ∗(x) = −1
4
q(x).

4. Proof of Theorem 1. Note that part (2) of Theorem 1 was proved in Proposition 3. It
remains to prove part (1). The proof is divided into three steps.

1◦. Let S ∈ S +(K) and q = Υ(S) (see (8)). We consider the function
h(λ, x) := eiλx[I −Ψ(x)D(λ, x)Ψ∗(0)], x ∈ R, λ ∈ O(K),

where D(λ, x) := Kλe
−xK +K−λe

xK , Kλ := (K − iλI)−1, O(K) := {λ ∈ C | ±iλ /∈ σ(K)}.
Let us show that

−h′′(λ, x)− q(x)h(λ, x) = λ2h(λ, x), x ∈ R, λ ∈ O(K). (29)

Note that

D′ + iλD = 2 sh(xK), D′′ = K2D = DK2, (D′ + iλD)′ = 2K ch(xK). (30)

Using straightforward calculations, we obtain that
e−iλx[h′′ − qh+ λ2h] = −2iλ[ΨDΨ∗(0)]′ − [ΨDΨ∗(0)]′′ − q + qΨDΨ∗(0) =

= −2iλΨ′DΨ∗(0)− 2iλΨD′Ψ∗(0)− (Ψ′′ − qΨ)DΨ∗(0)− 2Ψ′D′Ψ∗(0)−ΨD′′Ψ∗(0)− q.
Thus, taking into account (30) and (see (22)) Ψ′′ − qΨ = ΨK2, we get that

e−iλx[h′′ − qh+ λ2h] = −2Ψ′(D′ + iλD)Ψ∗(0)− 2Ψ(D′ + iλD)′Ψ∗(0)− q.

Using the equalities (30) again, we have
e−iλx[h′′ − qh+ λ2h] = −4[Ψ′ sh(xK) + ΨK ch(xK)]Ψ∗(0)− q.

Thus, in view of (28), we get that e−iλx[h′′ − qh + λ2h] = 0. Therefore, the equality (29) is
proved.

2◦. Taking into account that D(λ, 0) = 2K(K2 + λ2I)−1, we consider the function
M(λ) := h(λ, 0) = I − 2Ψ(0)K(K2 + λ2I)−1Ψ∗(0), λ ∈ O(K).

The function M(λ) is analytic in O(K). Denote by Õ(K) the set of all λ ∈ O(K), for which
the operator M(λ) is invertible in the algebra B(H). It is obvious that the set Õ(K) is open
in C.

Let us show that the set C \ Õ(K) is a compact subset of the imaginary axis. Since
∥M(λ)− I∥ = O(λ−2), λ → ∞,

the set C \ Õ(K) is compact in C. It suffices to prove that

C \ Õ(K) ⊂ iR. (31)

Let us assume the contrary. Then there exists λ ∈ C \ iR such that M(λ) is not invertible.
Since (M(λ))∗ = M(λ̄), one of the operators M(λ),M(λ̄) is unbounded below. Without loss
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of generality, we may assume that M(λ) is unbounded below. Then there exists a sequence
(hn)n∈N in H such that

(∀n ∈ N) : ∥hn∥ = 1 and lim
n→∞

(M(λ)hn | hn) = 0.

Let E be a resolution of the identity for the operator K. Let us consider nonnegative Borel
measures µn, n ∈ N, on R+, which are defined by the formula

dµn(t) =
2

t
(dE(t)Ψ(0)∗hn | Ψ(0)∗hn), t ∈ R+.

Since Ψ(0) = (S ′(0))1/2, it follows from Lemm 3 that for an arbitrary ε > 0∫
R+

tdµn(t)

t+ ε
= 2(S ′(0))1/2(K + εI)−1(S ′(0))1/2hn | hn) ≤ ∥hn∥2 = 1.

Thus
∫
R+

dµn(t) ≤ 1, n ∈ N. Since the measures µn is concentrated on the interval (0, ∥K∥],
by Helly’s theorem, from the sequence (µn)n∈N one can choose a subsequence (µnk

)k∈N, which
converges weakly to some nonnegative Borel measure µ that is concentrated on the interval
(0, ∥K∥] and µ(R+) ≤ 1. The definitions imply that

(M(λ)hn | hn) = 1−
∫
R+

t2 dµn(t)

t2 + λ2
.

