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This paper addresses the uniqueness problem concerning the j-th derivative of a meromor-
phic function f(z) and the k-th derivative of its shift, f(z + c), where j, k are integers with
0 ≤ j < k. In this regard, our work surpasses the achievements of [2], as we have improved
upon the existing results and provided a more refined understanding of this specific aspect. We
give some illustrative examples to enhance the realism of the obtained outcomes.

Denote by E(a, f) the set of all zeros of f−a, where each zero with multiplicity m is counted
m times. In the paper proved, in particular, the following statement:
Let f(z) be a non-constant meromorphic function of finite order, c be a non-zero finite complex
number and j, k be integers such that 0 ≤ j < k. If f (j)(z) and f (k)(z + c) have the same
a−points for a finite value a( ̸= 0) and satisfy conditions

E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)) and E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)),

then f (j)(z) ≡ f (k)(z + c) (Theorem 6).

1. Introduction. Consider two non-constant meromorphic functions, denoted as f and g,
defined in the entire complex plane C. We use the term “meromorphic” to describe well-
behaved functions everywhere except at isolated points, where they might have poles.

If there exists a complex number a (including the point at infinity) such that both
functions f and g have the same a-points, counting their multiplicities, we say that f and
g share the value a under the counting multiplicities (CM) condition. On the other hand,
if they only share the locations of a-points without considering their multiplicities, we say
that f and g share the value a under the ignoring multiplicities (IM) condition.

While the conventional notations of the value distribution theory are covered comprehen-
sively in [13], we will introduce specific notes essential for our subsequent discussion.

L. A. Rubel, C.-C. Yang [11] have explored the uniqueness of non-constant entire functi-
ons sharing two values with their first derivative. Subsequent work by E. Mues, N. Stei-
nmetz [8], along with G. G. Gundersen [6], refined and expanded this idea to include
meromorphic functions. This progression culminated in the establishment of the following
theorem.

Theorem 1 ([11]). Let f be a non-constant meromorphic function, and let a and b be two
distinct finite values. If f and f ′ share a and b CM, then f ≡ f ′.
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In Theorem 1, Gundersen [6] presented a counter-example indicating that two shared
values under the CM condition cannot be reduced to 1 CM and 1 IM. However, the condition
of 2 CM can be replaced by 3 IM, as demonstrated in [5], [8]. Furthermore, Frank and
Weissenborn [4] confirmed the continued validity of the conclusion when substituting f ′

with a higher-order derivative f (k).

Theorem 2 ([4]). Let f be a non-constant entire function and k ≥ 2 be a positive integer.
If f shares two distinct finite values a and b CM with f (k), then f ≡ f (k).

The paper [7] investigates the case where f(z + c) shares two different CM values and
one other IM value with f(z).

In the article [10], in particular, the following question was considered: Under what
conditions does the equality f ′(z) = f(z + c) hold?

Theorem 3 ([10]). Let f(z) be a transcendental entire function of finite order and a be a
non-zero complex constant. If f ′(z) and f(z + c) share 0, a CM, then f ′(z) ≡ f(z + c).

Denote by E(a, f) the set of all zeros of f − a, where each zero with multiplicity m is
counted m times. Similarly, we denote by E(a, f) the set of zeros of f −a, where each zero is
counted only once. If E(a, f) ⊆ E(a, g), then we say that f(z) partially shares a with g(z).
If E(a, f) ⊂ E(a, g), then we say that f(z) and g(z) partially shares a CM.

In [1, 2, 9], the question formulated above is considered using the concept of partially
shared values.

Their findings revealed that when f (j)(z) and f (k)(z+ c) share one value, IM, along with
two values that are partially shared, the outcome regarding uniqueness remains valid. This
conclusion is subject to additional assumptions or hypotheses outlined in their study.

Theorem 4 ([2]). Let f(z) be a transcendental entire function of finite order, and let c be
a non-zero finite complex number, and j, k be integers with 0 ≤ j < k. Suppose that f (j)(z)
and f (k)(z + c) share a finite value a ̸= 0 IM and satisfy E(0, f (j)(z)) ⊂ E(0, f (k)(z + c))
and E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)). If N(r, 1

f (j)(z)
) +N(r, 1

f(z)
) = S(r, f), then f (j)(z) ≡

f (k)(z + c).

