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This paper delves into the uniqueness of finite-order meromorphic functions f(z) and g(z)
over the extended complex plane, particularly when these functions share a small function
a(z) under specific conditions. The study reveals new insights with significant applications,
such as classifying different complexes within C based on their uniqueness. The primary goal
is to explore the uniqueness of meromorphic functions that share a small function a(z) in the
sense of IM (ignoring multiplicities) while constrained by finite order, alongside certain types of
differential-difference polynomials. We focus on two non-constant meromorphic functions f(z)
and g(z) of finite order, under the assumption that a small function a(z), relative to f(z), plays
a crucial role in the analysis. The investigation centers on the uniqueness properties of a specific
type of differential-difference polynomial of the form [fnP [f ]H(z, f)], where P [f ] is a differential
polynomial of f(z) and H(z, f) is a difference polynomial of f(z), both defined in the equations
(2) and (3), respectively. Importantly, these polynomials do not vanish identically and do not
share common zeros or poles with either f(z) or g(z). The paper establishes conditions on
several parameters, including k, n, d(P ), Ψ, Q, t, and ξ, under which the shared value properties
between f(z) and g(z) lead to two possible outcomes: either f(z) is a constant multiple of g(z),
or f(z) and g(z) satisfy a specific algebraic difference equation. This result contributes to
a deeper understanding of the relationship between shared values and the structural properties
of meromorphic functions. As an application, the paper extends several previous results on
meromorphic functions, including those by Dyavanal and M. M. Mathai, published in the
Ukr. Math. J. (2019). Furthermore, by citing a particular example, we demonstrate that the
established results hold true only under specific cases, highlighting the precision of the theorem.
Finally, we offer a more compact version of the main theorem as an enhancement, providing
a refined perspective on the uniqueness problem in the context of meromorphic functions.

1. Introduction. Let f(z) be a meromorphic function in the complex plane C. We are using
the notations of Nevanlinna theory of meromorphic functions (see [1–3]) such as, m(r, f)
N(r, f), T (r, f), m(r, a) = m(r, 1

f−a
), N(r, a) = N(r, 1

f−a
) etc. We denote by S(r, f) the

arbitrary quantity such that S(r, f) = o(T (r, f)) as r → ∞ without restriction, if f(z) is of
finite order, and otherwise as r → ∞ except possibly of some set of finite linear Lebesgue
measure. A meromorphic function a(z) is said to be a small function of f , if T (r, a) = S(r, f).

Two non-constant meromorphic functions f and g share the value a ∈ C ∪ {∞}, if
f−1(a) = g−1(a). We say that f and g share the value a CM (counting multiplicities) if in
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addition to the sharing of values if f(z0) = a with multiplicity p implies g(z0) = a with
multiplicity p. If we do not consider the multiplicities, then f and g are said to share the
value a IM (ignoring multiplicities). When a = ∞, the zeros of f − a means the poles of f.
Throughout this paper, we need the following definition

Θ(a, f) = 1− lim
r→∞

N
(
r,

1

f − a

)
T (r, f)

,

where a is a value in the extended complex plane.
Assume that f(z) and g(z) share IM the value 1 and that z0 is a 1-point of f(z) of order

p and a 1-point of g(z) of order q. We denote the counting function of the 1-points of both
f(z) and g(z) with p > q by NL(r,

1
f−1

). In the same way, we can define NL(r,
1

g−1
).

Let f(z) be a non-constant meromorphic function. We denote by Nk)(r,
1

f−a
) the counting

function for zeros of f − a with multiplicities atleast k, and by N(k(r,
1

f−a
) the one for which

multiplicity is not counted. Similarly, we denote by Nk)(r,
1

f−a
) the counting function for

zeros of f −a with multiplicities atmost k, and by N (k(r,
1

f−a
) the one for which multiplicity

is not counted. Then

Nk

(
r,

1

f − a

)
= N

(
r,

1

f − a

)
+N (2

(
r,

1

f − a

)
+ ...+N (k

(
r,

1

f − a

)
.

Further, we define the order ρ(f) and the hyperorder ρ2(f) of a meromorphic function f(z)
by

ρ(f) = lim
r→∞

log T (r, f)

log r
, ρ2(f) = lim

r→∞

log log T (r, f)

log r
,

respectively. Let m be a non-negative integer and let a0(̸= 0), a1, a2, ..., am−1, am( ̸= 0) be
complex constants. Define

P (w) = amw
m + am−1w

m−1 + ...+ a1w + a0. (1)

Any expression of the form

P [f ] =
m∑
i=1

αi(z)(f)
ni0(f

′
)ni1(f

′′
)ni2 . . . (f s)nis (2)

is called differential polynomial in f of degree d(P ), lower degree d(P ), where ni0, ni1, . . . , nis

are non-negative integers, αi = αi(z) are meromorphic functions satisfying T (r, αi) = S(r, f)

d(P ) = max

{
s∑

j=0

nij : l ≤ i ≤ m

}
, d(P ) = min

{
s∑

j=0

nij : l ≤ i ≤ m

}
.

Further, if d(P ) = d(P ) = l, then the differential polynomial P [f ] is called a homogeneous
differential polynomial in f of degree 1. Also we define Q = max

1≤i≤m
{ni0 + ni1 + ...+ nil}.