Thus

1−
∫
R+

t2 dµ(t)

t2 + λ2
= lim

k→∞

(
1−

∫
R+

t2 dµnk
(t)

t2 + λ2

)
= lim

k→∞
(M(λ)hnk

| hnk
) = 0.

As a result, the point z = λ2 is the zero of the function

g(z) := 1−
∫
R+

t2 dµ(t)

t2 + z
, z ∈ C+.

On the other hand, g is a Herglotz function, and hence it does not vanish outside the real
axis. Therefore, λ2 ∈ R. Since λ ∈ C \ iR, then λ2 ∈ R+. Thus

g(λ2) = 1−
∫
R+

t2 dµ(t)

t2 + λ2
> 1− µ(R+) ≥ 0,

meaning that g(λ2) ̸= 0, which is a contradiction. Therefore, the inclusion (31) is proved.
3◦. Put by definition,

f(λ, x) := h(λ, x)M−1(λ) = eiλx[I −Ψ(x)D(λ, x)Ψ∗(0)]M−1(λ), λ ∈ Õ(K). (32)

Let f±(z, ·) be the normalized right and left Weyl–Titchmarsh solutions of the equation
−y′′ + qy = zy, z ∈ C \ R. Let us show that

f(λ, ·) =

{
f+(λ

2, ·), λ ∈ C+ \ iR;
f−(λ

2, ·), λ ∈ C− \ iR.
(33)

Let Λ := {λ ∈ C | Imλ > 2∥K∥}. The formula (32) implies that
∥f(λ, x)∥ ≤ e−2∥K∥x(1 + ∥Ψ(x)D(λ, x)Ψ∗(0)M−1(λ)∥), x ≥ 0, λ ∈ Λ.

It is obvious that the function λ 7→ M−1(λ) is bounded in Λ. According to the second
estimate in (20), we have ∥Ψ(x)∥ · ∥Ψ∗(0)∥ ≤ 4∥K∥, x ∈ R.

It is easy to see that ∥K±λ∥ ≤ ∥K∥−1, λ ∈ Λ. Thus
∥D(λ, x)∥ ≤ 2∥K∥−1e∥xK∥, x ∈ R, λ ∈ Λ.

It follows from the above that there exists a constant C > 0 such that ∥f(λ, x)∥ ≤ Ce−x∥K∥,
x ∈ R+, λ ∈ Λ, and hence

∫
R+

∥f(λ, x)∥2 dx < ∞, i.e., f(λ, ·) is the Weyl–Titchmarsh
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solution of the equation −y′′ + qy = λ2y. Uniqueness of the Weyl–Titchmarsh solutions
implies that f(λ, x) = f+(λ

2, x), x ∈ R, λ ∈ Λ. Since at fixed x the right and left parts of
the equality are analytic in C+ \ iR, then

f(λ, ·) = f+(λ
2, ·), λ ∈ C+ \ iR.

Similarly, we prove that
f(λ, ·) = f−(λ

2, ·), λ ∈ C− \ iR.
Put by definition g(λ) := f ′(λ, 0).

Obviously the function g is analytic in Õ(K). The formula (33) implies that

g(λ) =

{
m+(λ

2), λ ∈ C+ \ iR;
m−(λ

2), λ ∈ C− \ iR,
and shows that the potential q is reflectionless. Theorem 1 is proved.

5. Appendix. Some auxiliary results. In Appendix, we will give auxiliary lemmas
(see [8]).

Lemma 8. Let Γ be a self-adjoint and positive operator in a Hilbert space H, K ∈ B+(H)
and ∥K∥ < π/2. Then (e2iK + Γ)−1 ∈ B(H), moreover, ∥(e2iK + Γ)−1∥ ≤ [cos (∥K∥)]−1.

