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For a Dirichlet series of form F(s) = exp{sA;} + 375 frexp{sAx} (1) absolutely conver-
gent in the half-plane Iy = {s: Res < 0} new sufficient conditions for the close-to-pseudocon-
vexity are found and the obtained result is applied to studying of solutions linear differential
equations of second order with exponential coefficients. In particular, are proved the following
statements: 1) Let Ay = Ag—1 + A and fr, > 0 for all & > 2. If 1 < Aofa/A1 < 2 and
Mefre — A1 Sk+1 N\ ¢ > 0 as k — 400 then function of form (1) is close-to-pseudoconvex in Iy
(Theorem 3). This theorem complements Alexander’s criterion obtained for power series. 2) If
either —h% < v < 0 or v = h? then differential equation (1 —e”*)2w” —h(1—e2"*)w’ +ye?* =0
(h > 0,7 € R) has a solution w = F' of form (1) with the exponents A\; = kh and the the
abscissa of absolute convergence o, = 0 that is close-to-pseudoconvex in IIy (Theorem 4).

1. Introduction. An analytic function f(2) = z 4+ >, fi2* univalent in D = {z: |2| < 1}
is said to be convex [1, p.203] if 1 + Re{zf"(2)/f'(2)} > 0 for all z € D. According to
W. Kaplan [2] an analytic function f is said to be close-to-conver in D if there exists a
convex in D function ® such that Re{f'(z)/®'(2)} > 0 for all z € D. Every close-to-convex
function is univalent in D. From the results obtained by J. Alexander [3] it follows that if
1>2g9>3g3>--->(k—1)gx—1 > kgx > --- > 0, then f is close-to-convex in . Using the
Alexander criterion, S. Shah [4] indicated the conditions for real parameters 7o, 71, 72, under
which a differential equation 22w” + 2w’ + (72% +712 +72)w = 0 has an entire transcendental
solution f such that the function f and all its derivatives are close-to-convex in ID. Many
authors (see, for example, [5-8]) continued Shah’s research.

A direct generalization of power development of an analytic function is a Dirichlet series
with exponents increasing to +0o. By SD(A,0) we denote a class of Dirichlet series

+00
F(s) = exp{s\i} + Z frexp{sic}, s=o0+it, (1)
k=2

with a given sequence A = () of positive exponents and the abscissa of absolute convergence
0.[F] = 0, that is, in particular, every Dirichlet series F' € SD(A,0) is absolutely convergent
in IIp = {s: Res < 0}. The geometric properties of functions from the class SD(A,0) were
studied in [9] (see also [10, p.135-154]). Every function F' € SD(A,0) is non-univalent in IIy.
However, if 3°7°5 Al fx] < A1 then the function F € SD(A,0) is conformal at every point
Z € Ho.
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A function F' € SD(A,0), conformal at every point z € Iy, is called |9] pseudoconvez if
Re{F"(s)/F'(s)} >0
for all s € Il and is called close-to-pseudoconvex if there exists a pseudoconvex in Il function
U such that Re{F'(s)/V’(s)} > 0 for all s € Ilj. In [9] it is proved that if

M > Xofo> o 2> N fie 2 Mg fopr > - (2)

then a function F' € SD(A,0) of form 1 is close-to-pseudoconvex in I1y. Using this statement,
in [9] it is proved also that if h > 0, v < 0, 71 < 0, 72 < 0 and

2\/\72 +h Ah(y/ 2| + h)? 7]
Tl < h/vals |l < - ;

then the differentlal equatlon ‘%’ + (€% + y1e™ + y2)w = 0 has an entire solution of

2hs

form (1) with the exponents Ay = /|72| + (kK — 1)h (k > 1) which is close-to-pseudoconvex
in I1,.

In this note we will find sufficient conditions for the close-to-pseudoconvexity function
F € SD(A,0) of form (1) that differ from (2), and we will point out the application to the
studying the properties of solutions differential equations.