Chen and Huang [2] further demonstrated that if the sharing of values IM is replaced
with CM, the result regarding uniqueness still holds. Notably, this holds without requiring
the additional hypotheses stated in the previous theorem.

Theorem 5 ([2]). Let f(z) be a non-constant meromorphic function of finite order, and
c be a non-zero finite complex number and j, k be integers with 0 ≤ j < k. If f (j)(z) and
f (k)(z + c) share a finite value a(̸= 0) CM and satisfy E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)) and
E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)), then f (j)(z) ≡ f (k)(z + c).

2. Main results. In this context, our study confirmed that the result presented in Theorem 4
remains valid without the additional conditions stated in this theorem.

Theorem 6. Let f(z) be a non-constant meromorphic function of finite order, and let c
be a non-zero finite complex number and j, k be integers with 0 ≤ j < k. If f (j)(z) and
f (k)(z + c) share a finite value a( ̸= 0) IM and satisfy E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)) and
E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)), then f (j)(z) ≡ f (k)(z + c).
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Remark 1. The following examples are relevant to be more realistic about Theorem 6 and
the validity of the condition in the theorem.

Example 1. Consider the function f(z) = e−z and set c = πi. When we take j = 1 and
k = 4, we notice that both f (j)(z) and f (k)(z+c) meet the conditions outlined in Theorem 6.
This leads us to the conclusion that f (j)(z) is indeed equivalent to f (k)(z + c).

Remark 2. The sharpness of the condition E(∞, f (k)(z+ c)) ⊂ E(∞, f (j)(z)) in Theorem 6
becomes evident when we consider the following example.

Example 2. Consider the function f(z) = 2
1−e−2z and set c = πi. Choose j = 0 and

k = 1. Despite the fact that f (j)(z) and f (k)(z + c) share 1 IM and fulfill the inclusion
E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)), they are not equivalent. This discrepancy underscores the
significance of the condition E(∞, f (k)(z+ c)) ⊂ E(∞, f (j)(z)) in Theorem 6. In this specific
example, the absence of this condition results in the non-equivalence of f (j)(z) and f (k)(z+c).

Remark 3. The sharpness of the condition “f (j)(z) and f (k)(z + c) share a IM, a ∈ C\{0}”
in Theorem 6 becomes apparent through the following example.

Example 3. Consider the function f(z) = ez and set c = πi. Let us take j = 1 and k = 2.
Here, f (j)(z) = ez and f (k)(z + c) = −ez. It is noticeable that they fulfill the conditions
E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)) and E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)). However, despite
meeting these conditions, f (j)(z) and f (k)(z + c) are not equivalent. This is because they do
not share a IM.

Given a positive integer l, let us denote by El)(a, f) the set of all a-points of the function
f(z) with multiplicity at most l. Here, each a-point of f with multiplicity m ≤ l is counted
m times. The set El)(a, f) represents the a-points of f(z) with multiplicity at most l, but
each a-point is counted only once. Furthermore, we define the reduced counting function
N l)(r,

1
f−a) associated with the set El)(a, f).

Similarly, we define another reduced counting function N (l(r,
1

f−a), which corresponds to
the a-points of f having multiplicities greater than l.

Theorem 7. Let f(z) be a non-constant meromorphic function of finite order, and c be
a non-zero finite complex number, and j, k be integers with 0 ≤ j < k. If for l > 1,
El)(r, f

(j)(z)) = El)(r, f
(k)(z + c)) and satisfy

E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)) and E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)),

then f (j)(z) ≡ f (k)(z + c).

3. Lemmas. The subsequent lemmas from this paper are pertinent to the forthcoming
discussions and are invoked in the subsequent analysis.

