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We investigate the solutions of the Sylvester-type matrix polynomial equation

A(λ)X(λ) + Y (λ)B(λ) = C(λ),

where A(λ), B(λ), and C(λ) are the polynomial matrices with elements in a ring of polynomials
F [λ], F is a field, X(λ) and Y (λ) are unknown polynomial matrices. Solving such a matrix
equation is reduced to the solving a system of linear equations

G

∥∥∥∥xy
∥∥∥∥ = c

over a field F . In this case, the Kronecker product of matrices is applied. In terms of the
ranks of matrices over a field F , which are constructed by the coefficients of the Sylvester-
type matrix polynomial equation, the necessary and sufficient conditions for the existence of
solutions X0(λ) and Y0(λ) of given degrees to the Sylvester-type matrix polynomial equation
are established. The solutions of this matrix polynomial equation are constructed from the
solutions of the linear equations system. As a consequence of the obtained results, we give the
necessary and sufficient conditions for the existence of the scalar solutions X0 and Y0, whose
entries are elements in a field F , to the Sylvester-type matrix polynomial equation.

1. Introduction and preliminary results. Linear matrix equations, in particular the
Sylvester-type matrix equations, over different domains appear in various branches of mathe-
matics and applied problems of the stability theory, the control theory, the dynamical systems
theory, and so on [1–4]. In the many problems, in addition to the solvability of such matrix
equations and the finding of general solutions, solutions with certain properties are needed.
The solutions of bounded degrees to the linear matrix polynomial equations are indicated
in [5–9]. In [10], integer solutions of such matrix equations over quadratic rings are found.
Applying standard forms of matrices over quadratic rings with respect to (z,k)-equivalence
[11,12], solutions with bounded Euclidean norms are described in [11,13]. The particular and
general solutions of such matrix equation with the diagonalizable pair of matrices (A,B) over
commutative Bezout domains are described in [14]. The solutions with other properties are
obtained in [15].
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The paper deals with the Sylvester-type matrix polynomial equation

A(λ)X(λ) + Y (λ)B(λ) = C(λ) (1)

and its solutions, where
A(λ) ∈ M(n,m,F [λ]), B(λ) ∈ M(p, q,F [λ]) and C(λ) ∈ M(n, q,F [λ])

are known matrices over a ring of polynomials F [λ], F is a field, M(n,m,F [λ]) is the set
of n×m matrices over F [λ]. Matrices X(λ) ∈ M(m, q,F [λ]) and Y (λ) ∈ M(n, p,F [λ])
are unknown polynomial matrices. Roth [16] proved that the equation (1) over a field F and
over a ring of polynomials F [λ] has a solution if and only if the block matrices

M =

∥∥∥∥A C
0 B

∥∥∥∥ and N =

∥∥∥∥A 0
0 B

∥∥∥∥
are equivalent.

In the present work, we establish the necessary and sufficient conditions for the existence
of solutions X(λ), Y (λ) of given degrees degX(λ) = k, degY (λ) = l to the matrix polynomial
equation (1). We construct such solutions of the matrix polynomial equation (1) from the
solutions of the linear equations system over a field F , which we get by applying the
Kronecker product of matrices.

Recall that A⊗ B is the Kronecker product [2, 17] of a n×m matrix A = ∥aij∥n,mi,j and
a p× q matrix B = ∥bij∥p,qi,j , namely, if it is a np×mq block matrix in the form

A⊗B =

∥∥∥∥∥∥
a11B . . . a1mB
· · · · · · · · ·
an1B . . . anmB

∥∥∥∥∥∥ .
Further, rowi(A) denotes the ith row of the matrix A.

Lemma 1. Let A ∈ M(n,m,F), B ∈ M(p, q,F), and C ∈ M(n, q,F) be known matrices,
X ∈ M(m, q,F) and Y ∈ M(n, p,F) be unknown matrices over a field F .

