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For a Dirichlet series of form F (s) = exp{sλ1}+
∑+∞

k=2 fk exp{sλk} (1) absolutely conver-
gent in the half-plane Π0 = {s : Re s < 0} new sufficient conditions for the close-to-pseudocon-
vexity are found and the obtained result is applied to studying of solutions linear differential
equations of second order with exponential coefficients. In particular, are proved the following
statements: 1) Let λk = λk−1 + λ1 and fk > 0 for all k ≥ 2. If 1 ≤ λ2f2/λ1 ≤ 2 and
λkfk−λk+1fk+1 ↘ q ≥ 0 as k → +∞ then function of form (1) is close-to-pseudoconvex in Π0

(Theorem 3). This theorem complements Alexander’s criterion obtained for power series. 2) If
either −h2 ≤ γ ≤ 0 or γ = h2 then differential equation (1−ehs)2w′′−h(1−e2hs)w′+γe2hs = 0
(h > 0, γ ∈ R) has a solution w = F of form (1) with the exponents λk = kh and the the
abscissa of absolute convergence σa = 0 that is close-to-pseudoconvex in Π0 (Theorem 4).

1. Introduction. An analytic function f(z) = z +
∑+∞

k=1 fkz
k univalent in D = {z : |z| < 1}

is said to be convex [1, p.203] if 1 + Re{zf ′′(z)/f ′(z)} > 0 for all z ∈ D. According to
W. Kaplan [2] an analytic function f is said to be close-to-convex in D if there exists a
convex in D function Φ such that Re{f ′(z)/Φ′(z)} > 0 for all z ∈ D. Every close-to-convex
function is univalent in D. From the results obtained by J. Alexander [3] it follows that if
1 ≥ 2g2 ≥ 3g3 ≥ · · · ≥ (k−1)gk−1 ≥ kgk ≥ · · · > 0, then f is close-to-convex in D. Using the
Alexander criterion, S. Shah [4] indicated the conditions for real parameters γ0, γ1, γ2, under
which a differential equation z2w′′+zw′+(γ0z

2+γ1z+γ2)w = 0 has an entire transcendental
solution f such that the function f and all its derivatives are close-to-convex in D. Many
authors (see, for example, [5–8]) continued Shah’s research.

A direct generalization of power development of an analytic function is a Dirichlet series
with exponents increasing to +∞. By SD(Λ, 0) we denote a class of Dirichlet series

F (s) = exp{sλ1}+
+∞∑
k=2

fk exp{sλk}, s = σ + it, (1)

with a given sequence Λ = (λk) of positive exponents and the abscissa of absolute convergence
σa[F ] = 0, that is, in particular, every Dirichlet series F ∈ SD(Λ, 0) is absolutely convergent
in Π0 = {s : Re s < 0}. The geometric properties of functions from the class SD(Λ, 0) were
studied in [9] (see also [10, p.135–154]). Every function F ∈ SD(Λ, 0) is non-univalent in Π0.
However, if

∑+∞
k=2 λk|fk| ≤ λ1 then the function F ∈ SD(Λ, 0) is conformal at every point

z ∈ Π0.
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A function F ∈ SD(Λ, 0), conformal at every point z ∈ Π0, is called [9] pseudoconvex if
Re{F ′′(s)/F ′(s)} > 0

for all s ∈ Π0 and is called close-to-pseudoconvex if there exists a pseudoconvex in Π0 function
Ψ such that Re{F ′(s)/Ψ′(s)} > 0 for all s ∈ Π0. In [9] it is proved that if

λ1 ≥ λ2f2 ≥ · · · ≥ λkfk ≥ λk+1fk+1 ≥ . . . , (2)

then a function F ∈ SD(Λ, 0) of form 1 is close-to-pseudoconvex in Π0. Using this statement,
in [9] it is proved also that if h > 0, γ0 < 0, γ1 < 0, γ2 < 0 and

|γ1| ≤
2
√
|γ2|+ h√
|γ2|+ h

h
√

|γ2|, |γ0| ≤
(4h(√|γ2|+ h)2√

|γ2|+ 2h
− |γ1|

) |γ1|
h(2

√
|γ2|+ h)

,

then the differential equation d2w
ds2

+ (γ0e
2hs + γ1e

hs + γ2)w = 0 has an entire solution of
form (1) with the exponents λk =

√
|γ2| + (k − 1)h (k ≥ 1) which is close-to-pseudoconvex

in Π0.
In this note we will find sufficient conditions for the close-to-pseudoconvexity function

F ∈ SD(Λ, 0) of form (1) that differ from (2), and we will point out the application to the
studying the properties of solutions differential equations.

2. Sufficient conditions for close-to-pseudoconvexity. Let’s start with this theorem.

Theorem 1. Let λk = λk−1 + λ1 and fk > 0 for all k ≥ 2. If λkfk/λ1 ↗ q ≤ 2 as k → +∞
then function (1) is close-to-pseudoconvex in Π0.