Lemma 1 ([12]). Let f(z) be a non-constant meromorphic function and ai(z) are meromor-
phic functions such that T (r, ai) = S(r, f) for i = 0, 1, 2, ..., n, where an(z) ̸≡ 0. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2 ([3]). Let f(z) be a meromorphic function of finite order and c ∈ C. Then we
have

m
(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f),

where S(r, f) = o(T (r, f)) for all r outside of a possible exceptional set E with finite linear
measure.
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Lemma 3 ([3]). Let f(z) be a non-constant meromorphic function of finite order and c ∈ C.
Then

T (r, f(z + c)) = T (r, f) + S(r, f),

N(r,∞; f(z + c)) = N(r,∞; f) + S(r, f), N(r, 0; f(z + c)) = N(r, 0; f(z)) + S(r, f),

N(r,∞; f(z + c)) = N(r,∞; f) + S(r, f), N(r, 0; f(z + c)) = N(r, 0; f(z)) + S(r, f).

Lemma 4. Let f(z) be a non-constant meromorphic function of finite order, and j, k be
integers with 0 ≤ j < k. If f (k)(z + c) and f (j)(z) satisfy E(0, f (j)(z)) ⊂ E(0, f (k)(z + c))
and E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)), then f is transcendental.

Proof. On the contrary, suppose that f(z) is a non-constant rational function. Set

f(z) =
P (z)

Q(z)
, (1)

where P (z) and Q(z) are two mutually prime polynomials. Differentiating (1) we get

f ′(z) =
P ′Q− PQ′

Q2
=
P1(z)

Q1(z)
.

Similarly, differentiating (1) s-th times we get

f (s)(z) =
P ′
s−1Qs−1 − Ps−1Q

′
s−1

Q2
s−1

=
Ps(z)

Qs(z)
.

So, f (k)(z + c) = Pk(z + c)/Qk(z + c). Since, E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)), we have

E(0, Qk(z + c)) ⊂ E(0, Qj(z)). (2)

If z be a pole of f, then z must be a pole of f (k) and f (j). Let z0 be a zero of Qj(z), then we
have Qj(z0) = 0, so, Qk(z0) = 0.

Now we can write Qk(z0) = 0 as Qk((z0 − c) + c) = 0, so z0 − c is a zero of Qk(z + c). So
using condition (2) we can conclude that Qj(z0 − c) = 0.

Now, from Qj(z0 − c) = 0, we have Qk(z0 − c) = 0, which implies Qj(z0 − 2c) = 0.
Continuing inductively, we get Qj(z0 − nc) = 0, which is impossible. Therefore, we can
deduce that Q(z) is a constant. Thus, f(z) is a polynomial.

Again, it is given f is non-constant, so we can see that deg(f (k)(z+c)) < deg(f (j)(z+c)),
which leads to a contradiction because we are given that E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)).
Hence, f is transcendental.

In this paper, we will use several notations that are pertinent to our study.
Let a be a complex number or infinity. We denote by

(i) N0

(
r, a; f (k)(z + c)|f (j)(z) = a

)
the reduced counting function of common a-points of

f (k)(z + c) and f (j)(z) of different multiplicities.

(ii) NE

(
r, a; f (k)(z + c)|f (j)(z) = a

)
denotes the counting function of common a-points of

f (k)(z + c) and f (j)(z) of equal multiplicities.

(iii) N0

(
r, a; f (k)(z + c)|f (j)(z) ̸= a

)
the counting function of a-points of f (k)(z + c) which

are not the a-points of f (j)(z).

Now we define the following function

ψ(z) =
f (k)(z + c)

f (j)(z)
. (3)
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Lemma 5. Suppose f(z) is a non-constant meromorphic function of finite order, and let
ψ be defined in (3). If f (k)(z + c) and f (j)(z) satisfy E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)) and
E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)), then the following conclusions can be drawn:
(i) ψ(z) is entire and T (r, ψ) = S(r, f).
(ii) S(r, f) = S(r, f (k)(z + c)) = S(r, f (k)(z)) = S(r, f (j)(z)).
(iii) N0

(
r, 0; f (k)(z + c)|f (j)(z) = 0

)
+N

(
r, 0; f (k)(z + c)|f (j)(z) ̸= 0

)
= S(r, f) and

N0(r, f
(k)(z + c)|f (j)(z) = ∞) +N(r, f (k)(z + c)|f (j)(z) ̸= ∞) = S(r, f).

