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We consider the class S(λ, β, τ) of convergent for all x ≥ 0 Taylor-Dirichlet type series of
the form

F (x) =

+∞∑
n=0

bne
xλn+τ(x)βn , bn ≥ 0 (n ≥ 0),

where τ : [0,+∞) → (0,+∞) is a continuously differentiable non-decreasing function, λ = (λn)
and β = (βn) are such that λn ≥ 0, βn ≥ 0 (n ≥ 0). In the paper we give a partial answer to
a question formulated by Salo T.M., Skaskiv O.B., Trusevych O.M. on International conference
“Complex Analysis and Related Topics” (Lviv, September 23-28, 2013) ( [2]). We prove the
following statement: For each increasing function h(x) : [0,+∞) → (0,+∞), h′(x) ↗ +∞
(x → +∞), every sequence λ = (λn) such that

+∞∑
n=0

1

λn+1 − λn
< +∞

and for any non-decreasing sequence β = (βn) such that βn+1 − βn ≤ λn+1 − λn (n ≥ 0) there
exist a function τ(x) such that τ ′(x) ≥ 1 (x ≥ x0), a function F ∈ S(α, β, τ), a set E and
a constant d > 0 such that h-meas E :=

∫
E
dh(x) = +∞ and

(∀x ∈ E) : F (x) > (1 + d)µ(x, F ),

where µ(x, F ) = max{|an|exλn+τ(x)βn : n ≥ 0} is the maximal term of the series.
At the same time, we also pose some open questions and formulate one conjecture.

1. Main result. In this article, we give a partial answer to a question formulated on
International conference “Complex Analysis and Related Topics” (Lviv, September 23-28,
2013) ([2]). Let τ : [0,+∞) → (0,+∞) be continuously differentiable non-decreasing func-
tion, λ = (λn) and β = (βn) be such that λn ≥ 0, βn ≥ 0 (n ≥ 0), and S(λ, β, τ) be the class
of convergent for all x ≥ 0 Taylor-Dirichlet type series of the form

F (x) =
+∞∑
n=0

bne
xλn+τ(x)βn , bn ≥ 0 (n ≥ 0). (1)

For F ∈ S(λ, β, τ) and x ≥ 0 we denote by µ(x, F ) = max{|an|exλn+τ(x)βn : n ≥ 0} the
maximal term of the series, and by ν(x, F ) = max{n ∈ N0 : |an|exλn+τ(x)βn = µ(x, F )} the
central index in the case when the max exists.

A theorem from paper [1] implies the following statement.
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Theorem 1 (Velychko, Skaskiv, 1989). Let λ = (λn), β = (βn) be increasing sequences. If

+∞∑
n=0

1

λn+1 − λn

< +∞ (2)

and F ∈ S(λ, β, τ) then
F (x) = (1 + o(1))µ(x, F ) (3)

as x → +∞ outside some set E ⊂ [0,+∞) of finite Lebesgue measure, i.e.
∫
E

dx < +∞.

In [2], it was posed the following conjecture.

Conjecture 1 ([2]). For every sequences λ and β, functions τ, h, h(x)
x

→ +∞ (x → +∞),
there exist a function F ∈ S(λ, β, τ), a set E and a constant d > 0 such that h-meas E :=∫
E

dh(x) = +∞ and ∀x ∈ E the inequality F (x) > (1 + d)µ(x, F ) holds.

In this note, we will prove the following statement.

Theorem 2. For every increasing function h(x) : [0,+∞) → (0,+∞), h′(x) ↗ +∞ (x →
+∞), every sequence λ = (λn) such that condition (2) holds and for every non-decreasing
sequence β = (βn) such that βn+1 − βn ≤ λn+1 − λn (n ≥ 0) there exist a function τ(x) such
that τ ′(x) ≥ 1, a function F ∈ S(α, β, τ), a set E and d > 0 such that h-meas E = +∞ and

(∀x ∈ E) : F (x) > (1 + d)µ(x, F ).

Proof. There exists a sequence (cn) such that cn ↑ +∞ and

+∞∑
n=0

cn
λn+1 − λn

= +∞. (4)

We define the sequence (κn) in such a way that the following conditions are fulfilled:
κ0 = 0, h′(κn) ≥ cn, κn ≥ κn−1 +

2c
λn−λn−1

(n ≥ 1), c > 0.