Matrix equation
AX + Y B = C (2)

is solvable if and only if the matrix equation

G

∥∥∥∥xy
∥∥∥∥ = c (3)

is solvable, namely, if and only if rank G = rank
∥∥G c

∥∥ , where

G =
∥∥A⊗ Iq In ⊗B⊺

∥∥ , (4)

the columns x, y, and c have the forms x =
∥∥row1(X) row2(X) . . . rowm(X)

∥∥⊺
,

y =
∥∥row1(Y ) row2(Y ) . . . rown(Y )

∥∥⊺
, c =

∥∥row1(C) row2(C) . . . rown(C)
∥∥⊺

, Ik is
the k × k identity matrix, the symbol ⊺ denotes the transposition of corresponding matrix.

Proof. It is known [2, 17] that the solving the matrix equation AX = C is reduced to the
solving the matrix equation (A⊗ Iq)x = c, and the solving the matrix equation Y B = C is
reduced to the solving the matrix equation (In ⊗B⊺)y = c. Thus, from matrix equation (2)
we obtain the equation ∥∥A⊗ Iq In ⊗B⊺

∥∥∥∥∥∥xy
∥∥∥∥ = c

that has the form (3) where the matrix G is in the form (4).
Equation (3) over a field F has a solution if and only if rank G = rank

∥∥G c
∥∥ .
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2. The main results. Let A(λ), B(λ), and C(λ) be known polynomial matrices from the
Sylvester-type matrix polynomial equation (1). Write them in the form of matrix polyno-
mials:

A(λ) = Arλ
r + . . .+ A1λ+ A0, degA(λ) = r, Ai ∈ M(n,m,F), i ∈ {0, 1, . . . , r},

B(λ) = Bsλ
s + . . .+B1λ+B0, degB(λ) = s, Bj ∈ M(p, q,F), j ∈ {0, 1, . . . , s}, (5)

C(λ) = Ctλ
t + . . .+ C1λ+ C0, degC(λ) = t, Cf ∈ M(n, q,F), f ∈ {0, 1, . . . , t}.

Matrices X(λ), Y (λ) are unknown polynomial matrices and write them in the form of matrix
polynomials

X(λ) = Xkλ
k + . . .+X1λ+X0, degX(λ) = k,

Y (λ) = Ylλ
l + . . .+ Y1λ+ Y0, degY (λ) = l,

where Xv, v ∈ {0, 1, . . . , k}, Yw, w ∈ {0, 1, . . . , l}, have appropriate sizes. Then, it is obvious
that the necessary condition for the existence of solution X(λ), Y (λ) of given degrees k, l
to the matrix equation (1) is

max {degA(λ) + degX(λ), degB(λ) + degY (λ)} ≥ degC(λ),

i.e., max{r + k, s+ l} ≥ t.
Using the Kronecker product of matrices, from the coefficients Ai and Bj of matrix

polynomials A(λ) and B(λ) (5), we construct the block matrix

GA =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Ar ⊗ Iq 0 0 . . . 0 0
Ar−1 ⊗ Iq Ar ⊗ Iq 0 . . . 0 0

· · · · · · · · · · · · · · · · · ·
A0 ⊗ Iq A1 ⊗ Iq A2 ⊗ Iq . . . Ak−1 ⊗ Iq Ak ⊗ Iq

0 A0 ⊗ Iq A1 ⊗ Iq . . . Ak−2 ⊗ Iq Ak−1 ⊗ Iq
0 0 A0 ⊗ Iq . . . Ak−3 ⊗ Iq Ak−2 ⊗ Iq
· · · · · · · · · · · · · · · · · ·
0 0 0 . . . 0 A0 ⊗ Iq

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(6)

that contains (r+k+1) block rows and (k+1) block columns, i.e., it is the ((r+k+1)nq)×
((k + 1)mq) matrix, moreover, all Ai = 0 for i > r if k > r, and

GB =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

In ⊗B⊺
s 0 0 . . . 0 0

In ⊗B⊺
s−1 In ⊗B⊺

s 0 . . . 0 0
· · · · · · · · · · · · · · · · · ·

In ⊗B⊺
0 In ⊗B⊺

1 In ⊗B⊺
2 . . . In ⊗B⊺

l−1 In ⊗B⊺
l

0 In ⊗B⊺
0 In ⊗B⊺

1 . . . In ⊗B⊺
l−2 In ⊗B⊺

l−1

0 0 In ⊗B⊺
0 . . . In ⊗B⊺

l−3 In ⊗B⊺
l−2

· · · · · · · · · · · · · · · · · ·
0 0 0 . . . 0 In ⊗B⊺

0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(7)