(iv) T (r, f (k)(z + c)) = T (r, f (j)(z)) + S(r, f).
(v) N(r,∞; f (j)(z)) = N(r,∞; f (k)(z + c)) = S(r, f).

Proof. Based on the assumption that E(0, f (j)(z)) ⊂ E(0, f (k)(z+c)) and E(∞, f (k)(z+c)) ⊂
E(∞, f (j)(z)), allows us to deduce that ψ(z) is entire.
(i) By applying the lemma concerning the logarithmic derivative and making use of lemma
2, we can establish the following.

m(r, ψ(z)) = m
(
r,
f (k)(z + c)

f (j)(z)

)
≤ m

(
r,
f (k)(z + c)

f (k)(z)

)
+m

(
r,
f (k)(z)

f (j)(z)

)
= S(r, f).

Therefore, it follows that T (r, ψ(z)) = S(r, f).
(ii) Now, equation (3) can be rewritten as f (k)(z + c) = ψ(z)f (j)(z). So we have

T (r, f (k)(z)) = T (r, f (k)(z + c)) + S(r, f) ≤
T (r, ψ) + T (r, f (j)(z)) + S(r, f) = T (r, f (j)(z)) + S(r, f).

Similarly, we have T (r, f (j)(z)) ≤ T (r, f (k)(z + c)) + S(r, f) = T (r, f (k)(z)) + S(r, f). Hence,
S(r, f) = S(r, f (k)(z + c)) = S(r, f (k)(z)) = S(r, f (j)(z)) follows.
(iii) Continuing, we have

N0

(
r, 0; f (k)(z + c)|f (j)(z) = 0

)
+N

(
r, 0f (k)(z + c)|f (j)(z) ̸= 0

)
≤

≤ N(r, 0;ψ) ≤ T (r, ψ) = S(r, f).
Likewise, we obtain

N0(r,∞; f (k)(z + c)|f (j)(z) = ∞) +N(r,∞; f (k)(z + c)|f (j)(z) ̸= ∞) = S(r, f).
(iv) Deriving from equality (3), we obtain

T (r, f (k)(z + c)) ≤ T (r, ψ) + T (r, f (j)(z)) + S(r, f) = T (r, f (j)(z)) + S(r, f)

T (r, f (j)(z)) ≤ T (r,
1

ψ
) + T (r, f (k)(z + c)) + S(r, f) = T (r, f (k)(z + c)) + S(r, f).

Therefore, we can deduce that T (r, f (k)(z + c)) = T (r, f (j)(z)) + S(r, f).
(v) Based on the given assumption, we have N(r,∞; f (k)(z+c)) ≤ N(r,∞; f (j)(z))+S(r, f).
By making use of lemma 3, it is important to note that

N(r,∞; f (k)(z + c)) = N(r,∞; f (k)(z)) + S(r, f) =

= N(r,∞; f (j)(z)) + (k − j)N(r,∞; f (j)(z)) + S(r, f).
Hence, N(r,∞; f (k)(z + c)) ≤ N(r,∞; f (j)(z)) + S(r, f). As a result, we can conclude that

N(r,∞; f (k)(z + c)) = N(r,∞; f (j)(z)) + S(r, f),

N(r,∞; f (j)(z)) = N(r,∞; f (k)(z + c)) = S(r, f).

4. Proof of the main results.

Proof of Theorem 6. Given the definition of ψ(z), we have
ψ(z)− 1 = (f (k)(z + c)− f (j)(z))/f (j)(z).
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By the hypothesis of the Theorem, f (k)(z+ c) and f (j)(z) share a non-zero complex number
a IM, we can therefore infer that

N
(
r, a; f (k)(z + c)

)
= N

(
r, a; f (j)(z)

)
≤ N (r, 1;ψ) ≤ T (r, ψ) = S(r, f). (4)

Our assertion is that NE(r, 0; f
(k)(z + c)|f (j)(z) = 0) ̸= S(r, f).