Proof. It is easy to prove [9] that the function Ψ(s) = ln 1
1−exp{sλ1} belongs to class SD0,

pseudoconvex and Ψ′(s) = λ1 exp{sλ1}
1−exp{sλ1} . Since f1 = 1 and λk+1 = λk +λ1, for F and Ψ we have

F ′(s)

Ψ′(s)
= (1− exp{sλ1})

(
1 +

+∞∑
k=2

λkfk
λ1

exp{s(λk − λ1)}
)
=

= 1− exp{sλ1}+
+∞∑
k=2

λkfk
λ1

exp{s(λk − λ1)} −
+∞∑
k=2

λkfk
λ1

exp{sλk} =

= 1− λ1f1
λ1

exp{sλ1}+
+∞∑
k=1

λk+1fk+1

λ1

exp{sλk} −
+∞∑
k=2

λkfk
λ1

exp{sλk} =

= 1 +
1

λ1

+∞∑
k=1

(λk+1fk+1 − λkfk) exp{sλk}.

We put Fm(s) = 1 + 1
λ1

m∑
k=1

(λk+1fk+1 − λkfk) exp{sλk}. Then for Re s < 0 we obtain

ReFm(s) ≥ 1− 1

λ1

∣∣∣ m∑
k=1

(λk+1fk+1 − λkfk) exp{sλk}
∣∣∣ >

> 1− 1

λ1

m∑
k=1

(λk+1fk+1 − λkfk) = 1− λm+1fm+1 − λ1

λ1

= 2− λm+1fm+1

λ1

≥ 0.

Since F ′(s)/Ψ′(s) = lim
m→+∞

Fm(s).

The following theorem is true also.

Theorem 2. Let λk = λk−1 + λ1 and fk > 0 for all k ≥ 2. If λ2f2/λ1 ≥ 2 and (λk+1fk+1 −
λkfk)/λ1 ↗ q ≤ 2 as k → +∞ then function (1) is close-to-pseudoconvex in Π0.
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Proof. At first we remark that the function Ψ(s) = exp{sλ1}
1−exp{sλ1} is pseudoconvex. For F and Ψ

now we have
F ′(s)

Ψ′(s)
= (1− exp{λ1s})2

(
1 +

+∞∑
k=2

λkfk
λ1

exp{s(λk − λ1)}
)
=

= 1 +
+∞∑
k=2

λkfk
λ1

exp{s(λk − λ1)} − 2 exp{λ1s} −
+∞∑
k=2

2
λkfk
λ1

exp{sλk}+

+exp{2λ1s}+
+∞∑
k=2

2
λkfk
λ1

exp{s(λk + λ1)} =

= 1 +
+∞∑
k=1

λk+1fk+1

λ1

exp{sλk} − 2 exp{λ1s} −
+∞∑
k=2

2
λkfk
λ1

exp{sλk}+

+exp{2λ1s}+
+∞∑
k=3

2
λk−1fk−1

λ1

exp{sλk} =

= 1 +
(λ2f2

λ1

− 2
)
exp{λ1s}+

(
1− 2

λ2f2
λ1

+
λ3f3
λ1

)
exp{λ2s}+

+
+∞∑
k=3

(λk+1fk+1

λ1

− 2
λkfk
λ1

+
λk−1fk−1

λ1

)
exp{sλk} =

= 1 +
(λ2f2

λ1

− 2
)
exp{λ1s}+

+∞∑
k=2

(λk+1fk+1

λ1

− 2
λkfk
λ1

+
λk−1fk−1

λ1

)
exp{sλk}.

Putting

Fm(s) = 1 +
(λ2f2

λ1

− 2
)
exp{λ1s}+

m∑
k=2

(λk+1fk+1

λ1

− 2
λkfk
λ1

+
λk−1fk−1

λ1

)
exp{sλk},

for Re s < 0 we obtain

ReFm(s) ≥ 1−
∣∣∣(λ2f2

λ1

− 2
)
exp{λ1s}

∣∣∣− m∑
k=2

∣∣∣(λk+1fk+1

λ1

− 2
λkfk
λ1

+
λk−1fk−1

λ1

)
exp{sλk}

∣∣∣ >
> 1−

(λ2f2
λ1

− 2
)
−

m∑
k=2

(λk+1fk+1

λ1

− λkfk
λ1

−
(λkfk

λ1

− λk−1fk−1

λ1

))
=

= 3− λ2f2
l1

−
(λm+1fm+1

λ1

− λmfm
λ1

)
+
(λ2f2

λ1

− λ1f1
λ1

)
= 2−

(λm+1fm+1

λ1

− λm

λ1

)
≥ 2− q ≥ 0.

Finally, the following theorem complements the Alexander criterion and Theorem 2.

Theorem 3. Let λk = λk−1 + λ1 and fk > 0 for all k ≥ 2. If 1 ≤ λ2f2/λ1 ≤ 2 and
λkfk − λk+1fk+1 ↘ q ≥ 0 as k → +∞ then function (1) is close-to-pseudoconvex in Π0.