We define the following difference polynomial:

H(z, f) =
t∑

i=1

ξ∏
j=1

bj(f(z + cij))
vij , (3)
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where cij(i ∈ {1, 2, . . . , t}; j ∈ {1, 2, . . . , ξ}) be distinct finite complex numbers, the degree
of item i is

θi =

ξ∑
j=1

(1, 2, . . . , t), Ψ =
t∑

i=1

θi

and vij are a non-negative integer.
In 2006, Halburd and Korhonen ([25]), and Chiang and Feng ([26]) independently gave

the difference logarithmic derivative lemma, then Halburd and Korhonen ([27]) established
a version of Nevanlinna theory based on difference operators. With this development, many
researchers studied the zero distribution ans unicity problem of different types of difference
polynomials and obtained many results.

For certain types difference polynomial of meromorphic functions and its certain pro-
perties, we refer to the papers ([4,22,23]). For recent developments in difference polynomials
and different aspects of it, we refer to the papers ([5–8,24]).

In 2010, X. G. Qi, L. Z. Yang and K. Liu ([9]) studied the uniqueness problems of the
difference polynomials with entire functions and obtained the following result.

Theorem 1. Let f(z) and g(z) be transcendental entire functions of finite order and let c be
a nonzero complex constant. If n ≥ 6 and, in addition, f(z)nf(z+ c) and g(z)ng(z+ c) share
the value 1 CM, then fg = t1 or f = t2g for some constants t1 and t2 such that tn+1

1 = 1
and tn+1

2 = 1.

In 2011, X. M. Li, W. L. Li, H. X. Yi, and Z. T. Wen ([10]) improved the result presented
above and obtained the following result.

Theorem 2. Let f(z) and g(z) be transcendental entire functions of finite order, let α(z)
be a meromorphic function such that ρ(α) < ρ(f), let c be a nonzero complex constant, and
let n ≥ 7 be an integer. If f(z)n(f(z)− 1)f(z+ c)−α(z) and g(z)n(g(z)− 1)g(z+ c)−α(z),
share the value 0 CM, then f(z) ≡ g(z).

Further, K. Liu, X. L. Liu, and T. B. Cao ([11,12]) established the following results.

Theorem 3. Let f(z) and g(z) be transcendental meromorphic functions of finite order.
Suppose that c is a nonzero constant and n ∈ N. If n ≥ 26 and, in addition, f(z)nf(z + c)
and g(z)ng(z + c) share the value 1 IM, then f = tg or fg = t, where tn+1 = 1.

Theorem 4. Let f(z) and g(z) be transcendental entire functions of finite order and let
n ≥ 5k + 12. If [f(z)nf(z + c)](k) and [g(z)ng(z + c)](k) share the value 1 IM, then either
f(z) = c1e

Cz and g(z) = c2e
−Cz, where c1, c2, and C are constants satisfying the equality

(−1)k(c1c2)
n+1[(n+ 1)C]2k = 1 or f = tg, where tn+1 = 1.

Theorem 5. Let f(z) and g(z) be transcendental entire functions of ρ2(f) > 1 and let
n ≥ 5k + 4m + 12. If [fn(fm − 1)f(z + c)](k) and [gn(gm − 1)g(z + c)](k) share the value 1
IM, then f = tg, where tn+1 = tm = 1.

In 2019, R. S. Dyavanal and M. M. Mathai ([13]) extended the above results and obtained
the following results.

Theorem 6. Let f(z) and g(z) be two nonconstant finite order meromorphic functions.
Suppose that a(z)(̸≡ 0,∞) is a small function with respect to f(z), which has no common
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zeros or poles with f(z) and g(z). Let k(> 0) and m(> 0) be two integers satisfying the
inequality n > 4m + 13k + 19, let P (w) be defined in (1), and let c be a nonzero complex
constant such that f(z) and g(z) are not periodic functions with period c, the poles of f(z)
are not zeros of f(z+ c), and the poles of g(z) are not zeros of g(z+ c). If [fnP (f)f(z+ c)](k)

and [gnP (g)g(z + c)](k) share a(z) IM, f(z) and g(z) share the value 1 IM and then one of
the following two cases is realized:
(i) f ≡ tg for a constant t such that td = 1, where d = GCD(n +m + 1, ..., n +m + 1 −

i, ..., n+ 1) and am−i ̸= 0 for some i ∈ {0, 1, 2, ...,m};
(ii) f(z) and g(z) satisfy the algebraic difference equation R(f, g) ≡ 0, where

R(f(z), g(z)) = (f(z))n(am(f(z))
m + am−1(f(z))

m−1 + ...+ a0)f(z + c)−
−(g(z))n(am(g(z))

m + am−1(g(z))
m−1 + ...+ a0)g(z + c) = 0.

Regarding the result of R. S. Dyavanal and M. M. Mathai stated above it is natural to
ask the following question which is the motivation of the present paper.

Question 1. What happen if we replace the differential-difference polynomial [fnP (f)f(z+
c)](k) by [fnP [f ]H(z, f)](k) in Theorem 6?

In the paper, our main concern is to find the possible answer to the above question. We
prove the following theorem which extends and improves Theorem 6.

