
Математичнi Студiї. Т.61, №2 Matematychni Studii. V.61, No.2

UDC 517.956

V. M. Kyrylych, O. V. Peliushkevych

GLOBAL SOLVABILITY OF A MIXED PROBLEM FOR A SINGULAR

SEMILINEAR HYPERBOLIC 1D SYSTEM

V. M. Kyrylych, O. V. Peliushkevych. Global solvability of a mixed problem for a singular
semilinear hyperbolic 1d system, Mat. Stud. 61 (2024), 188–194.

Using the method of characteristics and the Banach fixed point theorem (for the Bielecki
metric), in the paper it is established the existence and uniqueness of a global (continuous)
solution of the mixed problem in the rectangle Π = {(x, t) : 0 < x < l < ∞, 0 < t < T < ∞}
for the first order hyperbolic system of semi-linear equations of the form

∂u

∂t
+ Λ(x, t)

∂u

∂x
= f(x, t, u, v, w),

∂v

∂x
= g(x, t, u, v, w),

∂w

∂t
= h(x, t, u, v, w),

for a singular with orthogonal (degenerate) and non-orthogonal to the coordinate axes characte-
ristics and with nonlinear boundary conditions, where Λ(x, t) = diag(λ1(x, t), . . . , λk(x, t)),
u = (u1, . . . , uk), v = (v1, . . . , vm), w = (w1, . . . , wn), f = (f1, . . . , fk), g = (g1, . . . , gm),
h = (h1, . . . , hn) and besides sign λi(0, t) = const ̸= 0, sign λi(l, t) = const ̸= 0 for all t ∈ [0, T ]
and for all i ∈ {1, . . . , k}. The presence of non-orthogonal and degenerate characteristics of the
hyperbolic system for physical reasons indicates that part of the oscillatory disturbances in the
medium propagates with a finite speed, and part with an unlimited one. Such a singularity
(degeneracy of characteristics) of the hyperbolic system allows mathematical interpretation
of many physical processes, or act as auxiliary equations in the analysis of multidimensional
problems.

1. Introduction. The hyperbolic equations and systems are typically used to model proce-
sses having a finite speed of perturbation propagation. From a mathematical point of view,
this means that the characteristics of the corresponding equations of the system are not
orthogonal to the coordinate axes [1].

However, in many problems of solid-state physics, in intermediate equations, in the
analysis of multidimensional problems, mathematical models in the form of hyperbolic
equations are found, part of the family of characteristics of which is perpendicular, for
example, to the time axis [1]. The presence of such characteristics indicates that the speed
of oscillation propagation in one-dimensional continuous media is infinite [1, see the review
of references].

It should be noted that the presence of characteristics orthogonal and non-orthogonal to
the coordinate axes in mathematical models of applied processes is also closely related to
the boundary layer effect [2, p. 353].
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In addition, many mathematical models, for example, biopopulation theory [3], epidemic
theories [4], medicine [5, 6], solid state physics [7], in the hyperbolic case have equations with
the characteristics orthogonal to the coordinate axes.

The study of global solutions of nonlinear one-dimensional hyperbolic equations poses
certain difficulties, because even in the case of smooth initial and boundary data the solution
of the problem may lose the required smoothness (continuity) over time [8].

In this paper, we consider a semi-linear hyperbolic system of the first order with orthogo-
nal (degenerate) and non-orthogonal characteristics. The conditions of existence and uni-
queness of the global generalized (continuous) solution of the mixed problem for this system
are established. Our approach is borrowed from [1, 9, 10] and uses the Banach fixed point
theorem for the Bielecki metric [11].

2. Statement of a problem. In the rectangle Π = {(x, t) : 0 < x < l < ∞, 0 < t < T <
∞}, we consider the hyperbolic system of semi-linear equations of the first order

∂u
∂t

+ Λ(x, t)
∂u

∂x
= f(x, t, u, v, w),

∂v
∂x

= g(x, t, u, v, w),
∂w
∂t

= h(x, t, u, v, w),

(1)

where u = (u1, ..., uk), v = (v1, ..., vm), w = (w1, ..., wn), f = (f1, ..., fk), g = (g1, ..., gm),
h = (h1, ..., hn), Λ(x, t) = diag(λ1(x, t), ..., λk(x, t)) and for all i ∈ {1, . . . , k}
sign λi(0, t) = const ̸= 0, sign λi(l, t) = const ̸= 0 for all t ∈ [0, T ].

