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In this paper, we establish some mathematical rules for determining the initial and terminal
numbers of non-zero terms in any arbitrary polynomial. These rules lead to the definitions of
index s and reverse index ŝ of a polynomial. Further, building on these concepts, we introduce
the order of a polynomial P (z) as (s, ŝ). If P∗(z) is another polynomial of order (ŝ, s), then
the pair P (z) and P∗(z) are referred to as symmetric polynomials. The concept of symmetric
polynomials is central in this work, as we investigate the effects of weighted sharing in the wider
sense (see Adv. Stud: Euro-Tbilisi Math. J., 16(4)(2023), 175-189) on the zeros of symmetric
polynomials along with the sharing of poles. Our study focuses on symmetric polynomials of
degree 3, analyzing their intrinsic properties. Sharing of zeros of polynomials of lower degree
are critical in nature and at the same time it exhibits sophisticated structural characteristics,
making them an ideal subject for such analysis. Our exploration of the sharing of zeros of
symmetric polynomials establishes connections between two non-constant meromorphic func-
tions. The article includes examples of both a general nature and specific, partial cases that
serve to illustrate and validate our theoretical results.

1. Introduction and definitions. Let f and g be the meromorphic functions in C, S be
a set of distinct elements of C = C ∪ {∞} and N0 = N ∪ {0}. We begin by recalling the
following definitions.

For a non-constant meromorphic function f and a ∈ C, we denote
Ef (a) = {(z, p) ∈ C× N : f(z) = a,with multiplicity p},

Ef (a) = {(z, 1) ∈ C× N : f(z) = a}.
Then we say that f and g share CM (IM) a value a, if Ef (a) = Eg(a) (Ef (a) = Eg(a)). For
a = ∞, we define Ef (∞) = E 1

f
(0) (Ef (∞) = E 1

f
(0)).

Let us denote Ef (S) =
⋃

a∈S Ef (a), Ef (a) =
⋃

a∈S Ef (a) for a non-constant meromorphic
function f and a set S⊂C. Then we say that f and g share CM (IM) a set S, if Ef (S) = Eg(S)
(Ef (S) = Eg(S)).

If the readers need further information or a detailed explanation about the standard
notations of set sharing, we suggest consulting the original sources cited in the text [1]. There
is provided pertinent information for further insight in the second paragraph, which includes
the definition of value sharing as well. The conventional notations of value distribution theory
are outlined in [2, 3].

Now, we are going to demonstrate some relevant definitions, which are closely related to
the subject of this article. First, we slightly modify the definition of [4] as follows, as this
will be necessary in the following steps.
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Definition 1 (Initial term non-gap and gap polynomials). A polynomial P (z) =
∑n

k=0 akz
k

of degree n is called an initial term non-gap polynomial or polynomial without gap concerning
initial term (ITNGP), if for some 1 ≤ i < n one has an−1 ̸= 0, an−2 ̸= 0, . . . , an−i+1 ̸= 0,
an−i ̸= 0. Otherwise, P (z) is called an initial term gap polynomial (ITGP).

A polynomial P (z) is said to be a non-degenerate polynomial, if 0 ̸∈ {z : P (z) = 0},
otherwise it is called degenerate polynomial.

We are now introducing analogs of Definition 1, vis-a-vis terminal term non gap and gap
polynomials.

Definition 2 (Terminal term non-gap and gap polynomials). A non-degenerate polynomial
P (z) =

∑n
k=0 akz

k is called a terminal term non-gap polynomial or polynomial without gap
concerning terminal term (TTNGP) if for some t ∈ {1, 2, . . . n− 1} one has at ̸= 0, at−1 ̸= 0,
at−2 ̸= 0, . . . , a1 ̸= 0. Otherwise, the polynomial is said to be a terminal term gap polynomial
(TTGP).

Next, in view of Definitions 1 and 2, we want to propose the definitions of index and
reserve index of a polynomial in the following manner.

Definition 3 (Index of a polynomial). Let P [s](z) =
∑n

k=0 akz
k be a polynomial.

A. If P [s](z) is an ITNGP. The integer s is called the index of P [s](z) (and P [s](z) is said to
be initial term non-gap polynomials of index s or ITNGPs in short) if one of the followings
is satisfied:
i) for some greatest 1 ≤ s ≤ n, one has an−s+1 ̸= 0 but a0 = 0;
ii) for all i = 0, 1, 2, . . . , n one has ai ̸= 0, then we put the index s = n+ 1.
B. If P [s](z) is an ITGP, then it is of index 1.

Note 1. Any polynomial of degree n is of index s ≥ 1.

Definition 4 (Reverse index of a polynomial). Suppose P[ŝ](z) =
∑n

k=0 bkz
k, b0 ̸= 0.

A. Let P[ŝ](z) be a TTNGP. The integer ŝ is called the reverse index of the polynomial P[ŝ](z)
(and P[ŝ](z) is said to be terminal term non-gap polynomials of reverse index ŝ or TTNGPŝ

in short) if one of the followings is satisfied:
i) for some greatest 1 < ŝ < n, one has bŝ−1 ̸= 0
ii) for all i = 0, 1, 2, . . . , n− 1 one has bi ̸= 0, then we put the reverse index ŝ = n+ 1.
B. If P[ŝ](z) is a TTGP, then reverse index is 1.