2. Main Results.

Theorem 7. Let f(z) and g(z) be two non-constant finite-order meromorphic functions.
Suppose that a(z)(̸≡ 0,∞) is a small function with respect to f(z), which has no common
zeros or poles with f(z) and g(z). Let k, n, d(P ), Ψ, Q, t, ξ be positive integers satisfying
the inequality n > 4d(P ) + 4k(Q + 2) + Ψ(5k + 5t + 5ξ + 6) + 8Q + 11. Let P [f ] and
H(z, f) be defined as in (2) and (3), cij(i ∈ {1, 2, . . . , t}; j ∈ {1, 2, . . . , ξ}) be a nonzero
complex constant such that f(z) and g(z) are not periodic functions with period cij, the
poles of f(z) (resp., g(z)) are not zeros of H(z, f) (resp., H[z, g]). If [fnP [f ]H(z, f)](k) and
[gnP [g]H(z, g)](k) share a(z) IM and f(z) and g(z) share the value ∞ IM, then one of the
following two cases is realized:
(i) f ≡ tg, where t a constant sunch that td = 1, d = GCD(λ0, λ1, . . . , λm), where λ‘

is are

defined by λi =

{
ni0 + ni1 + · · ·+ nis + n+ 1, if αi ̸= 0;

nm0 + nm1 + · · ·+ nms + n+ 1, if αi = 0.

(ii) f(z) and g(z) satisfy the algebraic difference equation R(f, g) ≡ 0, where

R(w1, w2) = wn
1P [w1]H(z, w1)− wn

2P [w2]H(z, w2).

Example 1. Let P [z] = zm − 1. Suppose t is a non-zero constant such that td = 1, where
d = GCD(n + m + 1, n + 1). Let f(z) = ez, g(z) = tez, H(z, f) = f(z + c) − f(z),
H(z, g) = g(z + c) − g(z) and α(z) be a small function of both f and g, where c is a non-
zero constant such that ez ̸= 1. Then it can be easliy verified that [f zP [f ]H(z, f)](k) and
[gzg[f ]H(z, g)](k) share α(z) CM.

Example 2. Let P [z] = (z2−1)q, where q is a positive integer such that n+1 = 2q. Suppose
that f(z) = cos z, g(z) = sin z, H(z, f) = f(z+ c)− f(z), H(z, g) = g(z+ c)− g(z) and α(z)
be a small function of both f and g, where c = 2pπ, p is an integer. Then it can be easily
verified that [f zP [f ]H(z, f)](k) and [gzg[f ]H(z, g)](k) share α(z) CM.
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3. Some Lemmas. In this section, we summarize some lemmas, which will be used to
prove our main results. Henceforth, let F and G be two non-constant meromorphic functions
defined by

F =
[fnP [f ]H(z, f)](k)

a(z)
, G =

[gnP [g]H(z, g)](k)

a(z)
. (4)

Henceforth, we shall denote by H and V in the following

H =
(F ′′

F ′ −
2F

′

F − 1

)
−
(G′′

G′ −
2G

′

G− 1

)
, (5)

V =
( F

′

F − 1
− F

′

F

)
−
( G

′

G− 1
− G

′

G

)
. (6)

Lemma 1 ([18]). Let f(z) be a meromorphic function of finite order ρ and let c be a fixed
nonzero complex constant. Then, for any ϵ > 0

m
(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O(rρ−1+ϵ).

Lemma 2 ([19]). Let f(z) be a meromorphic function of finite order ρ and let c be a fixed
nonzero complex constant. Then, for any ϵ > 0

T (r, f(z + c)) = T (r, f) +O(rρ−1+ϵ).

It is evident that S(r, f(z + c)) = S(r, f).

Lemma 3 ([20]). Let f(z) be a meromorphic function of finite order ρ and let c be a fixed
nonzero complex constant. Then

(i) N
(
r,

1

f(z + c)

)
≤ N

(
r,

1

f

)
+ S(r, f), (ii) N(r, f(z + c)) ≤ N(r, f) + S(r, f),

(iii) N
(
r,

1

f(z + c)

)
≤ N

(
r,

1

f

)
+ S(r, f), (iv) N(r, f(z + c)) ≤ N(r, f) + S(r, f),

outside an exceptional set of finite logarithmic measure.

Lemma 4 ([21]). Let f(z) be a non-constant meromorphic function and let p and k be two
positive integers. Then

Np

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f),

Np

(
r,

1

f (k)

)
≤ kN(r, f) +Np+k

(
r,

1

f

)
+ S(r, f).

Lemma 5 (Valiron–Mohon’ko Theorem). Let f be a non-constant meromorphic function
and

R(f) =

n∑
i=0

aif
i

m∑
j=0

bjf j

be an irreducible rational function in f with the constant coefficients ai and bj, where an ̸= 0
and am ̸= 0. Then

T (r, R(f) = dT (r, f) + S(r, f).

Lemma 6 ([22]). Let f(z) and g(z) be a non-constant meromorphic functions. If f(z) and
g(z) share the value 1 CM, then one of the following three cases is realized:

(i) T (r, f) ≤ N2

(
r,

1

f

)
+N2

(
r,
1

g

)
+N2(r, f)+N2(r, g)+S(r, f)+S(r, g), the same inequality

holds for T (r, g), (ii) fg = 1, (iii) f ≡ g.
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Lemma 7 ([21]). Let f1(z), f2(z) be two non-constant meromorphic functions such that
c1f1 + c2f2 = c3, where c1, c2, c3 are three nonzero constants. Then

T (r, f1) ≤ N(r, f1) +N
(
r,

1

f1

)
+N

(
r,

1

f2

)
+ S(r, f1).