On contrary that NE(r, 0; f
(k)(z + c)|f (j)(z) = 0) = S(r, f). Now, from the derived

outcome (ii) in Lemma 5, we can derive that
N(r, 0; f (k)(z + c)) = N0(r, 0; f

(k)(z + c)|f (j)(z) = 0) +NE(r, 0; f
(k)(z + c)|f (j)(z) = 0)+

+N(r, 0; f (k)(z + c)|f (j)(z) ̸= 0) = S(r, f).
Applying the Second Fundamental Theorem of Nevanlinna and using equation (4), we can
deduce that

T (r, f (k)(z + c)) ≤ N(r,∞; f (k)(z + c)) +N(r, 0; f (k)(z + c))+

+N(r, a; f (k)(z + c)) + S(r, f) = S(r, f).
We get a contradiction. Consequently, we must conclude that NE(r, 0; f

(k)(z + c)|f (j)(z) =
0) ̸= S(r, f). Let us proceed by considering

ϕ(z) =
f (k+1)(z + c)

f (k)(z + c)− a
− f (j+1)(z)

f (j)(z)− a
.

At this point, two distinct cases emerge.
Case-1. Assume that ϕ(z) ≡ 0, then

f (k+1)(z + c)/(f (k)(z + c)− a) = f (j+1)(z)/(f (j)(z)− a).
Upon integrating both sides, we obtain f (k)(z + c) − a ≡ d(f (j)(z) − a), where d ∈ C\{0}.
As NE(r, 0; f

(k)(z + c)|f (j)(z) = 0) ̸= S(r, f), it follows that d = 1. Consequently, we can
deduce that f (k)(z + c) ≡ f (j)(z).
Case-2. Assume that ϕ ̸≡ 0. In this scenario, the poles of ϕ arise from the poles of f (k)(z+c),
f (j)(z), and the a-points of f (k)(z+ c) and f (j)(z). Therefore, drawing from the implications
of Lemma 5 and relation (4), we can derive that

N(r,∞;ϕ) = N(r,∞; f (k)(z + c)) +N(r, a; f (k)(z + c)) +N(r,∞; f (j)(z))+

+N(r, a; f (j)(z)) = S(r, f).
Note that m(r, ϕ) = S(r, f). Consequently, we can establish that T (r, ϕ) = S(r, f). Since
f (k)(z + c) = ψ(z)f (j)(z) and f (k+1)(z + c) = ψ′(z)f (j)(z) + ψ(z)f (j+1)(z), by definition of
ϕ(z), we obtain that

ϕ(z) =
ψ′f (j)(z) + ψf (j+1)(z)

ψf (j)(z)− a
− f (j+1)(z)

f (j)(z)− a
=

=
(ψ′f (j)(z) + ψf (j+1)(z))(f (j)(z)− a)− (ψf (j)(z)− a)f (j+1)(z)

(ψf (j)(z)− a)(f (j)(z)− a)
=

=
ψ′(f (j)(z))2 − aψ′(f (j)(z)) + (a− aψ)f (j+1)(z)

(ψf (j)(z)− a)(f (j)(z)− a)
.

Hence,
ψϕ(f (j)(z))2 − (a+ aψ)ϕf (j)(z) + a2ϕ = ψ′(f (j)(z))2 − aψ′(f (j)(z)) + (a− aψ)f (j+1)(z).

Therefore,

(a− aψ)f (j+1)(z) = (ψϕ− ψ′)(f (j)(z))2 + (aψ′ − aϕ− aϕψ)f (j)(z) + a2ϕ (5)

Let us define g(z) := f (j)(z). Subsequently, equation (5) transforms into
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Ag′(z) = Bg2(z) + Cg(z) +D,
where A = a(1−ψ), B = ψϕ−ψ′, C = a(ψ′−ϕ−ϕψ), D = a2ϕ. In this context, it’s evident
that A, B, C, and D are small functions of f(z). Assume that B ̸≡ 0. Using Lemmas 1 and
5, we consistently obtain that

2T (r, g(z)) ≤ T (r, g′(z)) + S(r, f) = T (r,
g′(z)

g(z)
) + T (r, g(z)) + S(r, f) =

= N(r,∞;
g′(z)

g(z)
) + T (r, g(z)) + S(r, f) = N(r,∞; g(z)) + T (r, g(z)) + S(r, f).