Proof. Let δ := π/2−∥K∥, W := eiδ(e2iK+Γ). Since δI ≤ 2K+δI ≤ (2∥K∥+δ)I = (π−δ)I,
we have that ImW = sin (2K + δI) + (sin δ)Γ ≥ (sin δ)I, Im(−W ∗) = sin (2K + δI) +
(sin δ)Γ ≥ (sin δ)I. Hence the operators W and W ∗ are bounded below, moreover,

∥Wf∥ ≥ (sin δ)∥f∥, f ∈ H.
From the above, we conclude that the operator W is invertible and ∥W−1∥ ≤ 1/(sin δ).

As a result, ∥(e2iK + Γ)−1∥ = ∥W−1∥ ≤ (sin δ)−1 = [cos (∥K∥)]−1.

Lemma 9. Let K,Γ ∈ B+(H) and KΓ+ΓK = R∗R, where R ∈ B(H). If ∥K∥ ≤ π/2, then
for the operator F = R(e2iK + Γ)−1 the inequalities

∥FKF ∗∥ ≤ ∥K∥2

2 cos2(∥K∥)
, ∥FF ∗∥ ≤ π2∥K∥

4 cos2(∥K∥)
(34)

hold.

Proof. Let λ > 0 and Kλ := (K − iλI)−1, B := FKλR
∗. It follows from the conditions of

Lemma that
(K − iλI)(e2iK + Γ) + (e−2iK + Γ)(K + iλI) = R∗R + 2Kh(K), (35)

where h(t) := cos 2t + λsin 2t/t, t ≥ 0. Multiplying the equality (35) on the left by the
operator FKλ and on the right by (Kλ)

∗F ∗, we have B∗ +B = BB∗ + 2FKg(K)F ∗, where
g(t) := h(t)(t2 + λ2)−1, t ≥ 0. Hence

2FKg(K)F ∗ = I − (I −B)(I −B)∗ ≤ I. (36)

Put β := ∥K∥, γ := cosβ
β

, c(λ) := (cos 2β + λ sin 2β
β

)/(β2 + λ2).

Since the functions sin t/t and cos t decrease on the interval [0, π], the function h and g
decrease on the interval [0, π/2]. Therefore, g(t) ≥ c(λ) for all t ∈ [0, β]. Thus, taking into
account (36), we get that 2c(λ)FKF ∗ ≤ 2FKg(K)F ∗ ≤ I.

Since at λ0 = β tg β, c(λ0) =
cos 2β+tg β sin 2β

β2(1+tg2 β)
= γ2, we obtain 2γ2FKF ∗ ≤ I. This inequality

implies the first estimate in (34).
Let us prove the second inequality in (34). We consider the function
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φ(t) := g(t)t+
2t3

t2 + λ2
, t ∈ [0, π/2].

It follows from the definitions of the functions h and g that for all t ∈ [0, π/2]

φ(t) =
t

t2 + λ2

(
cos 2t+ λ

sin 2t

t
+ 2t2

)
≥ t

t2 + λ2

(
cos 2t+ 2t2

)
.

Note that the function cos 2t + 2t2 is monotonically increasing and 1 ≤ cos 2t + 2t2 ≤
π2/2 − 1, t2

t2+λ2 ≤ 1, t ∈ [0, π/2]. Thus t
t2+λ2 ≤ φ(t) ≤ g(t)t + 2t, t ∈ [0, π/2]. Therefore,

FK(K2 + λ2I)−1F ∗ ≤ FKg(K)F ∗ + 2FKF ∗. Using this inequality and the estimates (36)
and 2γ2FKF ∗ ≤ I, we get FK(K2 + λ2I)−1F ∗ ≤

(
1
2
+ γ−2

)
I.

Since ∥K∥−1K ≤ I, then

∥K∥−1FK2(K2 + λ2I)−1F ∗ ≤ FK(K2 + λ2I)−1F ∗ ≤
(1
2
+ γ−2

)
I,

and hence FK2(K2+λ2I)−1F ∗ ≤ β(1
2
+ β2

cos2 β
). By passing to the limit as λ → +0, we obtain

FF ∗ ≤ β
cos2 β + 2β2

2 cos2 β
= β

cos 2β + 4β2 + 1

4 cos2 β
≤ π2β

4 cos2 β
.

Therefore, the second inequality in (34) is proved.
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