Lemma 8 ([23]). Let F , G, and H be defined as in (4) and (5). If F and G share 1 IM and
∞ IM and, moreover, H ̸≡ 0, then F ̸≡ G,

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+ 7N(r, F ) + S(r, F ) + S(r,G).

and the same inequality holds for T (r,G).

Lemma 9 ([24]). Let F , G, and V be defined as in (4) and (6). If F and G share ∞ IM
and V ≡ 0, then F ≡ G.

Lemma 10 ([24]). If F and G share IM 1, then

NL

(
r,

1

F − 1

)
≤ N

(
r,

1

F

)
+N(r, F ) + S(r, F ) + S(r,G).

Lemma 11. Let f(z) is a non-constant meromorphic function with finite order. Suppose
that a(z)(̸≡ 0,∞) is a small function with respect to f(z), P [f ] and H(z, f) be defined as
in (2) and (3). Then we have

(n+ d(P )−Ψ)T (r, f) + S(r, f) ≤ T (r, F ) ≤ (n+ d(P )−Ψ)T (r, f) + S(r, f).

Proof. Let F = fnP [f ]H(z, f), we know that

T (r, F ) = T (r, fnP [f ]H(z, f)) ≤ T (r, fnP [f ]) + T (r,H(z, f)) + S(r, f) ≤
≤ (n+ d(P ) + Ψ)T (r, f) + S(r, f). (7)

A quick calculation reveals that

(n+ d(P ) + 1)T (r, f) + S(r, f) = T (r, fnP [f ]f) + S(r, f) ≤
≤ m(r, fnP [f ]f) +N(r, fnP [f ]f) + S(r, f) ≤

≤ m
(
r, F

f

H(z, f)

)
+N

(
r, F

f

H(z, f)

)
+ S(r, f) ≤ T (r, F ) + (1 + Ψ)T (r, f) + S(r, f). (8)

It follows from (7) and (8) that
(n+ d(P )−Ψ)T (r, f) + S(r, f) ≤ T (r, F ) ≤ (n+ d(P ) + Ψ)T (r, f) + S(r, f).

Lemma 12. If f(z) and g(z) are two non-constant meromorphic functions with finite order.
If cij(i ∈ {1, 2, . . . , t}; j ∈ {1, 2, . . . , ξ}) is a nonzero complex constant, f and g are not
periodic functions of period cij and k, n, d(P ), Ψ, Q, t, ξ be positive integers satisfying the
inequality n > k+2Q+Ψ(k+ t+ξ)+2. Let P [f ] and H(z, f) be defined as in (2) and (3). If
a(z)(̸≡ 0,∞)is a small function with respect to f . If [fnP [f ]H(z, f)](k) and [gnP [f ]H(z, f)](k)

share a(z) IM, then T (r, f) = O(T (r, g)) and T (r, g) = O(T (r, f)).
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Proof. Let F1 = fnP [f ]H(z, f). By the Second Fundamental Theorem for small functions
and for all ε > 0, we get

T (r, F (k)) ≤ N(r, F1) +N
(
r,

1

F
(k)
1

)
+N

(
r,

1

F
(k)
1 − a(z)

)
+ (ε+O(1))T (r, F1) ≤

≤ N(r, f) +N(r,H(z, f)) +N
(
r,

1

F
(k)
1

)
+N

(
r,

1

F
(k)
1 − a(z)

)
+ (ε+O(1))T (r, F ).

In view of Lemma 4, with s = 1 and Lemma 11, applying to the function F , we obtain

(n+ d(P )−Ψ)T (r, f) ≤ N(r, f) +N(r,H(z, f)) + (k + 1)N
(
r,

1

f

)
+N

(
r,

1

P [f ]

)
+

+Nk+1

(
r,

1

H(z, f)

)
+N

(
r,

1

gnP [f ]H(z, f)− a

)
+ (ε+O(1))T (r, f) ≤

≤ N(r, f) +N(r,H(z, f)) + (k + 1)N
(
r,

1

f

)
+N

(
r,

1

P [f ]

)
+

+QN(r, f) +Nk+t+ξ+1

(
r,

1

f

)
+N

(
r,

1

gnP [g])H(z, g)− a

)
+ (ε+O(1))T (r, f) ≤

≤ (k + d(P ) + 2Q+Ψ(k + l + 1) + 2)T (r, f)+

+(n+m+Ψ)(k + 1)T (r, g) + (ε+O(1))T (r, f).
A quick calculation reveals that

(n− k − 2Q−Ψ(k + t+ ξ)− 2)T (r, f) ≤ (n+m+Ψ)(k + 1)T (r, g) + (ε+O(1))T (r, f).

Since n > k+2Q+Ψ(k+ t+ ξ)+ 2, taking ε > 1, we obtain T (r, f) = O(T (r, g)). Similarly,
we can prove that T (r, g) = OT ((r, f)).