2. Sufficient conditions for close-to-pseudoconvexity. Let’s start with this theorem.

Theorem 1. Let A, = A\,_1 + Ay and fr > 0 for all k > 2. If N\ fi, /M1 S q<2ask — +o0

then function (1) is close-to-pseudoconvex in Il,.
Proof. 1t is easy to prove [9] that the function ¥(s) = In m belongs to class SDy,

pseudoconvex and ¥'(s) = Aeplshi} Qi e fi=1and A1 = A\ + Ay, for F and ¥ we have

1—exp{sAi}”
F'(s) kfk
W) = (1 — exp{s\}) (1 + Z exp{s(Ar — )\1)}> =
=1—exp{s\}+ Z kfk exp{s(A\g — A1)} — Z exp{s/\k} =
A f A A
M J1 }—FZMGXP{S)%}_Z kfk exp{siy} =
A = M = M
1 &2
=1+ " Z()\k+1fk+1 — A fr) exp{sAi}.
Lk=1

We put F,,(s) =1+ /\i > (Mer1 frr1 — Aefr) exp{sAt}. Then for Res < 0 we obtain
E—1

Re Fy(s) > 1 — A—] Z(AM Fort — Mof) exp{sh}| >
=1

—)\—kZ)\k+1fk+1_>\kfk):1— = /\jl 1:2—%+1>0

Since F'(s)/¥'(s) = lm F,(s). O

m——+00

The following theorem is true also.

Theorem 2. Let A\, = \y_1 + A\ and f, > 0 for all k > 2. If Aofo/A1 > 2 and (Ngi1fre1 —
Mefr) /M q <2 as k — 4oo then function (1) is close-to-pseudoconvex in .
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Proof. At first we remark that the function U(s) = % is pseudoconvex. For F' and ¥
now we have .

F'(s) 2 =~ A

(s = (1 — exp{\1s}) <1 + ;:; " exp{s(\x — )\1)}> =

+oo
=1+ Z )\kfk exp{s(Ax — A1)} — 2exp{A;s} — ZQAkfk exp{sh,}+
k=2

—%exp{?kls}%—jz:Q kjkexp{s(Ak+—Aﬂ}::
M
_ 1++§ A1 fitt (A} — 2 \ 5 k:fk \
- N opls K} — 2exp{A\is} — Z exp{sA;}+
k=1
Ae—1fr-1 B
+exp{2XA;s} + Z 2 e exp{sAy} =
k=3 !
_ A2 f2 Aaf2 | Asfs
=1+ < )\ - 2) exp{Ais} + (1 -2 N + N ) exp{A2s}+
)\k+1fk+1 )\kfk Ne—1k-1 B
+Z< _A1+ M ﬁm@ﬁ—
B A2 fo MertSerr S AeSe | Ae-1fea
=1+ ( N 2> exp{Ai1s} + ; ( N 2 N + N ) exp{sA}.
Putting
B A2 fa S VREY NPV A VAR [
Fo.(s)=1+ ( N 2) exp{\1s} + ; < N 2 N + N ) exp{s\s},
for Re s < 0 we obtain
A A A Me—1 fr—
]Reﬁ;xs);i1-‘( 2f§——2)exp{Als} j{:)( k+4fk+1-2 ifk-% k?i{% 1)exp{sAk}’>

1 <)\)2\f2 _ 2) _ Z <)\k+1fk+1 _ )\kfk _ (Akfk B )\klfk1>>

1 o2 A A At A
>\2f2 /\m+1fm+1 >\mfm )‘2f2 )\lfl )‘m+1fm+1 )\m
—3_ — — £2j2 VLN _ o (ZmdlImil 7m0 0>
L ( M A1)+<A1 M> ( M A)“ 72
]

Finally, the following theorem complements the Alexander criterion and Theorem 2.

Theorem 3. Let A\, = A1+ Ay and fr > 0 for all k > 2. If 1 < A\ofy/A < 2 and
Mefe — M1 frr1 \ ¢ > 0 as k — 400 then function (1) is close-to-pseudoconvex in 1.