Let I0, Il be the sets of indices defined as follows:

I0 =
{
i ∈ {1, . . . , k} : λi(0, t) > 0, ∀t ∈ [0, T ]

}
,

Il =
{
i ∈ {1, . . . , k} : λi(l, t) < 0, ∀t ∈ [0, T ]

}
,

with r0 = card I0, rl = card Il.
For system (1), we set the initial conditions at 0 ≤ x ≤ l

ui(x, 0) = qi(x), i ∈ {1, . . . , k},
ws(x, 0) = rs(x), s ∈ {1, . . . , n} (2)

and the boundary conditions at 0 ≤ t ≤ T :

ui(0, t) = γ0i

(
t,
(
uj(0, t)

)
j∈Il

, w(0, t)
)
, i ∈ I0,

ui(l, t) = γli

(
t,
(
uj(l, t)

)
j∈ I0

, w(l, t)
)
, i ∈ Il,

vi(0, t) = ψi

(
t,
(
uj(0, t)

)
j∈Il

, w(0, t)
)
, i ∈ {1, . . . ,m}.

(3)

All given functions f : Π × Rk+m+n → Rk, g : Π × Rk+m+n → Rm, h : Π × Rk+m+n →
Rn, λi : Π → R, i ∈ {1, . . . , k}, q : [0, l] → Rk, r : [0, l] → Rn, γ0 : [0, T ] × Rrl × Rn →
Rr0 , γl : [0, T ]×Rr0 ×Rn → Rrl , ψ : [0, T ]×Rrl ×Rn → Rm are continuous and the functions
λi satisfy the Lipschitz condition in the variable x,

2. Global solvability theorem. Assume x = φi(t;x0, t0), t ∈ Ji, i ∈ {1, . . . , k} are the
non-continuous solutions of the Cauchy problem

dx

dt
= λi(x, t), x(t0) = x0,
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where (x0, t0) ∈ (0, l)×(0, T ], Ji is interval of [0, T ]. Note that these solutions are characteri-
stics of the first group of equations in system (1). Moreover, this system also has horizontal
characteristics of the form t = t0 and vertical characteristics x = x0. Denote by χi(x0, t0) the
smallest t, for which is defined the solution x = φi(t;x0, t0) in Π, i.e., χi(x0, t0) = min Ji.

Let us define the following sets

Πi
q = {(x, t) ∈ Π : χi(x, t) = 0}, i ∈ {1, . . . , k},

Πi
0 = {(x, t) ∈ Π : χi(x, t) > 0, φi(χi(x, t);x, t) = 0}, i ∈ I0,

Πi
l = {(x, t) ∈ Π : χi(x, t) > 0, φi(χi(x, t);x, t) = l}, i ∈ Il.

Integrating the equations of system (1) along the corresponding characteristics, we obtain
the following system of integro-operator equations:

ui(x, t) = Fi[u, v, w](x, t)+

+

t∫
χi(x,t)

fi

(
φi(τ ;x, t), τ, u(φi(τ ;x, t), τ), v(φi(τ ;x, t), τ), w(φi(τ ;x, t), τ)

)
dτ, (4)

vj(x, t) = ψj

(
t,
(
uj(0, t)

)
j∈Il

, w(0, t)
)
+

x∫
0

gj

(
y, t, u(y, t), v(y, t), w(y, t)

)
dy, (5)

ws(x, t) = rs(x) +

t∫
0

hs

(
x, τ, u(x, τ), v(x, τ), w(x, τ)

)
dτ, (6)

where i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, s ∈ {1, . . . , n},

Fi[u, v, w](x, t) =


qi(φi(0;x, t)), (x, t) ∈ Πi

q,

γ0i

(
χi(x, t),

(
uj(0, χi(x, t))

)
j∈Il

, w(0, χi(x, t))
)
, (x, t) ∈ Πi

0,

γli

(
χi(x, t),

(
uj(l, χi(x, t))

)
j∈I0

, w(l, χi(x, t))
)
, (x, t) ∈ Πi

l.

The generalized solution of the problem (1)-(3) is called a vector-valued function (u, v, w),
whose components belong to the space C(Π) and satisfy the equations of the system (4)–(6).

