
Математичнi Студiї. Т.61, №2 Matematychni Studii. V.61, No.2

UDC 512.579

V. M. Gavrylkiv

ON THE UPFAMILY EXTENSION OF A DOPPELSEMIGROUP

V. M. Gavrylkiv. On the upfamily extension of a doppelsemigroup, Mat. Stud. 61 (2024), 123–
135.

A family U of non-empty subsets of a set D is called an upfamily if for each set U ∈ U any
set F ⊃ U belongs to U . The upfamily extension υ(D) of D consists of all upfamilies on D. Any
associative binary operation ∗ : D×D → D can be extended to an associative binary operation

∗ : υ(D)× υ(D) → υ(D), U ∗ V =
〈⋃

a∈U a ∗ Va : U ∈ U , {Va}a∈U ⊂ V
〉
.

In the paper, we show that the upfamily extension (υ(D),⊣,⊢) of a (strong) doppelsemigroup
(D,⊣,⊢) is a (strong) doppelsemigroup as well and study some properties of this extension.
Also we introduce the upfamily functor in the category DSG whose objects are doppelsemi-
groups and morphisms are doppelsemigroup homomorphisms. We prove that the automorphism
group of the upfamily extension of a doppelsemigroup (D,⊣,⊢) of cardinality |D| ≥ 2 contai-
ns a subgroup, isomorphic to C2 × Aut(D,⊣,⊢). Also we describe the structure of upfamily
extensions of all two-element doppelsemigroups and their automorphism groups.

1. Introduction. Given a semigroup (S,⊣), consider a semigroup (S,⊢) defined on the same
set. We say that the semigroups (S,⊢) and (S,⊣) are interassociative provided

(x ⊣ y) ⊢ z = x ⊣ (y ⊢ z) and (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z)
for all x, y, z ∈ S. When this occurs, (S,⊢) is said to be an interassociate of (S,⊣), or
that the semigroups are interassociates of each other. If the semigroups (S,⊢) and (S,⊣)
are interassociative, then rearranging the parentheses in an expression that contains only
operations ⊢, ⊣ and elements of S will not change the result. In 1971, Zupnik [40] coined
the term interassociativity in a general groupoid setting. However, he required only one of
the two defining equations to hold. The present concept of interassociativity for semigroups
originated in 1986 in Drouzy [11], where it is noted that every group is isomorphic to each of
its interassociates. In 1983, Gould and Richardson [22] introduced strong interassociativity,
defined by the above equations along with x ⊣ (y ⊢ z) = x ⊢ (y ⊣ z). J. B. Hickey in 1983 [23]
and 1986 [24] dealt with the special case of interassociativity in which the operation ⊢ is
defined by specifying a ∈ S and stipulating that x ⊢ y = x ⊣ a ⊣ y for all x, y ∈ S. Clearly
(S,⊢), which Hickey calls a variant of (S,⊣), is a semigroup that is an interassociate of
(S,⊣). It is easy to show that if (S,⊣) is a monoid, every interassociate (S,⊢) must satisfy
the condition x ⊢ y = x ⊣ a ⊣ y for some fixed element a ∈ S and for all x, y ∈ S, that
is (S,⊢) is a variant of (S,⊣). Methods of constructing interassociates were developed, for
semigroups in general and for specific classes of semigroups, in 1997 by Boyd, Gould and
Nelson [9]. The description of all interassociates of finite monogenic semigroups was presented
by Gould, Linton and Nelson in 2004, see [21].
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This paper is devoted to study of doppelsemigroups which are sets with two associative
binary operations satisfying axioms of interassociativity. More accurately, a doppelsemigroup
is an algebraic structure (D,⊣,⊢) consisting of a non-empty set D equipped with two asso-
ciative binary operations ⊣ and ⊢ satisfying the following axioms:

(D1) (x ⊣ y) ⊢ z = x ⊣ (y ⊢ z),
(D2) (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z).