Lemma 13. Let f(z), g(z) be two non-constant finite-order meromorphic functions such that
the poles of f(z) are not zeros of H(z, f) and the poles of g(z) are not zeros of H(z, g), F , G
and V are defined as in (4) and (6), let P [f ] and H(z, f) be defined as in (2) and (3), and k(>
0), n(> 3), d(P )(≥ 0) Q be positive integers. Also let cij(i ∈ {1, 2, . . . , t}; j ∈ {1, 2, . . . , ξ})
be a nonzero complex constant such that f(z) and g(z) are not periodic functions of period
cij. If V ̸≡ 0, F and, in addition, G share IM the values 1 and ∞. Then

(n+ d(P ) + k − 2Q− 3)N(r, f) ≤ 2N
(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f) + S(r, g),

(n+ d(P ) + k − 2Q− 3)N(r, g) ≤ 2N
(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f) + S(r, g).

Proof. Let poles of f(z) and g(z) be not zeros of H(z, f) and H(z, f) respectively. If z0 is
a pole of f(z) and g(z) of order p and q respectively then z0 must be a pole of F and G

of order (n + d(P ))p + k and (n + d(P ))q + k, respectively. Thus, z0 is a zero of F
′

F−1
− F

′

F

of order (n + d(P ))p + k − 1 ≥ n + d(P ) + k − 1. Moreover, z0 is a zero of G
′

G−1
− G

′

G
of

order (n + d(P ))q + k − 1 ≥ n + d(P ) + k − 1. Hence, z0 is a zero of V of order at least
n+ d(P ) + k − 1. Therefore, we obtain

(n+ d(P ) + k − 1)N(r, f) ≤ N
(
r,

1

V

)
(9)

and
(n+ d(P ) + k − 1)N(r, g) ≤ N

(
r,

1

V

)
. (10)
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By the Lemma on logarithmic derivative, we get m(r, V ) = S(r, f)+S(r, g). We now consider

N
(
r,

1

V

)
≤ T (r, V ) ≤ d(P )(r, V ) +N(r, V ) ≤ N(r, V ) + S(r, f) + S(r, g). (11)

Since F (z) and G(z) share the value 1 IM, the zeros of F (z)− 1 and the zeros of G(z)− 1
with different multiplicities contribute to the poles of V . Furthermore, since F (z) and G(z)
share the value 1 IM, the poles of F (z) and G(z) with different multiplicities contribute to
the zeros of V . Thus, it follows from (9) and (11) that

N
(
r,

1

V

)
≤ N

(
r,

1

F

)
+N

(
r,

1

G

)
+NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+

+S(r, f) + S(r, g). (12)

Since F and G share 1 IM, by Lemma 10 and (12), we get

N
(
r,

1

V

)
≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+N(r, F ) +N(r,G) + S(r, f) + S(r, g). (13)

By Lemma 3, we obtain

N(r, F ) = N
(
r,
[fnP [f ]H(z, f)](k)

a(z)

)
≤ N(r, f) +N(r,H(z, f)) + S(r, f) ≤

≤ (Q+ 1)N(r, f) + S(r, f). (14)

Similarly,
N(r,G) ≤ (Q+ 1)N(r, g) + S(r, g). (15)

In view of (13)–(15) and the fact that f(z) and g(z) share IM ∞, we find

N
(
r,

1

V

)
≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ (1 +Q)N(r, f)+)(Q+ 1)N(r, g)+

+S(r, f) + S(r, g) ≤ 2N
(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ 2(Q+ 1)N(r, f) + S(r, f) + S(r, g). (16)

It follows from (9) and (16) that

(n+ d(P ) + k − 1)N(r, f) ≤ 2N
(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ 2(Q+ 1)N(r, f) + S(r, f) + S(r, g),

i.e., (n+ d(P ) + k − 2Q− 3)N(r, f) ≤ 2N(r, 1
F
) + 2N(r, 1

G
) + S(r, f) + S(r, g).

Similarly, (n+ d(P ) + k − 2Q− 3)N(r, g) ≤ 2N(r, 1
F
) + 2N(r, 1

G
) + S(r, f) + S(r, g).

Lemma 14. Let f(z) be a transcendental finite-order meromorphic function, k, n, d(P ),
Ψ, Q, t, ξ be positive integers satisfying the inequality n > k + 2Q + Ψ(k + l) + 2 and
cij(i ∈ {1, 2, . . . , t}; j ∈ {1, 2, . . . , ξ}) be a nonzero complex constant such that f(z) is not
a periodic function of period cij, let P (w) and H[f ] be defined as in (2) and (3). Suppose
that a(z)(̸≡ 0,∞) is a small function with respect to f(z). Then [fnP [f ]H(z, f)](k) − a(z)
has infinitely many zeros.
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Proof. Suppose [fnP [f ]H(z, f)](k)−a(z) has only finitely many zeros. Let F1 = fnP (f)H[f ]

and F = F
(k)
1 . By the Second Fundamental Theorem, we obtain

T (r, F (k)) ≤ N
(
r,

1

F
(k)
1

)
+N

(
r,

1

F
(k)
1 − a

)
+N(r, F

(k)
1 ) + S(r, F1) ≤

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+1

(
r,

1

F1

)
+N(r, F1) + S(r, F1),

it reveals that
T (r, F ) ≤ Nk+1

(
r,

1

Fk+1

)
+N(r, F1) + S(r, F1). (17)

Hence, we have T (r, f) = T (r, f) + S(r, f). Therefore, we obtain

Nk+1

(
r,

1

F1

)
= Nk+1

(
r,

1

fnP [f ]H(z, f)

)
≤ Nk+1

(
r,

1

fn

)
+Nk+1

(
r,

1

P [f ]

)
+

+Nk+1

(
r,

1

H(z, f)

)
+ S(r, f) ≤ (k + 1)N

(
r,

1

f

)
+Nk+1

(
r,

1

P [f ]

)
+QN(r, f)+

+ΨNk+t+ξ+1

(
r,

1

f

)
+ S(r, f) ≤ (k +m+Q+Ψ(k + t+ ξ + 1) + 1)T (r, f) + S(r, f). (18)

and
N(r, F1) = N(r, fnP [f ]H(z, f)) ≤ (Q+ 1)T (r, f) + S(r, f). (19)

By Lemma 11, using (18) and (19), from (17) we obtain

(n+ d(P )−Ψ)T (r, f) ≤ (k +m+ 2Q+Ψ(k + t+ ξ + 1) + 2)T (r, f) + S(r, f).