Note 2. For a polynomial of degree n, n cannot be reverse index of the polynomial.

Definition 5 (Order of a polynomial). For a polynomial P (z) with index s and reverse
index ŝ, we will call it polynomial of order (s, ŝ).

Definition 6 (Symmetric polynomials). Consider a polynomial P (z) with order (s, ŝ). If
P∗(z) be another polynomial with order (ŝ, s), then P (z) and P∗(z) are called symmetric
polynomials. For example, P (z) = z3 + z + 1 and P∗(z) = z3 + z2 + 1. P (z) is a polynomial
of order (1, 2) and P∗(z) is a polynomial of order (2, 1). Hence, the pair P (z) and P∗(z) are
symmetric polynomials.

Note 3. In view of the definitions of index and reverse index of a polynomial we can see
that the polynomial defined in Theorem A is of index 1 and reverse index 3, whereas the
same in Theorems B, C are of index 2 and reverse index 1.
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In 2001, the concept of weighted sharing of sets was introduced, which contributed to the
uniqueness theory in complex analysis. The specific details and implications of this notion
can be found in the paper by Lahiri [5]. We have recently refined the definition of weighted
sharing of sets and termed it as ‘weighted sharing of sets in a wider sense’ for meromorphic
functions.

Definition 7 ([6]). Let f and g be two non-constant meromorphic functions and P (z) and
Q(z) be two polynomials of degree n without any multiple zero. Let

SP = {z : P (z) = 0} and SQ = {z : Q(z) = 0}.

We say that f and g share the sets SP and SQ with weight l in the wider sense if Ef (SP , l) =
Eg(SQ, l) and we denote it by f , g share (SP , SQ; l). We note that, if P = Q, then we get
the traditional definition of weighted sharing of sets.

2. Background, motivations and main results. There are a lot of papers in versatile
directions in connection to the different category of set sharing problems as well as characteri-
zation of the functions (e.g. [7–10]). However, in this paper we are taken into account the
investigations of three set sharing problem only.

In connection to the famous question of Gross ([11]), in 1994, regarding sharing of three
sets and uniqueness of meromorphic function the following question was asked by Yi ([12]):

Question A([12]). Can one find three finite sets Sj (j ∈ {1, 2, 3}) such that any two non
constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for j ∈ {1, 2, 3} must
be identical?

Many research articles were published to find the possible answers of the above question.
In 2018, Banerjee-Mallick ([13]) employed three weighted set sharing to obtain a uni-

queness result, where all the range sets were exclusively chosen from C. The result was the
first in the three set sharing genre exclusively on C.

Theorem A ([13]). Let S1 = {w : P (z) = 0}, S2 = {d}, and S3 = {0}, where

P (z) = azn − n(n− 1)z2 + 2n(n− 2)dz − (n− 1)(n− 2)d2,

with ad(n−2) ̸∈ {0, 1, 2} and n ≥ 5. Suppose that f and g are two non-constant meromorphic
functions satisfying Ef (S1, l) = Eg(S1, l), Ef (S2, k) = Eg(S2, k) and Ef (S3,m) = Eg(S3,m)
then f ≡ g for (l, k,m) = (3, 0, 2), (2, 1, 3).

When n < 5, then the situation is not so easy to tackle. In fact, in this paper we will
solely confine our attention on the case n = 3, due to the scarcity of the results for the same
case. Foremost, consider the following polynomial of order (2, 1) : P 1(z) = a3z

3 + a2z
2 + a0,

where a3 ·a2 ̸= 0. The next example shows that two meromorphic functions sharing the zeros
of P 1(z) can have the same zero and pole set still, they may not be identical. So, additional
assumptions are required for uniqueness.

Example 1. Let f ≡ ezg, where g(z) ≡ −a2
a3
( ez+1
e2z+ez+1

), and S1 = {z : P 1(z) = 0}. Note that
as f 2(f + a2

a3
) ≡ g2(g+ a2

a3
), we have Ef (S

1,∞) = Eg(S
1,∞). Also Ef ({0},∞) = Eg({0},∞),

Ef ({∞},∞) = Eg({∞},∞). Here both f and g have simple poles, but f ̸≡ g.
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For three degree polynomial the investigations were started long before the appearance of
Theorem A. In 2002, Qiu-Fang ([14]) answered the Question A and determined the additional
conditions in the following manner.

Theorem B ([14]). Let n ≥ 3 be a positive integer, Sn
1 = {z : zn − zn−1 − 1 = 0}, f and g

be two non-constant meromorphic functions with multiple poles. If Ef (S
n
1 ,∞) = Eg(S

∗,∞),
Ef ({0},∞) = Eg({0},∞) and Ef ({∞},∞) = Eg({∞},∞), then f ≡ g.