It is clear that the conditions of choice the sequence (κn) are not contradictory. In addition,
since cn ↑ +∞ (n → +∞) and h′(x) → +∞ (x → +∞), one has κn ↑ +∞ (n → +∞). Let
us consider the function τ(x) such that τ ′(x) = λn+1−λn

βn+1−βn
for x ∈ [κn + c

λn+1−λn
,κn+1] and

τ ′(x) = lnx+ kn for x ∈ [κn,κn +
c

λn+1−λn
] such that

lnκn + kn =
λn − λn−1

βn − βn−1

, ln

(
κn +

c

λn+1 − λn

)
+ kn =

λn+1 − λn

βn+1 − βn

.

It is easy to see that τ ′(x) ≥ 1 for all x ≥ κ1.
We put

ln
bn
bn+1

= κn+1(λn+1 − λn) + τ(κn+1)(βn+1 − βn).

Now it is easy to check that the function F of form (1) belongs to the class S(α, β, τ).
Indeed, from the condition of the choice min{κn, τ(κn)} → +∞ (n → +∞), therefore

lim
n→+∞

ln bn − ln bn+1

λn+1 − λn + βn+1 − βn

= +∞,
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hence by Stolz-Cesáro theorem

∆n := − ln bn
λn + βn

→ +∞ (n → +∞).

From condition (2), using the Cauchy–Bunyakovsky–Schwarz’s inequality, we obtain

m2 =

(
m−1∑
n=0

1√
λn+1 − λn

√
λn+1 − λn

)2

≤

≤
m−1∑
n=0

1

λn+1 − λn

·
m−1∑
n=0

(λn+1 − λn) ≤ Kλm (m ≥ 1), K < +∞.

In particular, (λn + βn) ≥ λn ≥ n for all sufficiently large n ≥ n0. So, for any x > 0 we get

bn + exp{xλn + τ(x)βn} ≤ bn + exp{(λn + βn) ·max{x, τ(x)}} =

= exp{−(∆n −max{x, τ(x)})(λn + βn)} ≤ e−n

as n → +∞. Hence, the function F of form (1) belongs to the class, i.e. F ∈ S(λ, β, τ).
Next, it is easy to prove that for any x ∈ [κn,κn+1) = In the central index ν(x, F ) = n.

Therefore, for every x ∈ In = [κn+1 − c
λn+1−λn

,κn+1) we obtain

F (x)

µ(x, F )
− 1 ≥ bn+1

bn
ex(λn+1−λn)+τ(x)(βn+1−βn) =

= exp
(
(x− κn+1)(λn+1 − λn)− (τ(κn+1)− τ(x))(βn+1 − βn)

)
≥

≥ exp
(
− c− c

λn+1 − λn

τ ′(θn)(βn+1 − βn)
)
= exp (−2c) > 0

because θn ∈ (κn+1 − c
λn+1−λn

,κn+1) and τ ′(θn) = τ ′(κn+1) =
λn+1−λn

βn+1−βn
.

Now we consider h-meas of the set E =
⋃+∞

n=1 In. Since h′(κn) ≥ cn (n ≥ 0), by conditi-
on (4) we have

h-meas E =

∫
E

dh(x) =
+∞∑
n=1

∫
In

dh(x) =
+∞∑
n=1

(
h(κn+1)− h

(
κn+1 −

c

λn+1 − λn

))
≥

≥
+∞∑
n=1

c

λn+1 − λn

h′(κn) ≥ c ·
+∞∑
n=1

cn
λn+1 − λn

= +∞.

Remark 1. The assertion of Theorem 2 for the class S(λ) := S(λ, 0, 0), that is, for the
entire Dirichlet series, it was proved earlier in paper [3].

2. Open problems and conjectures.

Given Theorem 2, the following questions arise.

Question 1. Is the statement of conjecture 1 correct in its entirety?
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Question 2 ([2]). Let h : R+ → R+ be a non-decreasing function such that h(x)
x

→ +∞
(x → +∞). What are necessary and sufficient conditions that relationship (3) holds for
x → +∞ (x /∈ E, h-meas E < +∞) for every function F ∈ S(α, β, τ)?

In papers [5, 6] we find the following theorem.

Theorem 3 ([5, 6]). Let h be a differentiable function with h′(x) ↑ +∞ (x → +∞) and
φ be the inverse function to the continuous positive function Φ which increases to +∞ on
[0,+∞). If

(∀b > 0) :
+∞∑
k=0

1

λk+1 − λk

h′
(
φ(λk) +

b

λk+1 − λk

)
< +∞, (5)

then for all F ∈ S(Λ) such that lnµ(x, F ) ≥ xΦ(x) asymptotic relation (3) holds as x → +∞
outside some set E of finite h-measure.

Conjecture 2. A statement similar to Theorem 3 is also true in the class S(λ, β, τ).
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