Theorem. Assume that the following conditions are satisfy:
1) the function Λ is continuous and Lipschitz on the set Π in the variable x;
2) f, g, h, q, r, γ0, γl, ψ are continuous functions on the respective definition sets;
3) the functions f, g, h, γ0, γl, ψ satisfy the Lipschitz condition in the variables u, v, w on
the above defined sets;
4) the zero-order compatibility condition holds:

qi(0) = γ0i (0, (qj(0))j∈Il , r(0)), i ∈ I0,

qi(l) = γli(0, (qj(l))j∈I0 , r(l)), i ∈ Il,

vi(0, 0) = ψi(0, (qj(0))j∈Il , r(0)), i ∈ {1, . . . ,m}.

Then there exists a unique generalized solution of problem (1)–(3).

Proof. Consider a metric space Q consisting of continuous functions z = (u, v, w), whose
components u, v, w belong to to the space C(Π), with ui(0, 0) = qi(0), i ∈ I0 and
ui(l, 0) = qi(l), i ∈ Il.
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Let {z1, z2} ⊂ Q. Then we define the metric at the elements of Q by the formula from
[9-11]

ρ(z1, z2) = max
{
max
i,x,t

|u1i (x, t)− u2i (x, t)|αi(x)e
−at,

max
i,x,t

|v1i (x, t)− v2i (x, t)|βi(x)e−at, max
i,x,t

|w1
i (x, t)− w2

i (x, t)|ηi(x)e−at
}
,

(7)

where the constant a > 0 and the continuous positive functions αi, βi, ηi : [0, l] → R will be
chosen later.

In the space Q, we introduce the operator A = (A1,A2,A3), where the operators A1, A2

and A3 are defined, respectively, by the right sides of system (4)–(6), i.e.:

A1
i [z](x, t)=Fi[z](x, t)+

t∫
χi(x,t)

fi

(
φi(τ ;x, t), τ, u(φi(τ ;x, t), τ), v(φi(τ ;x, t), τ), w(φi(τ ;x, t), τ)

)
dτ,

A2
j [z](x, t) = ψj

(
t,
(
uj(0, t)

)
j∈Il

, w(0, t)
)
+

x∫
0

gj

(
y, t, u(y, t), v(y, t), w(y, t)

)
dy,

A3
s[z](x, t) = rs(x) +

t∫
0

hs

(
x, τ, u(x, τ), v(x, τ), w(x, τ)

)
dτ,

where i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, s ∈ {1, . . . , n}.
By L we denote the common constant in the Lipschitz conditions for the functions

f, g, h, ψ, γ0, γl, which is written, for example, for f , in the form

|fi(x, t, u1(x, t), v1(x, t), w1(x, t))− fi(x, t, u
2(x, t), v2(x, t), w2(x, t))| ≤

≤ Lmax
{
max
j,x,t

|u1j(x, t)− u2j(x, t)|, max
j,x,t

|v1j (x, t)− v2j (x, t)|, max
j,x,t

|w1
j (x, t)− w2

j (x, t)|
}
.

From the definition of the metric for admissible i, x, t, and z ∈ Q, the inequalities follow

|u1i (x, t)− u2i (x, t)| ≤
ρ(z1, z2)

αi(x)
eat, |v1i (x, t)− v2i (x, t)| ≤

ρ(z1, z2)

βi(x)
eat,

|w1
i (x, t)− w2

i (x, t)| ≤
ρ(z1, z2)

ηi(x)
eat.

Let us show that the operator A is contractive. To do this, we will perform a series of
estimates.

Let z1 ∈ Q, z2 ∈ Q, then for j ∈ {1, . . . ,m}

|Fi[z
1](x, t)− Fi[z

2](x, t)| ≤

Lmax{max
j /∈I0

eaχi(x,t)

αj(0)
,max

j

eaχi(x,t)

ηj(x)
}ρ(z1, z2), (x, t) ∈ Πi

0,

Lmax{max
j /∈Il

eaχi(x,t)

αj(l)
,max

j

eaχi(x,t)

ηj(x)
}ρ(z1, z2), (x, t) ∈ Πi

l.
(8)

Let us define µ = (maxi,x,t |λi(x, t)|)−1. If the first inequality of (8) is satisfied, then for
all i ∈ I0, χi(x, t) ≤ t − µx. Similarly, from the second part of (8), for all i ∈ Il we have
χi(x, t) ≤ t− µ(l − x).