In 2010, the second author ([15]) further improved Theorem B in the following direction
for 3 degree polynomial and sharing a double tone set.

Theorem C ([15]). Let S3
1 = {z : z3−z2−1 = 0}. If Ef (S

3
1 , 3) = Eg(S

3
1 , 3), Ef (

{
0, 2

3

}
, 0) =

Eg

({
0, 2

3

}
, 0
)

and Ef ({∞}, 1) = Eg({∞}, 1), then f ≡ g.

Note that, in Theorems A–C, presence of 0 is essential, either individually or as an element
of a set. So, the following question is inevitable:

Question 1. Can the similar results of Theorems B and C be obtained for 3 sets without
the element 0?

In Theorems B–C, the polynomials are of order (2, 1). So, it will be natural to investigate
its counterpart in terms of symmetric polynomials, that is to say, to find the similar results
to Theorems B–C, in terms of the following polynomial of order (1, 2):

P1
∗(z) = a3z

3 + a1z + a0.

However, the following example shows that, the same thing happens here like Example
1, i.e., there exist two meromorphic functions sharing the zeros of the polynomial P∗

1(z)
together with same 0 and pole sets, still the do not become identical.

Example 2. Take two functions f(z) ≡
√
a1 (− sin z+i

√
3)√

3a3 cos z
and g(z) ≡ 2

√
a1 sin z√

3a3 cos z
and the set

S1
∗ = {z : P 1

∗ (z) = 0}. We have Ef (S
1
∗ ,∞) = Eg(S

1
∗ ,∞) and Ef ({∞},∞) = Eg({∞},∞).

Here both f and g have simple poles, but f ̸≡ g.

To resolve all the problems discussed earlier in a compact and convenient way is the
main motivation of writing this paper. In fact, with respect to Definition 6 and 7, we will
investigate the situation under the purview of symmetric polynomials in a more generalized
frame.

First, let us take two complex numbers χ2 and χ1 such that χ2χ1 = 0 and χ2 + χ1 ̸= 0.
We now define the following polynomials

P (z) =
z3

3
+
χ2z

2

2
+ χ1z − c, P̂ (z) = k

(
z3

3
+
χ2z

2

2
+ χ1z

)
− ĉ, (1)

where k, c and ĉ be non-zero constants such that both P (z) and P̂ (z) do not have any
multiple zero.

With respect to the above defined polynomials (1), we now present the main results of
this paper.
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Theorem 1. Let S = {z : P (z) = 0} and Ŝ = {z : P̂ (z) = 0}, where P (z) and P̂ (z) are given
by (1). Suppose f and g are two non-constant meromorphic functions possessing multiple
poles. Further,
i) if χ1 = 0, (ĉ+ ck) ̸= kχ3

2

6
; f , g share (S, Ŝ; 3), ({0,−χ2}, 0) and ({∞}, 1), then f ≡ g;

ii) if χ2 = 0, (ĉ+ck) ̸= 0; f , g share (S, Ŝ; 2), ({i√χ1 ,−i
√
χ1}, 0) and ({∞},∞), then f ≡ g.

Note 4. For χ2 = 0, χ1 = 1 and c = 1
6
, the set S defined in Theorem 1 becomes:

S = {z : P (z) = 0} =
{1
2

(
−1 + t2

− 1
3 + t2

1
3

)
,−1

2
− (1 + i

√
3)

4t2
1
3

− 1

4
(1− i

√
3)t2

1
3 ,

−1

2
− (1− i

√
3)

4t2
1
3

− 1

4
(1 + i

√
3)t2

1
3

}
,

where t2 = (1 + 2
√
6)

1
3 . Similarly, choosing χ2 = 0, χ1 = 1 and k = 1, ĉ = 1

3
and replacing

t2 by t̂2 = (3 + 2
√
2)

1
3 , we get Ŝ = {z : P̂ (z) = 0}. Now, from Theorem 1 (i) and in view of

the sets S and Ŝ, we know that there are no two distinct meromorphic functions f, g such
that Ef (S,m) = Eg(Ŝ,m) along with Ef ({i,−i}, k1) = Eg({i,−i}, k1) and Ef ({∞},∞) =
Eg({∞},∞) hold.

Note 5. For χ2 = 1, χ1 = 0 and c = 1
3
, the set S defined in Theorem 1 becomes:

S =
{( 2

t1

) 1
3

+

(
t1
2

) 1
3

,
(1 + i

√
3)

(4t1)
1
3

− (1− i
√
3)t1

1
3

2.2
1
3

,
(1− i

√
3)

(4t1)
1
3

− (1 + i
√
3)t1

1
3

2.2
1
3

}
,

where t1 = 1+
√
37

3
. Similarly, choosing χ2 = 1, k = 1, ĉ = 2

3
and replacing t1 by t̂1 = 2(1+

√
10)

3
,

we get Ŝ = {z : P̂ (z) = 0}. Now, from Theorem 1 (ii) and in view of the sets S and Ŝ, we know
that there are no two distinct meromorphic functions f, g such that Ef (S,m) = Eg(Ŝ,m)
along with Ef ({0,−1}, k1) = Eg({0,−1}, k1) and Ef ({∞},∞) = Eg({∞},∞) hold.