Proof. Choose W as in the proof of Theorem 2. Then for F,(s) now we have
Re F,.(s) > 1— ‘(2 - )\2f2> exp{/\ls}‘_
At

/A A A
_ZK e 1fk 1 oAk n kﬂfkﬂ)exp{s)\k}‘ -
=2

)\1 A
71— < Azfg) zm: <)\k 1fe-1 )\/;\Lfk B (Af\;fk B Ak-i—/l\fk-i—l)) _

k=2
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o <2 B )\2_fQ> zm: ()\kfk ~ Merifr ()\klfkl B )\kfk>> _

Al Al Al Al Al
AZJE nuﬂn 7n+lj%%+1 Aljﬁ A2j§ A2j§
:1_(2_ ) _ _( _ >>2 —2>0,
)\1 + )\1 )\1 )\1 )\1 o >\1 o
and, thus, Theorem 3 is proved. O

3. Close-to-pseudoconvexity of a solution of some differential equation. The solu-
tion to the equation w” + (ype*"* + v1€* + 45)w = 0 considered in [9] is an entire Dirichlet
series. Here we will consider the equation

(1 —e")w” —h(l — ") +~ve** =0 (h>0,y€R), (3)

and show that it has solution [1] with the abscissa of absolute convergence o, = 0 and find
the conditions, under which this solution is close-to-pseudoconvex in 1.

Theorem 4. If either —h* < v < 0 or v = h? then differential equation (3) has a solution
F € SD(A,0) of form 1 with the exponents \y = kh and the the abscissa of absolute
convergence o, = 0 that is close-to-pseudoconvex in 1.

Proof. Function(1) is a solution for differential equation (3) if and only if

+o00
(1 — 2 + ) Z A2 frexp{shc} — h(1 — &%) Z e frexp{sAp} + ve? =0,
k=1 k=1

and if )\k = kh then
Z P2k fr exp{skh} — 2 Z B2k fr exp{s(k + 1)h} + Z P2k fr exp{s(k + 2)h}—

k=1 k=1 k=1

+oo +00
— Z h?k fi exp{skh} + Z Rk fr exp{s(k + 2)h} + ye* =
k=1 k=1
that is,

+00
Z h*(k* — k) fr exp{skh} — 2 Z h%(k — 1) fr_1 exp{skh}+

k=2
+ Z R (( 24k —2) fr_oexp{skh} +ye*" = 0.

Therefore,
(2h2f2 _ 2h2 + ’)/)62h8+

+Z W2k = k) fie + 02 (k = 1) i + h2((k = 2)° + k = 2) fr—2) exp{skh} = 0,

whence 1t follows that 2h%f, — 2R + v = o and h*(k* — k)fi + h*(k — 1)?fr—1 +
+h*((k —2)* + k —2) fr—2 =0, that is fo = 1 — 55 and

kf, —2(k—1)fro1+(k—2)fr2=0, k>3. (4)

Suppose at first that —h?* < vy < 0. Then Ao fo/N; = 2f, = 2 —vh™2 > 2 and in view
of (4)

(kD) fopr —kfo=kfo—(k=1Dfici=2fa—fi=1—-7h?<2, k>2, (5)
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i.e. the conditions of Theorem 2 hold with ¢ = 1 — vh~2 and the close-to-pseudoconvexity
of (1) is proved.
If v = h? then similarly Apfo/A = 2fy =1 and

kfy = (k+Dfspn=hH—2fr=70"7=1=0, k>2, (6)

i.e. the conditions of Theorem 3 hold with ¢ = 0 and the close-to-pseudoconvexity of (1) is
proved again.
Now we prove that o, = 0. From (5) it follows that kfy = (k—1)fx_1 +2fo— fr =+ =

= (k —1)(2fy — f1). Therefore, according to Valiron’s formula [11]
1

0, = lim —lniz lim Lln— 0.

kotoo Nt [kl kStec KR 2fo— fi -

Also (6) implies kaH = %fi = % H?ZQ(H—%) and according to Valiron’s formulac, = 0. O
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