that contains (s+ l+1) block rows and (l+1) block columns, i.e., it is the ((s+ l+1)nq)×
((l + 1)np) matrix, moreover, all Bj = 0 for j > s if l > s, where 0 is a zero matrix of the
suitable size.
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From matrices GA and GB in the forms (6) and (7), respectively, we construct the matrices
Gi, i ∈ {1, 2, 3}, of the size (max{r+k, s+ l}+1)nq× ((k+1)mq+(l+1)np). With respect
to relationships between the degrees of coefficients A(λ), B(λ) and solutions X(λ), Y (λ),
the matrices GA and GB can have different amount of rows. Therefore, we get the following
cases:
(i) if

r + k = s+ l, (8)

then
G1 =

∥∥GA GB

∥∥ , (9)

(ii) if
r + k > s+ l, (10)

then
G2 =

∥∥∥GA G̃B

∥∥∥ , (11)

where the matrix G̃B =

∥∥∥∥ 0
GB

∥∥∥∥ , 0 is a zero matrix with ((r + k)− (s+ l))nq rows,

(iii) if
r + k < s+ l, (12)

then
G3 =

∥∥∥G̃A GB

∥∥∥ , (13)

where the matrix G̃A =

∥∥∥∥ 0
GA

∥∥∥∥ , 0 is a zero matrix with ((s+ l)− (r + k))nq rows.

From coefficients Cf of the matrix polynomial C(λ) in (5) we construct the column c

c =
∥∥ct . . . c1 c0

∥∥⊺
, (14)

where cf =
∥∥row1(Cf ) row2(Cf ) . . . rown(Cf )

∥∥ , f ∈ {0, 1, . . . , t}.

Theorem 1. Suppose that in the Sylvester-type matrix polynomial equation (1)

max {degA(λ) + degX(λ), degB(λ) + degY (λ)} = degC(λ),

i.e., max{r+k, s+ l} = t. Then the matrix equation (1) has solutions X(λ), Y (λ) of degrees
k, l, respectively, if and only if rank Gi = rank

∥∥ Gi c
∥∥ , where the matrix Gi, i ∈ {1, 2, 3},

has one of the forms (9), (11) or (13) with respect to relationships (8), (10) or (12) between
the degrees of coefficients A(λ), B(λ) and solutions X(λ), Y (λ), the column c is of form (14).

Proof. According to the condition of Theorem 1, max{r+ k, s+ l} = t, and considering the
representations of the matrices A(λ), B(λ), and C(λ) in the form of matrix polynomials (5),
from the matrix equation (1) we obtain the following system of linear matrix equations over
a field F

f∑
i=0

Af−iXi + Yf−iBi = Cf , f ∈ {0, 1, . . . , t}, (15)

where Ai = 0 for all i > r and Bj = 0 for all j > s.
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We will apply Lemma 1 to the equations of this system. Thus, solving the system (15) is
reduced to solving the matrix equation

G

∥∥∥∥xy
∥∥∥∥ = c (16)

over a field F , where columns x, y have the following forms

x =
∥∥xk . . . x1 x0

∥∥⊺
, y =

∥∥yl . . . y1 y0

∥∥⊺
, (17)

and
xv =

∥∥row1(Xv) row2(Xv) . . . rowm(Xv)
∥∥⊺

, v ∈ {0, 1, . . . , k},
yw =

∥∥row1(Yw) row2(Yw) . . . rown(Yw)
∥∥⊺

, w ∈ {0, 1, . . . , l},
the column c is in the form (14) and the matrix G = G1 has the form (9) if the condition
(8) between the degrees of coefficients A(λ), B(λ) and solutions X(λ), Y (λ) is fulfilled.

If the condition (10) is fulfilled, then the system (15) contains the equations
f∑

j=0

Af−jXj = Cf , f ∈ {s+ l + 1, s+ l + 2, . . . , t},

and so, the matrix G = G2 has the form (11).
If the condition (12) is fulfilled, then the system (15) contains the equations

f∑
j=0

Yf−jBj = Cf , f ∈ {r + k + 1, r + k + 2, . . . , t},

and so, the matrix G = G3 has the form (13).
It is clear that the matrix equation (16) has a solution if and only if

rank G = rank
∥∥G c

∥∥ . This completes the proof.