Proof. Choose Ψ as in the proof of Theorem 2. Then for Fm(s) now we have

ReFm(s) ≥ 1−
∣∣∣(2− λ2f2

λ1

)
exp{λ1s}

∣∣∣−
−

m∑
k=2

∣∣∣(λk−1fk−1

λ1

− 2
λkfk
λ1

+
λk+1fk+1

λ1

)
exp{sλk}

∣∣∣ >
> 1−

(
2− λ2f2

λ1

)
−

m∑
k=2

(λk−1fk−1

λ1

− λkfk
λ1

−
(λkfk

λ1

− λk+1fk+1

λ1

))
=
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= 1−
(
2− λ2f2

λ1

) m∑
k=2

(λkfk
λ1

− λk+1fk+1

λ1

−
(λk−1fk−1

λ1

− λkfk
λ1

))
=

= 1−
(
2− λ2f2

λ1

)
+

λmfm
λ1

− λm+1fm+1

λ1

−
(λ1f1

λ1

− λ2f2
λ1

)
≥ 2

λ2f2
λ1

− 2 ≥ 0,

and, thus, Theorem 3 is proved.

3. Close-to-pseudoconvexity of a solution of some differential equation. The solu-
tion to the equation w′′ + (γ0e

2hs + γ1e
hs + γ2)w = 0 considered in [9] is an entire Dirichlet

series. Here we will consider the equation

(1− ehs)2w′′ − h(1− e2hs)w′ + γe2hs = 0 (h > 0, γ ∈ R), (3)

and show that it has solution [1] with the abscissa of absolute convergence σa = 0 and find
the conditions, under which this solution is close-to-pseudoconvex in Π0.

Theorem 4. If either −h2 ≤ γ ≤ 0 or γ = h2 then differential equation (3) has a solution
F ∈ SD(Λ, 0) of form 1 with the exponents λk = kh and the the abscissa of absolute
convergence σa = 0 that is close-to-pseudoconvex in Π0.

Proof. Function(1) is a solution for differential equation (3) if and only if

(1− 2ehs + e2hs)
+∞∑
k=1

λ2
kfk exp{sλk} − h(1− e2hs)

+∞∑
k=1

λkfk exp{sλk}+ γe2hs ≡ 0,

and if λk = kh then
+∞∑
k=1

h2k2fk exp{skh} − 2
+∞∑
k=1

h2k2fk exp{s(k + 1)h}+
+∞∑
k=1

h2k2fk exp{s(k + 2)h}−

−
+∞∑
k=1

h2kfk exp{skh}+
+∞∑
k=1

h2kfk exp{s(k + 2)h}+ γe2hs ≡ 0,

that is,
+∞∑
k=1

h2(k2 − k)fk exp{skh} − 2
+∞∑
k=2

h2(k − 1)2fk−1 exp{skh}+

+
+∞∑
k=3

h2((k − 2)2 + k − 2)fk−2 exp{skh}+ γe2hs ≡ 0.

Therefore,
(2h2f2 − 2h2 + γ)e2hs+

+
+∞∑
k=3

(h2(k2 − k)fk + h2(k − 1)2fk−1 + h2((k − 2)2 + k − 2)fk−2) exp{skh} ≡ 0,

whence it follows that 2h2f2 − 2h2 + γ = 0 and h2(k2 − k)fk + h2(k − 1)2fk−1 +
+h2((k − 2)2 + k − 2)fk−2 = 0, that is f2 = 1− γ

2h2 and

kfk − 2(k − 1)fk−1 + (k − 2)fk−2 = 0, k ≥ 3. (4)

Suppose at first that −h2 ≤ γ ≤ 0. Then λ2f2/λ1 = 2f2 = 2 − γh−2 ≥ 2 and in view
of (4)

(k + 1)fk+1 − kfk = kfk − (k − 1)fk−1 = 2f2 − f1 = 1− γh−2 ≤ 2, k ≥ 2, (5)
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i.e. the conditions of Theorem 2 hold with q = 1 − γh−2 and the close-to-pseudoconvexity
of (1) is proved.

If γ = h2 then similarly λ2f2/λ1 = 2f2 = 1 and

kfk − (k + 1)fk+1 = f1 − 2f2 = γh−2 − 1 = 0, k ≥ 2, (6)

i.e. the conditions of Theorem 3 hold with q = 0 and the close-to-pseudoconvexity of (1) is
proved again.

Now we prove that σa = 0. From (5) it follows that kfk = (k− 1)fk−1 +2f2 − f1 = · · · =
= (k − 1)(2f2 − f1). Therefore, according to Valiron’s formula [11]

σa = lim
k→+∞

1

λk

ln
1

|fk|
= lim

k→+∞

1

kh
ln

1

2f2 − f1
= 0.

Also (6) implies 1
fk+1

= k+1
k

1
fk

= 1
f2

∏k
j=2(1+

1
j
) and according to Valiron’s formula σa = 0.
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