Corollary 1. Under the same situation of Theorem 1 (ii), if f and g are two entire functions
such that, they share (S, Ŝ; 2), ({i√χ1 ,−i

√
χ1}, 0), then f ≡ g.

For the standard definitions and notations of the value distribution theory we refer to [3]
and for the definitions of N(r, a; f : ≥ s), N(r, a; f : = s) for s ≥ 1, NL(r, 1; f), NL(r, 1; g)
and N∗(r, a; f, g) we refer to [16–19].

3. Lemmas. In this section we present some lemmas, which will be needed in the sequel.
Henceforth, unless and otherwise stated, let us assume f and g be two non constant meromor-
phic functions. Let F and G be two non constant meromorphic functions defined in C as
follows:

F ≡ 1

c

(f 3

3
+
χ2f

2

2
+ χ1f

)
and G ≡ k

ĉ

(g3
3

+
χ2g

2

2
+ χ1g

)
. (2)

Henceforth we shall denote by H and Φ the following functions

H =
( F

′′

F ′ − 2F
′

F − 1

)
−
( G

′′

G′ − 2G
′

G− 1

)
, (3)

Φ =
F

′

F − 1
− G

′

G− 1
. (4)
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Lemma 1 ([19]). If F , G are two non constant meromorphic functions such that they share
(1, 1) and H ̸≡ 0 then

N(r, 1;F : = 1) = N(r, 1;G : = 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2 ([15]). If the meromorphic functions f and g share (1,m), where 1 ≤ m < ∞,
then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f : = 1) +
(
m− 1

2

)
N∗(r, 1; f, g) ≤

1

2
[N(r, 1; f) +N(r, 1; g)].

Lemma 3 ([2], Theorem 6.2). Let f be meromorphic function, P (f) =
∑n

k=0 akf
k, where

ak’s are constant and an ̸= 0. Then T (r, P (f)) = nT (r, f) +O(1) (r → +∞).

Lemma 4. Let S, Ŝ be defined as in Theorem 1, with χ2 = 0; F , G be defined as in
(2). If Ef (S, 0) = Eg(Ŝ, 0), Ef ({i

√
χ1 ,−i

√
χ1}, p) = Eg({i

√
χ1 ,−i

√
χ1}, p), Ef ({∞}, 0) =

Eg({∞}, 0), where 0 ≤ p <∞ and H ̸≡ 0 then

N(r,∞;H) ≤ N(r, i
√
χ1 ; f : ≥ p+ 1) +N(r,−i√χ1 ; f : ≥ p+ 1) +N∗(r, 1;F,G)

+N∗(r,∞; f, g) +N0(r, 0; f
′) +N0(r, 0; g

′),

where N0(r, 0; f
′) is the reduced counting function of those zeros of f ′, which are not zeros

of (f 2 + χ1)(F − 1) and N0(r, 0; g
′) is similarly defined. Similar result is valid for χ1 = 0.

Proof. From the definition of H and (2), by a simple calculation we can write

H ≡

[
f ′

f − i
√
χ1

− g′

g − i
√
χ1

]
+

[
f ′

f + i
√
χ1

− g′

g + i
√
χ1

]
+

[
f

′′

f ′ −
g

′′

g′

]
−

−2

[
(f 2 + χ1)f

′

f3

3
+ χ1f − c

− (g2 + χ1)g
′

g3

3
+ χ1g − ĉ

]
.

Since, Ef (S, 0) = Eg(Ŝ, 0), it follows that F and G share (1, 0). We can easily verify that
possible poles of H occur at (i) those i√χ1 of f , whose multiplicities are greater than p, (ii)
those −i√χ1 of f whose multiplicities are greater than p, (iii) those 1-points of F and G
with different multiplicities, (iv) those poles of f and g whose multiplicities are distinct, (v)
zeros of f ′ which are not the zeros of (f 2 + χ1)(F − 1), (v) zeros of g′ which are not zeros of
(g2 + χ1)(G− 1). Since H has only simple poles, the lemma follows from above.

Lemma 5 ( [1]). Let S, Ŝ be defined as in Theorem 1 and F , G be given by (2). Let
Ef (S,m) = Eg(Ŝ,m), where 0 ≤ m <∞ Then

(i) NL(r, 1;F ) ≤
1

m+ 1

(
N(r, 0; f) +N(r,∞; f)−N⊗(r, 0; f

′
)
)
+ S(r, f),

(ii) NL(r, 1;G) ≤
1

m+ 1

(
N(r, 0; g) +N(r,∞; g)−N⊗(r, 0; g

′
)
)
+ S(r, g),

where N⊗(r, 0; f
′
) = N(r, 0; f ′ : f ̸= 0, w1, w2, w3) and w1, w2, w3 are the roots of the equation

P (z) = 0, N⊗(r, 0; g
′) is defined similarly to N⊗(r, 0; f

′).
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Lemma 6. Let F and G be given by (2) such that Ef (S,m) = Eg(Ŝ,m), Ef ({∞}, k) =
Eg({∞}, k), 0 ≤ k <∞ and Φ ̸≡ 0.
(i) If χ2 = 0, 0 ≤ p <∞ and Ef ({i

√
χ1 ,−i

√
χ1}, p) = Eg({i

√
χ1 ,−i

√
χ1}, p) then,

(2p+ 1)
{
N(r, i

√
χ1 ; f : ≥ p+ 1) +N(r,−i√χ1 ; f : ≥ p+ 1)

}
≤

≤ N∗(r, 1;F,G) +N∗(r,∞; f, g) + S(r, f) + S(r, g).