Further the ith block row of matrix GA in form (6) will be denoted by Rowi(GA),
i ∈ {1, 2, . . . , (r + k + 1)}, i.e.,

Row
1

(GA) =
∥∥Ar ⊗ Iq 0 0 . . . 0 0

∥∥ ,
Row

2
(GA) =

∥∥Ar−1 ⊗ Iq Ar ⊗ Iq 0 . . . 0 0
∥∥ ,

and so on. Analogously Rowj(GB) denotes the jth block row of matrix GB in form (7),
j ∈ {1, 2, . . . , (s+ l + 1)}.

Therefore, we rewrite matrices Gi, i ∈ {1, 2, 3}, from (9), (11), (13) as follows
(i) if condition (8) is satisfied, then

G1 =

∥∥∥∥∥∥∥∥
Row1(GA) Row1(GB)
Row2(GA) Row2(GB)

· · · · · ·
Rowr+k+1(GA) Rowr+k+1(GB)

∥∥∥∥∥∥∥∥ , (18)

(ii) if condition (10) is satisfied, then

G2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Row1(GA) 0
Row2(GA) 0

· · · · · ·
Row(r+k)−(s+l)(GA) 0
Row(r+k)−(s+l)+1(GA) Row1(GB)

· · · · · ·
Rowr+k+1(GA) Rows+l+1(GB)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (19)
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(iii) if condition (12) is satisfied, then

G3 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 Row1(GB)
0 Row2(GB)
· · · · · ·
0 Row(s+l)−(r+k)(GB)

Row1(GA) Row(s+l)−(r+k)+1(GB)
· · · · · ·

Rowr+k+1(GA) Rows+l+1(GB)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (20)

where 0 is a zero matrix of suitable size.
Thus, Rowj(Gi) is the jth block row of matrix Gi, i ∈ {1, 2, 3}, that has one of the

forms (18), (19) or (20) with respect to relationships (8), (10) or (12) between the degrees of
coefficients A(λ), B(λ) and solutions X(λ), Y (λ), j ∈ {1, 2, . . . , (max{r + k, s+ l}+ 1)}.

Theorem 2. Suppose that in the Sylvester-type matrix polynomial equation (1)
max {degA(λ) + degX(λ), degB(λ) + degY (λ)} > degC(λ),

i.e., max{r+k, s+ l} > t. Then the matrix equation (1) has solutions X(λ), Y (λ) of degrees
k, l, respectively, if and only if

rank

∥∥∥∥∥∥∥∥
Row1(Gi)
Row2(Gi)

· · ·
Row(max{r+k,s+l}−t)(Gi)

∥∥∥∥∥∥∥∥ < (k + 1)mq + (l + 1)np (21)

and

rank

∥∥∥∥∥∥∥∥
Row(max{r+k,s+l}−t+1)(Gi)
Row(max{r+k,s+l}−t+2)(Gi)

· · ·
Row(max{r+k,s+l}+1)(Gi)

∥∥∥∥∥∥∥∥ = rank

∥∥∥∥∥∥∥∥
Row(max{r+k,s+l}−t+1)(Gi)
Row(max{r+k,s+l}−t+2)(Gi)

· · ·
Row(max{r+k,s+l}+1)(Gi)

c

∥∥∥∥∥∥∥∥ , (22)

where matrix Gi, i ∈ {1, 2, 3}, has one of forms (18), (19) or (20) with respect to relationships
(8), (10) or (12) between the degrees of coefficients A(λ), B(λ) and solutions X(λ), Y (λ),
the column c is of form (14).

Proof. As in the proof of Theorem 1, solving the matrix equation (1) is reduced to solving
the system of linear matrix equations (15) over a field F and this system has a solution if
and only if the matrix equation (16) over a field F has a solution.

According to the condition of Theorem 2, the equation (16) has the form∥∥∥∥∥∥∥∥
Row(max{r+k,s+l}−t+1)(Gi)
Row(max{r+k,s+l}−t+2)(Gi)

· · ·
Row(max{r+k,s+l}+1)(Gi)

∥∥∥∥∥∥∥∥
∥∥∥∥xy

∥∥∥∥ = c,

where the matrix Gi, i ∈ {1, 2, 3}, has one of forms (18), (19) or (20) with respect to
relationships (8), (10) or (12) between the degrees of coefficients A(λ), B(λ) and solutions
X(λ), Y (λ). This equation has a solution if and only if condition (22) is fulfilled.