Hence T (r, g(z)) ≤ S(r, f), thus T (r, f (j)(z)) ≤ S(r, f), which is not possible. Therefore, we
conclude that B ≡ 0, thus ψϕ− ψ′ ≡ 0 =⇒ ϕ ≡ ψ′

ψ
=⇒

f (k+1)(z + c)

f (k)(z + c)− a
− f (j+1)(z)

f (j)(z)− a
≡ ψ′(z)

ψ(z)
.

On integration, we have ψ(z) ≡ λf
(k)(z+c)−a
f (j)(z)−a , where λ ∈ C\{0}. So, by the definition of

ψ(z) we have

ψ(z) =
f (k)(z + c)

f (j)(z)
≡ λ

f (k)(z + c)− a

f (j)(z)− a
. (6)

Let us consider an a-point denoted by z0 of f (j)(z) with multiplicity p, where p ∈ N. Given
that f (k)(z+c) and f (j)(z) share a IM, it can be inferred that z0 is also an a-point of f (k)(z+c)
with multiplicity q. Because ψ is an entire function, the multiplicity of an a-point of f (j)(z)
is either equal to or less than the multiplicity of the corresponding a-point of f (k)(z + c).
Thus, two possibilities exist (i) p = q, (ii) p < q.

In the case p < q, it follows from equation (6) that z0 must be a zero of f (k)(z + c).
However, since a ̸= 0, the conditions f (k)(z0 + c) = 0 and f (k)(z0 + c) = a cannot both
hold simultaneously, leading to a contradiction. Consequently, the only plausible scenario is
p = q. Thus, we can deduce that f (k)(z + c) and f (j)(z) share a CM.

Proof of Theorem 7. Let us introduce the following notation. For a ∈ C ∪ {∞}, denote
by

(i) N l)
0

(
r, a; f (k)(z + c)|f (j)(z) = a

)
the reduced counting function of common a-points of

f (k)(z + c) and f (j)(z) of different multiplicities.

(ii) N l)
E

(
r, a; f (k)(z + c)|f (j)(z) = a

)
denotes the counting function of common a-points of

f (k)(z + c) and f (j)(z) of equal multiplicities.

(iii) N l)
0

(
r, a; f (k)(z + c)|f (j)(z) ̸= a

)
the counting function of a-points of f (k)(z + c) which

are not the a-points of f (j)(z).

In the above cases, the a-points have multiplicity at most l.
Since, El)(r, f (j)(z)) = El)(r, f

(k)(z + c)), we have

N l)(r, a; f
(k)(z + c)) = N l)(r, a; f

(j)(z)) ≤ N(r, 1, ψ) ≤ T (r, ψ) = S(r, f). (7)

We claim that N l)

E(r, 0; f
(k)(z+c)|f (j)(z) = 0) ̸= S(r, f). If not suppose that N l)

E(r, 0; f
(k)(z+

c)|f (j)(z) = 0) = S(r, f). Now using lemma 5 and inequality (7) we have

N(r, 0; f (k)(z + c)) = N
l)

0 (r, 0; f
(k)(z + c)|f (j)(z) = 0) +N

l)

E(r, 0; f
(k)(z + c)|f (j)(z) = 0)+

+N
l)
(r, 0; f (k)(z + c)|f (j)(z) ̸= 0) = S(r, f). (8)
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Now applying the second fundamental theorem and using lemma 3 and equation (7) and (8),
we get

T (r, f (k)(z + c)) ≤ N(r,∞; f (k)(z + c)) +N(r, 0; f (k)(z + c)) +N(r, a; f (k)(z + c))+

+S(r, f) ≤ N (l+1(r, 0; f
(k)(z + c)) +N (l+1(r, a; f

(k)(z + c)) + S(r, f) ≤

≤ 2

l + 1
T (r, f (k)(z + c)) + S(r, f),

which is a contradiction since l > 1. So, N l)

E(r, 0; f
(k)(z + c)|f (j)(z) = 0) ̸= S(r, f). From

here, we can proceed as the Theorem 6 and will get the desired result.
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