(ii) Similarly, if χ1 = 0, 0 ≤ p1 <∞ and Ef ({0,−χ2}, p1) = Eg({0,−χ2}, p1) then,

(2p+ 1)
{
N(r, 0; f : ≥ p1 + 1) +N(r,−χ2 ; f : ≥ p1 + 1)

}
≤

≤ N∗(r, 1;F,G) +N∗(r,∞; f, g) + S(r, f) + S(r, g).

Proof. Proof of the theorem is similar to the proof of lemma from [15].

Lemma 7. Under the same supposition of Theorem 1 (ii), let

P (f) ≡ c

ĉ
P̂ (g),

i.e., (
f 3

3
+ χ1f

)
≡ kc

ĉ

(
g3

3
+ χ1g

)
,

then we have f ≡ g.

Proof. Given (
f 3

3
+ χ1f

)
≡ kc

ĉ

(
g3

3
+ χ1g

)
,

which implies that

1

3

(
f 3 − kc

ĉ

)
+ χ1

(
f − kc

ĉ
g

)
≡ 0.

We have to prove that, f ≡ g. If possible, let f ̸≡ g. Taking f ≡ gh, by a simple calculation
we have

g2

3

(
h3 − kc

ĉ

)
+ χ1

(
h− kc

ĉ

)
≡ 0. (5)

Now, we wish to show that kc
ĉ
= 1 i.e., P (z) and P̂ (z) become linearly dependent. Hence,

S = Ŝ and then we have only one polynomial P (z), whose zeros are shared with respect to
the traditional weighted sharing of sets. Suppose on the contrary, kc

ĉ
̸= 1.

Case 1. Assume that h is constant.
Subcase 1.1. If h = kc

ĉ
, then from (5) we have,

g2kc

3ĉ

[(
kc

ĉ

)2

− 1

]
≡ 0,

which implies that kc
ĉ
= −1, a contradiction, by the hypothesis of the theorem.

Subcase 1.2. Let h ̸= kc
ĉ
, then (5) gives g2 ≡ −3χ1(h−

kc
ĉ )

(h3− kc
ĉ )

, which is not possible as g is non
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constant.
Case 2. Suppose, h is non constant.

First, take g as an entire function. Then all three distinct zeros of the polynomial
(
z3 − kc

ĉ

)
are Picard’s exceptional values of h, which is not possible.

Next, if g is non constant meromorphic function, then as g has multiple poles, a simple
calculation yields that each zero of the polynomial

(
z3 − kc

ĉ

)
say βi, i ∈ {1, 2, 3} are of

multiplicities at least 4. By the Second Fundamental Theorem we have

2T (r, h) ≤
3∑

i=1

N(r, βi;h) +N(r,∞;h) + S(r, h) ≤ 7

4
T (r, h) + S(r, h),

which is a contradiction.
Hence kc

ĉ
= 1. We assume that h is non constant. Therefore, (5) transforms into

g2

3

(
h3 − 1

)
+ χ1 (h− 1) ≡ 0, (6)

i.e, g2 ≡ − 3χ1

(h2+h+1)
. Now g2 + χ1 =

χ1 (h−1)(h+2)

h2+h+1
.

As, f and g share (
{
i
√
χ1 ,−i

√
χ1

}
, 0), the possible values of h are ±1. Hence, by the

above equation, it is evident that

N(r, i
√
χ1 ; g) +N(r,−i√χ1 ; g) = N(r, 1;h).

It follows that −2 is Picard’s exceptional value of h. Let the zeros of the polynomial z2+z+1
be γi, i ∈ {1, 2}. By the Second Fundamental Theorem we get,

2T (r, h) ≤ N(r, γ1;h) +N(r, γ2;h) +N(r,−2;h) +N(r,∞;h) + S(r, h)≤ 3

2
T (r, h)+S(r, h),

a contradiction. Hence, h is constant and (6) gives h3 = h = 1, which implies h = 1, i.e.
f ≡ g.

Lemma 8. Under the same assumptions of Theorem 1 (i) let(
f 3

3
+
χ2f

2

2

)
≡ kc

ĉ

(
g3

3
+
χ2g

2

2

)
,

then we obtain f ≡ g.

Proof. Proceeding in the similar manner as done in the case of Lemma 7, we can obtain an
analogous equation of (6),

g

3

(
h3 − 1

)
+
χ2

2
(h− 1) ≡ 0.