It is a contradiction for n > k + 2Q+Ψ(k + t+ ξ) + 2.

Lemma 15. Let f(z) and g(z) be two non-constant finite-order meromorphic functions, P [f ]
and H(z, f) be defined as in (2) and (3) and k, n, d(P ), Ψ, Q, t, ξ be positive integers satisfyi-
ng the inequality n > d(P )+3Ψ+Q+2k+1, and let cij(i ∈ {1, 2, . . . , t}; j ∈ {1, 2, . . . , ξ}) be
a nonzero complex constant such that f(z) and g(z) are not periodic functions of period cIj.
If

[fnP [f ]H(z, f)](k) ≡ [gnP [g]H(z, g)](k),
then

fnP [f ]H(z, f) ≡ gnP [g]H(z, g).

Proof. Let [fnP [f ]H(z, f)](k) ≡ [gnP [g]H(z, g)](k). Integrating k times above we get
fnP [f ]H(z, f) ≡ gnP [g]H(z, g) +Q(z), where Q(z) is a polynomial of degree at most k− 1.
If R(z) ̸≡ 0, then this equation can be expressed as fnP [f ]H(z,f)

R
= gnP [g]H(z,g)

R
+ 1.

Then from the above equation and Lemma 7, we have

T
(
r,
fnP [f ]H(z, f)

R

)
≤ N

(
r,
fnP [f ]H(z, f)

R

)
+N

(
r,

R

fnP [f ]H(z, f)

)
+

+N
(
r,

R

gnP [g]H(z, g)

)
+ S(r, f).

Using the above equation, we obtain

T (r, fnP [f ]H(z, f)) ≤ N
(
r, fnP [f ]H(z, f)

)
+N

(
r,

1

fnP [f ]H(z, f)

)
+

+N
(
r,

1

gnP [g]H(z, g)

)
+ 2(k − 1) log r + S(r, f) ≤ N(r, f) +N(r,H(z, f)) +N

(
r,

1

f

)
+
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+N
(
r,

1

P [f ]

)
+N

(
r,

1

H(z, f)

)
+N

(
r,
1

g

)
+N

(
r,

1

P [g]

)
+

+N
(
r,

1

H(z, f)

)
+ 2(k − 1) log r + S(r, f).

Using the aforementioned equation and Lemma 11, we deduce

(n+ d(P )−Ψ)T (r, f) ≤ (d(P ) +Q+Ψ+ 2)T (r, f) + (d(P ) + Ψ + 1)T (r, g)+

+2(k − 1) log r + S(r, f) + S(r, g). (20)

Similarly, we obtain

(n+ d(p)−Ψ)T (r, g) ≤ (d(P ) +Q+Ψ+ 2)T (r, g) + (d(P ) + Ψ + 1)T (r, f)+

+2(k − 1) log r + S(r, f) + S(r, g). (21)

Since f and g are non-constant, we have

T (r, f) ≥ log r + S(r, f), T (r, g) ≤ log r + S(r, g). (22)

It follows from (20), (21) and (22) that (n+d(P )−Ψ){T (r, f)+T (r, g)} ≤ (2k+2d(P )+2Ψ+
Q+1){T (r, f) + T (r, g)}+S(r, f) +S(r, g), which contradicts n > d(P ) + 3Ψ+Q+2k+1.
Thus we have Q(z) ≡ 0 and therefore, we obtain fnP (f)H[f ] ≡ gnP (g)H[g].

Lemma 16. Let f(z) and g(z) be two non-constant finite-order meromorphic functions, let
cij(i ∈ {1, 2, . . . , t}; j ∈ {1, 2, . . . , ξ}) be a nonzero complex constant such that f(z) and g(z)
are not periodic functions of period cij, and let k(> 0) be an integer satisfying n > k + 1.
Also let P [f ] and H(z, f) be defined as in (2) and (3). Suppose that a(z) ( ̸≡ 0,∞) is a small
function with respect to f(z) with finitely many zeros and poles. If

[fnP [f ]H(z, f)](k) ≡ [gnP [g]H(z, g)](k), [fnP [f ]H(z, f)] ≡ [gnP [g]H(z, g)]

and, in addition, f(z) and g(z) share 1 IM, then P [f ] reduces to a nonzero monomial, namely,
P (w) = aiw

i ̸≡ 0 for some i ∈ 0, 1, ...,m.

Proof. Using the same reasoning as in Lemma 3.13 [13], we can easily obtain Lemma 16.