Thus, we can see that in any doppelsemigroup (D,⊣,⊢), (D,⊢) is an interassociate of
(D,⊣), and conversely, if a semigroup (D,⊢) is an interassociate of a semigroup (D,⊣), then
(D,⊣,⊢) is a doppelsemigroup. A doppelsemigroup (D,⊣,⊢) is called commutative [34] if
both semigroups (D,⊣) and (D,⊢) are commutative. A doppelsemigroup (D,⊣,⊢) is said to
be strong [36] if it satisfies the axiom x ⊣ (y ⊢ z) = x ⊢ (y ⊣ z).

The study of doppelsemigroups was initiated by A. Zhuchok. The idea of doppelsemi-
groups bases on the study of dimonoids in the sense of Loday [27]. Doppelalgebras introduced
by Richter [29] in the context of algebraic K-theory are linear analogs of doppelsemigroups
and commutative dimonoids are examples of doppelsemigroups. Consequently, doppelsemi-
group theory has connections to doppelalgebra theory and dimonoid theory. A doppelsemi-
group can also be determined by using the notion of a duplex [28]. Free duplexes were
constructed in [28]. Doppelsemigroups are closely related to bisemigroups considered in the
work of Schein [30]. The latter algebras have applications in the theory of binary relations [31].
If operations of a doppelsemigroup coincide, we obtain the notion of a semigroup.

Many classes of doppelsemigroups were studied by A. Zhuchok and his coauthors. The
free product of doppelsemigroups, the free (strong) doppelsemigroup, the free commuta-
tive (strong) doppelsemigroup, the free n-nilpotent (strong) doppelsemigroup and the free
rectangular doppelsemigroup were constructed in [34, 36, 39]. Relatively free doppelsemi-
groups were studied in [37]. The free n-dinilpotent (strong) doppelsemigroup was constructed
in [33, 36]. In [35], A. Zhuchok described the free left n-dinilpotent doppelsemigroup. Repre-
sentations of ordered doppelsemigroups by binary relations were studied by Yu. Zhuchok
and J. Koppitz (see [38]).

In [19], the task of describing all pairwise non-isomorphic (strong) doppelsemigroups
with at most three elements has been solved. We proved that there exist 8 pairwise non-
isomorphic two-element doppelsemigroups among which 6 doppelsemigroups are commuta-
tive. All two-element doppelsemigroups are strong. It was proved that there exist 75 pair-
wise non-isomorphic three-element doppelsemigroups among which 41 doppelsemigroups
are commutative. Non-commutative doppelsemigroups are divided into 17 pairs of dual
doppelsemigroups. Also up to isomorphism there are 65 strong doppelsemigroups of order
3, and all non-strong doppelsemigroups are not commutative. In [20], we studied cyclic
doppelsemigroups. A doppelsemigroup (G,⊣,⊢) is called a group doppelsemigroup if (G,⊣)
is a group. A group doppelsemigroup (G,⊣,⊢) is said to be cyclic if (G,⊣) is a cyclic group. It
was proved that up to isomorphism there exist τ(n) finite cyclic (strong) doppelsemigroups
of order n, where τ is the number of divisors function. There exist infinite many pairwise
non-isomorphic infinite cyclic (strong) doppelsemigroups.

In this paper, we investigate the extension (υ(D),⊣,⊢) of a doppelsemigroup (D,⊣,⊢).
The thorough study of various extensions of semigroups was started in [13] and continued in
[1]–[8], [14]–[18]. The largest among these extensions is the semigroup υ(S) of all upfamilies
on a semigroup S. The extension υ(S) is called the upfamily extension of S. A family U of non-
empty subsets of a set X is called an upfamily if for each set U ∈ U any subset F ⊃ U belongs
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to U (In [13] instead of the notion “upfamily” it was used the notion “inclusion hyperspace”).
Each family A of non-empty subsets of X generates the upfamily ⟨A ⊂ X : A ∈ A⟩ = {U ⊂
X : ∃A ∈ A (A ⊂ U)}. An upfamily F that is closed under taking finite intersections is called
a filter. A filter B is called an ultrafilter if B = F for any filter F containing B. The family
β(X) of all ultrafilters on a set X is called the Stone-Čech compactification of X, see [25],
[32]. An ultrafilter, generated by a singleton {x}, x ∈ X, is called principal. Each point x ∈ X
is identified with the principal ultrafilter ⟨{x}⟩ generated by the singleton {x}, and hence
we consider X ⊂ β(X) ⊂ υ(X). It was shown in [13] that any associative binary operation
∗ : S × S → S can be extended to an associative binary operation ∗ : υ(S) × υ(S) → υ(S)
by the formula