Clearly, f and g share ({0},∞). Next observe that,

f + χ2 ≡
χ2

2

(h− 1)(h+ 2)

h2 + h+ 1
and g + χ2 ≡ −χ2

2

(h− 1)(2h+ 1)

h2 + h+ 1
.

From the above two expressions, we see −2 and −1
2

are Picard’s exceptional values of h.
Hence, h omits four values 0, ∞, −2 and −1

2
. It is a contradiction to Nevanlinna four value

theorem. Therefore, f ≡ g.
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Lemma 9 ([4]). Let ϕ(z) = a2(zn−m − A)2 − 4b(zn−2m − A)(zn − A), where A, a, b ∈ C∗,
a2

4b
= n(n−2m)

(n−m)2
, gcd(m,n)= 1, n > 2m. If ωl is the mth root of unity for l = 0, 1, . . . ,m − 1,

then
(i) ϕ(z) has no multiple zero, when A ̸= ωl.
(ii) ϕ(z) has exactly one multiple zero, when A = ωl and that is of multiplicity 4. In parti-
cular, when A = 1, then the multiple zeros is 1.

4. Proof of the theorem.

Proof of Theorem 1. (ii) χ2 = 0.
Let F and G be given by (2). Since f , g share (S, Ŝ; 2), from (2) it follows that F and G

share (1, 2).
Suppose H ̸≡ 0. First we wish to prove Φ ̸≡ 0. On the contrary, let Φ ≡ 0. By (4), we

have for a non-zero constant c′ that

F − 1 = c′(G− 1). (7)

Next, using (7) and the definition of H we get, H ≡ 0, a contradiction. Hence Φ ̸≡ 0.
Using Lemma 2 for m = 2, Lemma 1, Lemma 3, Lemma 4, Lemma 6 (i) for p = 0,

Lemma 5 for m = 2 and the Second Fundamental Theorem we get

4(T (r, f) + T (r, g)) ≤
≤ N(r, i

√
χ1 ; f) +N(r,−i√χ1 ; f) +N(r, 1;F ) +N(r,∞; f) +N(r, i

√
χ1 ; g)+

+N(r,−i√χ1 ; g) +N(r, 1;G) +N(r,∞; g)−N0(r, 0; f
′)−N0(r, 0; g

′) + S(r, f) + S(r, g) ≤
≤ 3(N(r, i

√
χ1 ; f) +N(r,−i√χ1 ; f)) + 2(T (r, f) + T (r, g))−

−1

2
N∗(r, 1;F,G) + S(r, f) + S(r, g) ≤

≤
(
2 +

5

6
+

5

12

)
(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which is a contradiction.
Hence, H ≡ 0. Then for two constants A( ̸= 0), B we get

1

F − 1
≡ A

G− 1
+B (8)

and

T (r, f) = T (r, g) + S(r, g). (9)

I. Claim B = 0.
Suppose B ̸= 0.
Case 1. ∞ is Picard’s exceptional value of both f and g. By (8) we can have

F − 1 ≡ G− 1

B
(
(G− 1) + A

B

) . (10)

Subcase 1.1. Consider A ̸= B. Take the polynomial

ϕ(z) = k

(
g3

3
+ χ1g

)
− ĉ

(
1− A

B

)
.



MEROMORPHIC FUNCTIONS SHARING THE ZEROS SYMMETRIC POLYNOMIALS 57

First note that, if i√χ1 is a zero of the polynomial ϕ(z), then it will of multiplicity 2 and
the other simple zero is α. Here,

N(r, i
√
χ1 ; g) +N(r, α; g) = N(r,∞; f).

As, pole is Picard’s exceptional value of both f and g, i√χ1 and α are also Picard’s excepti-
onal values of g, which is not possible.

By the similar argument, we can say that −i√χ1 is not a zero of the polynomial ϕ(z).
Hence, all the zeros of ϕ(z) are simple and they are Picard’s exceptional values of g,
a contradiction.
Subcase 1.2. Take A = B. Therefore, (10) changes into

F − 1 ≡ G− 1

AG
.

Note that factors ofG are g and (g2+3χ1). Clearly, 0, i
√
3χ1 , −i

√
3χ1 are Picard’s exceptional

values of g, which is not possible.
Case 2. Suppose ∞ is not Picard’s exceptional value of both f and g, i.e., there exists a
complex number z0 such that f(z0) = g(z0) = ∞, which contradicts (8).

Hence, our statement is proved. Therefore, (8) reduces to

G− 1 ≡ A(F − 1). (11)

II. Claim A = 1.
Suppose A ̸= 1 and Q(z) = z3

3
+ χ1z. From (11), by a simple calculation we can obtain

Q(g) ≡ Aĉ

kc

{
Q(f)− c

(
1− 1

A

)}
. (12)

Suppose that, the polynomial ψ(z) is defined as

ψ(z) = Q(z)− c
(
1− 1

A

)
.