4. Proof of the main results.

Proof of Theorem 7. Let F , G, H and V be defined as in (4), (5) and (6). We suppose that
F1 = fnP [f ]H(z, f) and G1 = gnP [g]H(z, g). By the assumption, [fnP [f ]H(z, f)](k) and
[gnP [g]H(z, g)](k) share a small function a(z) and 1 IM, hence F and G share the values 1
and ∞ IM. Suppose that H ̸≡ 0. It is easy to see that F ̸≡ G. We must have V ̸≡ 0. It
follows from Lemmas 8 and 9 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+2N

(
r,

1

F

)
+N

(
r,

1

G

)
+7N(r, F )+S(r, F )+S(r,G). (23)

By Lemma 4 with s = 2, Lemma 3 and (23), we obtain

T (r, F1) ≤ N2

(
r,

1

G

)
+ 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+Nk+2

(
r,

1

F1

)
+ 7N(r, F ) + S(r, F )+

+S(r,G) ≤ Nk+2

(
r,

1

G1

)
+ kN(r,G1) + 2Nk+1

(
r,

1

F1

)
+ 2kN(r, F1) +Nk+1

(
r,

1

G1

)
+
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+kN(r,G1) +Nk+2

(
r,

1

F1

)
+ 7N(r, F ) + S(r, F ) + S(r,G) ≤ (k + 2)N

(
r,
1

g

)
+

+N
(
r,

1

P [g]

)
+Nk+2

(
r,

1

H(z, g)

)
+ k(Q+ 1)N(r, g) + 2(k + 1)N

(
r,

1

f

)
+ 2N

(
r,

1

P [f ]

)
+

+2Nk+1

(
r,

1

H(z, f)

)
+ 2k(Q+ 1)N(r, f) + (k + 1)N

(
r,
1

g

)
+N

(
r,

1

P [g]

)
+

+Nk+1

(
r,

1

H(z, g)

)
+ k(Q+ 1)N(r, g) + (k + 2)N

(
r,

1

f

)
+N

(
r,

1

P [f ]

)
+

+Nk+2

(
r,

1

H(z, f)

)
+ 7(Q+ 1)N(r, f) + S(r, f) + S(r, g) ≤

≤ (k + 2)N
(
r,
1

g

)
+N

(
r,

1

P [g]

)
+QN(r, g) + ΨNk+t+ξ+2

(
r,
1

g

)
+ k(Q+ 1)N(r, g)+

+2(k + 1)N
(
r,

1

f

)
+ 2N

(
r,

1

P [f ]

)
+ 2QN(r, f) + 2ΨNk+t+ξ+1

(
r,

1

f

)
+

+2k(Q+ 1)N(r, f) + (k + 1)N
(
r,
1

g

)
+N

(
r,

1

P [g]

)
+QN(r, g) + ΨNk+t+ξ+1

(
r,
1

g

)
+

+k(Q+ 1)N(r, g) + (k + 2)N
(
r,

1

f

)
+N

(
r,

1

P [f ]

)
+QN(r, f) + ΨNk+t+ξ+2

(
r,

1

f

)
+

+7(Q+ 1)N(r, f) + S(r, f) + S(r, g).
Therefore, we have

T (r, F1) ≤ (3k + 4)N
(
r,

1

f

)
+ (2k + 3)N

(
r,
1

g

)
+ 3N

(
r,

1

P [f ]

)
+

+2N
(
r,

1

P [g]

)
+Ψ(3k + 3t+ 3ξ + 4)N

(
r,

1

f

)
+

+Ψ(2k + 2t+ 2ξ + 3)N
(
r,
1

g

)
+ {(4k + 7)(Q+ 1) + 5Q}N(r, f) + S(r, f) + S(r, g).

By Lemma 11, the above inequality can be reduced as

(n+ d(P )−Ψ)T (r, f) ≤ (3k + 3d(P ) + Ψ(3k + 3t+ 3ξ + 4) + 4)T (r, f)+

+(2k + 2d(P ) + Ψ(2k + 2t+ 2ξ + 3) + 3)T (r, g)+

+{(4k + 7)(Q+ 1) + 5Q}N(r, f) + S(r, f) + S(r, g). (24)

Similarly, we obtain

(n+ d(P )−Ψ)T (r, g) ≤ (3k + 3d(P ) + Ψ(3k + 3t+ 3ξ + 4) + 4)T (r, g)+

+(2k + 2d(P ) + Ψ(2k + 2t+ 2ξ + 3) + 3)T (r, f)+

+{(4k + 7)(Q+ 1) + 5Q}N(r, g) + S(r, f) + S(r, g). (25)

Combining (24) and (25), we obtain

(n+ d(P )−Ψ){T (r, f) + T (r, g)} ≤
≤ (5k + 5d(P ) + Ψ(5k + 5t+ 5ξ + 7) + 7){T (r, f) + T (r, g)}+
+{(4k + 7)(Q+ 1) + 5Q}{N(r, f) +N(r, g)}+ S(r, f) + S(r, g).