U ∗ V =
〈 ⋃

a∈U

a ∗ Va : U ∈ U , {Va}a∈U ⊂ V
〉

for upfamilies U ,V ∈ υ(S). In this case the Stone-Čech compactification β(S) is a subsemi-
group of the semigroup υ(S).

The problem of calculation the cardinality υ(n) of υ(X) for a set X of cardinality n is not
trivial and is tightly connected with the classical (and still unsolved) problem of Dedekind
[10] who suggested to determine the number M(n) of all monotone Boolean functions of
n Boolean variable. The function M(n) growths very quickly. Its exact values are known
only for n ≤ 9 and are given in Table 1 taken from On-Line Encyclopedia of Integer
Sequences (https://oeis.org/A000372).

n |M(n)|
1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788
9 286386577668298411128469151667598498812366

Tab. 1: The values of the function M(n) for n ≤ 9

Observe that for each upfamily U ∈ υ(X) the characteristic function χU : P(X) → {0, 1}
of U is monotone with respect to the inclusion relation on the power-set P(X) ofX. Moreover,
χU(∅) = 0 and χU(X) = 1. Conversely, each monotone function f : P(X) → {0, 1} with
f(∅) = 0 and f(X) = 1 determines an upfamily f−1(1). This observation implies that for a
finite set X of size n the size υ(n) of the set υ(X) equals M(n)− 2.

Each map f : X → Y induces the map

υ(f) : υ(X) → υ(Y ), υ(f) : U 7→
〈
f(U) : U ∈ U

〉
, see [12].

If φ : S → S ′ is a semigroup homomorphism, then υ(φ) : υ(S) → υ(S ′) is a semigroup
homomorphism as well, see [13].
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In this paper, we show that the upfamily extension (υ(D),⊣,⊢) of a (strong) doppelsemi-
group (D,⊣,⊢) is a (strong) doppelsemigroup as well and study some properties of this
extension. Also we introduce the upfamily functor υ in the category DSG of doppelsemi-
groups and their homomorphisms and show that this functor preserves strong doppelsemi-
groups, doppelsemigroups with left (right) zero, doppelsemigroups with left (right) identi-
ty, left (right) zeros doppelsemigroups. On the other hand, the functor υ does not preserve
commutative doppelsemigroups and group doppelsemigroups. We prove that the automorphi-
sm group of the upfamily extension of a doppelsemigroup (D,⊣,⊢) of cardinality |D| ≥ 2
contains a subgroup, isomorphic to C2 × Aut(D,⊣,⊢). Also we describe the structure of
upfamily extensions of all two-element doppelsemigroups and their automorphism groups.

2. Extending operations from a doppelsemigroup to its upfamily extension. In
this section, we show that the upfamily extension of a (strong) doppelsemigroup is a (strong)
doppelsemigroup as well.

Proposition 1. If (D,⊣,⊢) is a doppelsemigroup, then (υ(D),⊣,⊢) is a doppelsemigroup
as well.