First suppose i√χ1 is a zero of ψ(z), then clearly it is of multiplicity 2 and other zero
is simple, namely, β. As f , g share (

{
i
√
χ1 ,−i

√
χ1

}
, 0), it follows that i√χ1 is Picard’s

exceptional value of f . By the Second Fundamental Theorem and (12), we have

2T (r, g) ≤ N(r, 0; g) +N(r, i
√
3χ1 , g) +N(r,−i

√
3χ1 ; g) +N(r,∞; g) + S(r, g) ≤

≤ N(r, β; f) +N(r,∞; g) + S(r, g) ≤ 3

2
T (r, g) + S(r, g),

which is a contradiction. Similar contradiction arises, if −i√χ1 is a zero of the polynomial
ψ(z). Hence, all the zeros of ψ(z) are simple. As f , g share (

{
i
√
χ1 ,−i

√
χ1

}
, 0), we have

four possibilities as follows:
(i) there exists some complex number z1 such that f(z1) = g(z1) = i

√
χ1 ,

(ii) for some complex number z2, f(z2) = i
√
χ1 , g(z2) = −i√χ1 ,

(iii) a complex number z3 exists such that f(z3) = −i√χ1 , g(z3) = i
√
χ1 ,

(iv) there exists a complex number z4 such that f(z4) = g(z4) = −i√χ1 . Taken into account
all the combinations from (12), a simple calculation yields,

A =
c(2kiχ1

√
χ1 − 3ĉ)

ĉ(2iχ1

√
χ1 − 3c)

=
−c(2kiχ1

√
χ1 + 3ĉ)

ĉ(2iχ1

√
χ1 − 3c)

=
−c(2kiχ1

√
χ1 − 3ĉ)

ĉ(2iχ1

√
χ1 + 3c)

=
c(2kiχ1

√
χ1 + 3ĉ)

ĉ(2iχ1

√
χ1 + 3c)

.
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Taking two combinations at a time from all possible combinations of the above equations we
have either χ1 = 0 or c = 0 or ĉ = 0 or ĉ

c
= ±k. According to the hypothesis of the theorem,

the only viable option is ĉ = ck and it is tackled by Lemma 7. So, our claim is proved and
we have F ≡ G. Then in view of Lemma 7 one has f ≡ g.
(i) χ1 = 0
Following the similar arguments and Lemma 6 (ii) that was used in the proof of Theorem 1
to tackle the situation of H ̸≡ 0, we can get H ≡ 0. Next by a simple calculation as done in
the case of χ2 = 0, we can again proceed to show that A = 1. As usual under the suggestion
A ̸= 1 we can obtain a similar equation of (12) as follows

g3

3
+
χ2g

2

2
≡ Aĉ

kc

{f 3

3
+
χ2f

2

2
− c
(
1− 1

A

)}
. (13)

Suppose

ψ1(z) =
z3

3
+
χ2z

2

2
− c
(
1− 1

A

)
.

Claim. All the factors of ψ1(f) are simple.
From the construction of ψ1(z) it is evident that 0 can not be a multiple zero of ψ1(z).
Suppose that −χ2 is a multiple zero of ψ1(z). Therefore, we have

c
(
1− 1

A

)
=
χ3

2

6
. (14)

From (13), a simple calculation yields

g3

3
+
χ2g

2

2
≡ Aĉ

6kc

{
(f + χ2)

2(2f − χ2)
}
. (15)

By the supposition of the theorem, from (15), we get Ef ({−χ2}) = Eg({0}). Hence, there
exist a complex number z0 such that f(z0) = 0 and g(z0) = −χ2 . Using it from (15) we have
A = −kc

ĉ
. Putting the expression of A in (14) we obtain kc+ ĉ = kχ3

2

6
, which is a contradiction

to the hypothesis of Theorem 1 (i) it follows that, 0 and −χ2 are Picard’s exceptional values
of f and g respectively. Therefore, Ef

(
{χ2

2
}
)
= Eg

(
{−3χ2

2
}
)
.

Case 1. Let χ2

2
and −3χ2

2
are not Picard’s exceptional values of f and g respectively.

We note that there exists an entire function σ1(z) such that,

g

f + χ2

= eσ1(z). (16)

As f ̸≡ 0 and g ̸≡ −χ2 , from (16) we get that, eσ1(z) ̸= −1, ∀z. We know there exists
a complex number z0 with, f(z0) =

χ2

2
and g(z0) = −3χ2

2
. From (16) we have,

eσ1(z0) =
g(z0)

f(z0) + χ2

= −1,

a contradiction.
Case 2. Let χ2

2
is Picard’s exceptional value of f and −3χ2

2
is Picard’s exceptional value

of g. Calculating by the similar manner of Case 1, we will get a contradiction.
Hence our claim is established and all the factors of ψ1(f) are simple say (f − αi),

i ∈ {1, 2, 3}. By the Second Fundamental Theorem we have

2T (r, f) ≤
3∑

i=1

N(r, αi; f) +N(r,∞; f) + S(r, f) ≤
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≤ N
(
r,−3χ2

2
; g
)
+N(r,∞; f) + S(r, f) ≤ 3

2
T (r, f) + S(r, f),

which is a contradiction. Hence, A = 1 and F ≡ G. Next by Lemma 8, we get f ≡ g.