Thus we have

(n− 5k − 4d(P )−Ψ(5k + 5t+ 5ξ + 6)− 7){T (r, f) + T (r, f)} ≤
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≤ 2((4k + 7)(Q+ 1) + 5Q)N(r, f) + S(r, f) + S(r, g). (26)

Since V ̸≡ 0 and F and G share the values 1 and ∞ IM, by Lemma 12, we obtain

(n+ d(P ) + k − 2Q− 3)N(r, f) ≤ 2N
(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f) + S(r, g). (27)

By Lemma 4 with s = 1, (27) takes form

(n+ d(P ) + k − 2Q− 3)N(r, f) ≤ 2(k + 1)N
(
r,

1

f

)
+ 2N

(
r,

1

P [f ]

)
+ 2Nk+1

(
r,

1

H(z, f)

)
+

+2kN(r, f) + 2kN(r,H(z, f)) + 2(k + 1)N
(
r,
1

g

)
+ 2N

(
r,

1

P [g]

)
+ 2Nk+1

(
r,

1

H(z, g)]

)
+

+2kN(r, g) + 2kN(r,H(z, g)) + S(r, f) + S(r, g) ≤ 2(k + 1)N
(
r,

1

f

)
+ 2N

(
r,

1

P [f ]

)
+

+2QN(r, f) + 2ΨNk+t+ξ+1

(
r,

1

f

)
+ 2kN(r, f) + 2kN(r,H(z, f)) + 2(k + 1)N

(
r,
1

g

)
+

+2N
(
r,

1

P [g]

)
+ 2QN(r, g) + 2ΨNk+t+ξ+1

(
r,
1

g

)
+ 2kN(r, g) + 2kN(r,H(z, g))+

+S(r, f) + S(r, g) ≤ 2(k + d(P ) + Ψ(k + t+ ξ + 1) + 1)T (r, f) + 2(k + d(P )+

+Ψ(k + t+ ξ + 1) + 1)T (r, g) + {4k(Q+ 1) + 4Q}N(r, f) + S(r, f) + S(r, g).

Thus we have

(n+ d(P )− k(4Q+ 3)− 6Q− 3)N(r, f) ≤ 2(k + d(P )+

+Ψ(k + t+ ξ + 1) + 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (28)

Since N(r, f) = N(r, g), combining (26) and (28), we deduce
(n− 5k − 4d(P )−Ψ(5k + 5t+ 5ξ + 6)− 7)(n+ d(P )− k(4Q+ 3)− 6Q− 3)−
−4((4k + 7)(Q+ 1) + 5Q)(k + d(P ) + Ψ(k + t+ ξ + 1) + 1){T (r, f) + T (r, g)} ≤

≤ S(r, f) + S(r, g).

Which contradicts n > 4d(P ) + 4k(Q+ 2) +Ψ(5k + 5t+ 5ξ + 6) + 8Q+ 11. As in the proof
of Lemma 6 applied to the functions F and G, we obtain the following cases:

(i) T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N2(r, F ) +N2(r, F ) + S(r, F ) + S(r,G),

(ii) FG = 1,
(iii) F ≡ G.

By the condition imposed on n, case (i) is impossible. By Lemma 16, case (ii) is impossible.
Hence, we get only the case (iii), i.e., [fnP [f ]H(z, f)](k) ≡ [gnP [g]H(z, g)](k). Thus, by
Lemma 15, we obtain

[fnP [f ]H(z, f)] ≡ [gnP [g]H(z, g)], (29)

i.e.,
m∑
i=1

αi(z)f
ni0+n

s∏
j=1

(f (j))nij ≡
m∑
i=1

αi(z)g
ni0+n

s∏
j=1

(g(j))nij .

Let h = f
g
. If h is a constant, from (29), we can get that f and g satisfy the algebraic equation

R(w1, w2) = 0, where R(w1, w2) = wn
1P [w1]H(z, w1) − wn

2P [w2]H(z, w2). if h is a constant,
then the above equation can be written as
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m∑
i=1

(hni0+ni1+···+nis+n+1 − 1)αi(z)g
ni0+n

s∏
j=1

(g(j))H(z, g) ≡ 0.

Since H(z, g) ̸≡ 0, we must have
m∑
i=1

(hni0+ni1+···+nis+n+1 − 1)αi(z)g
ni0+n

s∏
j=1

(g(j)) ≡ 0. (30)

Let gni0+n(g
′
)(g

′′
) . . . (g(s))nis = Vi(z). Without loss of generality, let

s∑
j=0

nmj + n+ 1 ≥
s∑

j=0

n(m−1)j + n+ 1 ≥ · · · ≥
s∑

j=0

n1j + n+ 1.

Since g is a transcendental function, we can find that Vi(z) ̸= 0. If αm(z) ̸= 0 and αm−1(z) =
αm−2(z) = · · · = α1(z) = 0, then from (30), we can get taht hnm0+nm1+···+nms+n+1 = 1. If
αm(z) ̸= 0 and there exists αi(z) ̸= 0 (i ∈ {1, 2, . . . ,m − 1}). If hnm0+nm1+···+nms+n+1 ̸= 1,
by Lemma 5 and (30), we have T (r, g) = S(r, g), which contradicts with a transcendental
function g. Therefore, hnm0+nm1+···+nms+n+1 = 1. If αi(z) ̸= 0 for some i ∈ {1, 2, . . . ,m}, we
can also get that hnm0+nm1+···+nms+n+1 = 1. Thus, from the definition of d, we can obtain
that f ≡ tg, where t a constant such that td = 1, d = GCD(λ0, λ1, . . . , λm), where λ‘

is are
defined by

λi =

{
ni0 + ni1 + . . .+ nis + n+ 1, if αi ̸= 0;

nm0 + nm1 + . . .+ nms + n+ 1, if αi = 0.
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