Since max{r+k, s+ l} > t, it immediately follows that system (15) will be supplemented
with matrix equations in the form



KRONECKER PRODUCT AND SOLUTIONS OF SYLVESTER MATRIX EQUATIONS 121

f∑
i=0

Af−iXi + Yf−iBi = 0, f ∈ {t+ 1, t+ 2, . . . ,max{r + k, s+ l}+ 1}.

Applying Lemma 1 to such equations, we obtain that their solving is reduced to solving the
matrix equation ∥∥∥∥∥∥∥∥

Row1(Gi)
Row2(Gi)

· · ·
Row(max{r+k,s+l}−t)(Gi)

∥∥∥∥∥∥∥∥
∥∥∥∥xy

∥∥∥∥ = 0,

where columns x and y are in form (17), and the matrix Gi, i ∈ {1, 2, 3}, has one of forms
(18), (19) or (20) with respect to relationships (8), (10) or (12) between the degrees of
coefficients A(λ), B(λ) and solutions X(λ), Y (λ), 0 is a zero column of suitable size. This
equation has a nontrivial solution if and only if the condition (21) is fulfilled.

In the next assertion, we formulate the necessary and sufficient conditions for the existence
of scalar solutions to the matrix polynomial equation (1), namely, the entries of such solutions
are elements in a field F .

Corollary 1. Sylvester-type matrix polynomial equation (1) whose coefficients A(λ), B(λ),
and C(λ) have degrees degA(λ) = r, degB(λ) = s, and degC(λ) = t, has scalar solutions
X(λ) = X0, Y (λ) = Y0, i.e., X0, Y0 are the matrices with elements in a field F ,

1) if max{r, s} = t, if and only if rank Gi = rank
∥∥Gi c

∥∥ ,
2) if max{r, s} > t, if and only if

rank

∥∥∥∥∥∥∥∥
Row1(Gi)
Row2(Gi)

· · ·
Row(max{r,s}−t)(Gi)

∥∥∥∥∥∥∥∥ < nq(max{r, s} − t)

and

rank

∥∥∥∥∥∥∥∥
Row(max{r,s}−t+1)(Gi)
Row(max{r,s}−t+2)(Gi)

· · ·
Row(max{r,s}+1)(Gi)

∥∥∥∥∥∥∥∥ = rank

∥∥∥∥∥∥∥∥
Row(max{r,s}−t+1)(Gi)
Row(max{r,s}−t+2)(Gi)

· · ·
Row(max{r,s}+1)(Gi)

c

∥∥∥∥∥∥∥∥ ,
where the matrix Gi, i ∈ {1, 2, 3}, has one of the forms

(i) if r = s = t, then G1 =

∥∥∥∥∥∥∥∥∥∥
Ar ⊗ Iq
Ar−1 ⊗ Iq
Ar−2 ⊗ Iq

· · ·
A0 ⊗ Iq

In ⊗B⊺
r

In ⊗B⊺
r−1

In ⊗B⊺
r−2

· · ·
In ⊗B⊺

0

∥∥∥∥∥∥∥∥∥∥
, (ii) if r > s, then

G2 =

∥∥∥∥∥∥∥∥∥∥∥∥

Ar ⊗ Iq
· · ·

Ar−s ⊗ Iq
Ar−s+1 ⊗ Iq

· · ·
A0 ⊗ Iq

0
· · ·
0

In ⊗B⊺
s

· · ·
In ⊗B⊺

0

∥∥∥∥∥∥∥∥∥∥∥∥
, (iii) if r < s, then G3 =

∥∥∥∥∥∥∥∥∥∥∥∥

0
· · ·
0

Ar ⊗ Iq
· · ·

A0 ⊗ Iq

In ⊗B⊺
s

· · ·
In ⊗B⊺

s−r

In ⊗B⊺
s−r+1

· · ·
In ⊗B⊺

0

∥∥∥∥∥∥∥∥∥∥∥∥
,

the column c is of form (14).
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