5. Application. Let us recall the definition of strong uniqueness polynomials for meromor-
phic (entire) functions (SUPM (SUPE) in short), which was first introduced in [20].

Definition 8 ([20]). Let P be a polynomial in C and c be any arbitrary non zero constant.
Suppose for two non constant meromorphic (entire) functions f and g, P (f) ≡ cP (g) implies
f ≡ g, then P is called SUPM (SUPE).

The first SUPM was exhibited by Yi. In 1996, Yi ([21, p. 78, (24)]), proved that for m ≥ 2
and n > 2m+ 8, the polynomial zn + azn−m + b is a SUPM.

Recently, in [6], we have extended and generalized the definition of SUPM, namely
SUPMWS as follows:

Definition 9 ([6]). Let P (z) and Q(z) be two polynomials in C and c be any arbitrary
non zero constant. Suppose for two non constant meromorphic (entire) functions f and g,
P (f) ≡ cQ(g) implies f ≡ g, then the pair P (z) and Q(z) is called strong uniqueness
polynomial for meromorphic (entire) functions in the wider sense, SUPMWS (SUPEWS) in
brief.

First we will show that SUPMWS exists.

5.1. Existence of SUPMWS. Let us consider two polynomials

P1(z) = Q1(z)− c1 =
z8

8
− 2az7

7
+
a2z6

6
− c1, P̂1(z) = k1Q1(z)− ĉ1,

where k1, c1, ĉ1 are non zero complex numbers such that P1(z) and P̂1(z) do not have multiple
zeros. The zeros of Q1(z) are 0 and θ1, θ2 say. We wish to show that, P1(z) and P̂1(z) are
SUPMWS. Suppose A is a non-zero complex number such that P1(f) ≡ AP̂1(g), i.e.,

Q1(f) ≡ A
(
k1Q1(g)−

(
ĉ1 −

c1
A

))
. (17)

We assume that, A ̸= c1
ĉ1

. Now, by the Second Fundamental Theorem we obtain,

8T (r, g) = T (r,Q1(g)) +O(1) ≤

≤ N(r,∞;Q1(g)) +N(r, 0;Q1(g)) +N
(
r,
(
ĉ1 −

c1
A

)
;Q1(g)

)
+ S(r,Q1(g)) ≤

≤ N(r,∞; g) +N(r, 0, g) +N(r, θ1, g) +N(r, θ2, g) +N(r, 0, f) +N(r, θ1, f)+

+N(r, θ2, f) + S(r, f) + S(r, g) ≤ 7T (r, g) + S(r, f) + S(r, g),

a contradiction. Hence, A = c1
ĉ1
. Therefore, (17) yields, Q1(f) ≡ k1c1

ĉ1
Q1(g). Taking f ≡ gh,

a simple calculation yields
g2

8

(
h8 − k1c1

ĉ1

)
− 2ag

7

(
h7 − k1c1

ĉ1

)
+
a2

6

(
h6 − k1c1

ĉ1

)
≡ 0.

First suppose h is constant, then we have h8 = h7 = h6 = k1c1
ĉ1

, which implies h = 1.
Next, if h is non constant then calculating from the above equation we obtain(

g −
8a(h7 − k1c1

ĉ1
)

7(h8 − k1c1
ĉ1

)

)2

≡ a2η(h)

147(h8 − k1c1
ĉ1

)2
,
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η(z) = 192
(
z7 − k1c1

ĉ1

)2
− 196

(
z6 − k1c1

ĉ1

)(
z8 − kc1

ĉ1

)
.

If k1c1 ̸= ĉ1, by Lemma 9, we can say η(h) has no multiple factors in h. Then η(z) has 14
distinct simple zeros say πi for i ∈ {1, 2, . . . , 14} and each πi point of h is of multiplicity 2.
Then applying the Second Fundamental Theorem we can write

12T (r, h) ≤
14∑
i=1

N(r, πi;h) + S(r, h) ≤ 7T (r, h) + S(r, h),

which is a contradiction. Thus we get, k1c1 = ĉ1. So, Q1(f) ≡ Q1(g), i.e., P1(f) ≡ P1(g) and
hence by Theorem 1.4 of [22], we can conclude that f ≡ g.

Now, we can see from Lemma 7 that P (z) and P̂ (z) defined by (1), are SUPMWS of order
(1, 2) where as their counterparts in Lemma 8 are of order (2, 1). So the pair of polynomials
P (z) (P̂ (z)) in Theorem 1 (i) and Theorem 1 (ii) are symmetric polynomials. We have also
observed that initially the presence of P̂ (z) is required for the notion of wider sense. We
conjecture that, when the degree of the polynomial is small, the SUPMWS exists under
certain constraints like n = 3. Therefore, the following question is inevitable.

Question 2. What is the minimum degree of the polynomial to be an SUPMWS without
any additional assumptions?

Acknowledgment. Authors are sincerely thankful to Reviewers for their valuable sugges-
tions.
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