Based on the obtained inequalities, we obtain estimates for the operators A1, A2, A3:∣∣(A1
i [z

1])(x, t)− (A1
i [z

2])(x, t)
∣∣αi(x)e

−at ≤
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≤ Lmax

{
max
i∈I0,
j /∈I0

αi(x)e
−aµx

αj(0)
,max
i∈Il,
j /∈Il

αi(x)e
−aµ(l−x)

αj(l)
,max
i∈I0,
j

αi(x)e
−aµx

ηj(x)
,

max
i∈Il,
j

αi(x)e
−aµ(l−x)

ηj(x)

}
ρ(z1, z2)+

+

t∫
0

ea(σ−t)dσLmax

{
max
i,j,y

αi(x)

αj(y)
,max

i,j,y

αi(x)

βj(y)
,max

i,j,y

αi(x)

ηj(y)

}
ρ(z1, z2) ≤

≤ Lmax

{
max
i∈I0,
j /∈I0

αi(x)e
−aµx

αj(0)
,max
i∈Il,
j /∈Il

αi(x)e
−aµ(l−x)

αj(l)
,max
i∈I0,
j

αi(x)e
−aµx

ηj(x)
,

max
i∈Il,
j

αi(x)e
−aµ(l−x)

ηj(x)

}
ρ(z1, z2)+

+
L

a
max

{
max
i,j,y

αi(x)

αj(y)
,max

i,j,y

αi(x)

βj(y)
,max

i,j,y

αi(x)

ηj(y)

}
ρ(z1, z2),

∣∣A2
i [z

1](x, t)−A2
i [z

2](x, t)
∣∣ βi(x)e−at ≤

(
Lmax

{
max
i, j /∈I0

βi(x)

αj(0)
,max

i,j

βi(x)

ηi(x)

}
+

+

x∫
0

Lmax
{
max
i,j

βi(x)

αj(y)
,max

i,j

βi(x)

βj(y)
,max

i,j

βi(x)

ηj(y)

}
dy

)
ρ(z1, z2),∣∣A3

i [z
1](x, t)−A3

i [z
2](x, t)

∣∣ ηi(x)e−at ≤

≤ L

a
max

{
max
i,j,y

ηi(x)

αj(y)
,max

i,j,y

ηi(x)

βj(y)
,max

i,j,y

ηi(x)

ηj(y)

}
ρ(z1, z2).

From the latest estimates, we get

ρ(A[z1],A[z2]) ≤ max
x

{
Lmax

{
max
i∈I0,
j /∈I0

αi(x)e
−aµx

αj(0)
,max
i∈Il,
j /∈Il

αi(x)e
−aµ(l−x)

αj(l)
,max
i∈I0,
j

αi(x)e
−aµx

ηj(x)
,

max
i∈Il,
j

αi(x)e
−aµ(l−x)

ηj(x)

}
+
L

a
max

{
max
i,j,y

αi(x)

αj(y)
,max

i,j,y

αi(x)

βj(y)
,max

i,j,y

αi(x)

ηj(y)

}
+

+Lmax
{
max
i, j /∈I0

βi(x)

αj(0)
,max

i,j

βi(x)

ηi(x)

}
+

x∫
0

Lmax
{
max
i,j

βi(x)

αj(y)
,max

i,j

βi(x)

βj(y)
,max

i,j

βi(x)

ηj(y)

}
dy+

+
L

a
max

{
max
i,j,y

ηi(x)

αj(y)
,max

i,j,y

ηi(x)

βj(y)
,max

i,j,y

ηi(x)

ηj(y)

}}
ρ(z1, z2).

Let us choose the weighted functions of the space metric so that A is a contractive
operator on Q, ηj(x) = epl (j ∈ {1, . . . , n}),

αi(x) =


epx(l−x), i ∈ I0, i ∈ Il;

epx, i ∈ I0, i /∈ Il;

ep(l−x), i /∈ I0, i ∈ Il;

epl, i /∈ I0, i /∈ Il,

βi(x) = εe−px, i ∈ {1, . . . ,m},
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where p > 1, 0 < ε < 1 are some parameters. Suppose that the following conditions hold

p ≤ aµ, pl ≤ aµ, e−pl ≤ ε, p ≥ 1/ε. (9)

Then we have

max
x

{
max
i∈I0,
j /∈I0

αi(x)e
−aµx

αj(0)

}
= max

x

{
max
i∈I0

αi(x)e
−aµx

epl

}
=

= max
x

{
epx(l−x)e−aµx−pl, epxe−aµx−pl

}
= e−pl;

max
x

{
max
i∈Il,
j /∈Il

αi(x)e
−aµ(l−x)

αj(l)

}
= max

x

{
max
i∈Il

αi(x)e
−aµ(l−x)

epl

}
=

= max
x

{
epx(l−x)e−aµ(l−x)−pl, ep(l−x)e−aµ(l−x)−pl

}
= e−pl;

max
x

{
max
i∈I0,
j

αi(x)e
−aµx

ηj(x)

}
= max

x

{
max
i∈I0

αi(x)e
−aµx

epl

}
=

= max
x

{
epx(l−x)e−aµx−pl, epxe−aµx−pl

}
= e−pl;

max
x

{
max
i∈Il

αi(x)e
−aµ(l−x)

ηj(x)

}
= max

x

{
max
i∈Il

αi(x)e
−aµ(l−x)

epl

}
=

= max
x

{
epx(l−x)e−aµ(l−x)−pl, ep(l−x)e−aµ(l−x)−pl

}
= e−pl.

In addition, we obtain the following inequalities

max
x

{max
i, j /∈Il

βi(x)

αj(0)
} = max

x

εe−px

epl
= max

x
εe−px−pl = εe−pl;

max
x

{max
i,j

βi(x)

ηj(x)
} = max

x

εe−px

epl
= εmax

x
e−px−pl = εe−pl;

max
x

x∫
0

max
i,j

βi(x)

αj(y)
dy ≤ max

x

x∫
0

εe−pxdy ≤ max
x

{
εe−pxx

}
≤ εle−pl;

max
x

x∫
0

max
i,j

βi(x)

βj(y)
dy = max

x

x∫
0

εe−px

εe−py
dy = max

x

x∫
0

ep(y−x)dy = max
x

1− e−px

p
≤ 1

p
≤ ε;

max
x

x∫
0

max
i,j

βi(x)

ηj(y)
dy ≤ max

x

x∫
0

εe−px

epl
dy ≤ max

x

{
εe−px−plx

}
≤ εle−2pl.

As a result, we get the inequality

ρ(A[z1], A[z2]) ≤
(
Le−pl +

L

a
max

x

{
max
i,j,y

αi(x)

αj(y)
,max

i,j,y

αi(x)

βj(y)
,max

i,j,y

αi(x)

ηj(y)

}
+

+Lε+ Lε+
L

a
max

x

{
max
i,j,y

ηi(x)

αj(y)
,max

i,j,y

ηi(x)

βj(y)
,max

i,j,y

ηi(x)

ηj(y)

})
ρ(z1, z2).

We fix the sufficiently small value of the parameter ε and sufficiently big value of the
parameter p > 1: (e−pl ≤ ε, p ≥ 1/ε) to satisfy the condition Le−pl + 2Lε < 1/2. Then
the functions αi, βi, ηi are defined, and
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max
x

{
max
i,j,y

αi(x)

αj(y)
,max

i,j,y

αi(x)

βj(y)
,max

i,j,y

αi(x)

ηj(y)

}
≡M,

max
x

{
max
i,j,y

ηi(x)

αj(y)
,max

i,j,y

ηi(x)

βj(y)
,max

i,j,y

ηi(x)

ηj(y)

}
≡ K,

where M and K are constant. Finally, we fix the value of the parameter a large enough
to satisfy conditions (9) and the inequality L(M +K)/a < 1/2. Then the operator A is a
contractive operator on the elements of the space Q with the selected functions αi, βi, ηi
and the parameter a. Thus, based on Banach’s contractive mapping theorem, there exists
a unique fixed point of the operator A in the space Q, which is a generalized continuous
solution of problem (1)–(3).

Remark 1. By increasing the smoothness of initial data for problem (1)–(3) with the
fulfillment of the first-order compatibility conditions, it is easy to prove the correspondi-
ng theorem on the global classical solvability of this problem.
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différentielles ordinaires, Bull. Acad. Pol. Sci., 4 (1956), 261–268.

Ivan Franko National University of Lviv
Lviv, Ukraine
vkyrylych@ukr.net
olpelushkevych@gmail.com

Received 30.11.2023
Revised 24.05.2024