Proof. It is necessary to show that
(U ⊣ V) ⊢ W = U ⊣ (V ⊢ W) and (U ⊢ V) ⊣ W = U ⊢ (V ⊣ W)

for any upfamilies U ,V ,W ∈ υ(D).
Let us prove that (U ⊣ V) ⊢ W = U ⊣ (V ⊢ W) for any upfamilies U ,V ,W ∈ υ(D).
First, we prove the inclusion (U ⊣ V) ⊢ W ⊂ U ⊣ (V ⊢ W). Take any subset

A ∈ (U ⊣ V) ⊢ W and choose a set B ∈ U ⊣ V such that A ⊃
⋃
z∈B

z ⊢ Wz for some family

{Wz}z∈B ⊂ W . Next, for the set B ∈ U ⊣ V choose a set U ∈ U such that B ⊃
⋃
x∈U

x ⊣ Vx

for some family {Vx}x∈U ⊂ V . It is clear that for each x ∈ U and y ∈ Vx the product x ⊣ y
is in B and hence Wx⊣y is defined. Consequently,

⋃
y∈Vx

y ⊢ Wx⊣y ∈ V ⊢ W for all x ∈ U and

hence
⋃
x∈U

x ⊣ (
⋃

y∈Vx

y ⊢ Wx⊣y) ∈ U ⊣ (V ⊢ W). Since⋃
x∈U

⋃
y∈Vx

x ⊣ (y ⊢ Wx⊣y) =
⋃
x∈U

⋃
y∈Vx

(x ⊣ y) ⊢ Wx⊣y ⊂ A,

we get A ∈ U ⊣ (V ⊢ W). This proves the inclusion (U ⊣ V) ⊢ W ⊂ U ⊣ (V ⊢ W).
To prove the reverse inclusion, fix a set A ∈ U ⊣ (V ⊢ W) and choose a set U ∈ U such

that A ⊃
⋃
x∈U

x ⊣ Bx for some family {Bx}x∈U ⊂ V ⊢ W . Next, for each x ∈ U find a set

Vx ∈ V such that Bx ⊃
⋃

y∈Vx

y ⊢ Wx,y for some family {Wx,y}y∈Vx ⊂ W . Let Z =
⋃
x∈U

x ⊣ Vx.

For each z ∈ Z we can find x ∈ U and y ∈ Vx such that z = x ⊣ y and put Wz = Wx,y. Then
Z ∈ U ⊣ V and

⋃
z∈Z

z ⊢ Wz ∈ (U ⊣ V) ⊢ W . Taking into account⋃
z∈Z

z ⊢ Wz ⊂
⋃
x∈U

⋃
y∈Vx

(x ⊣ y) ⊢ Wx,y =
⋃
x∈U

⋃
y∈Vx

x ⊣ (y ⊢ Wx,y) ⊂ A,

we conclude A ∈ (U ⊣ V) ⊢ W .
In the same way one can check that (U ⊢ V) ⊣ W = U ⊢ (V ⊣ W) for any upfamilies

U ,V ,W ∈ υ(D).

Proposition 2. If (D,⊣,⊢) is a strong doppelsemigroup, then (υ(D),⊣,⊢) is a strong
doppelsemigroup as well.
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Proof. It is necessary to show that U ⊣ (V ⊢ W) = U ⊢ (V ⊣ W) for any upfamilies
U ,V ,W ∈ υ(D).

To prove the inclusion U ⊣ (V ⊢ W) ⊂ U ⊢ (V ⊣ W), fix a set A ∈ U ⊣ (V ⊢ W) and
choose a set U ∈ U such that A ⊃

⋃
x∈U

x ⊣ Bx for some family {Bx}x∈U ⊂ V ⊢ W . Next, for

each x ∈ U find a set Vx ∈ V such that Bx ⊃
⋃

y∈Vx

y ⊢ Wx,y for some family {Wx,y}y∈Vx ⊂ W .

Taking into account
A ⊃

⋃
x∈U

x ⊣ Bx ⊃
⋃
x∈U

x ⊣ (
⋃
y∈Vx

y ⊢ Wx,y) =
⋃
x∈U

⋃
y∈Vx

x ⊣ (y ⊢ Wx,y) =

=
⋃
x∈U

⋃
y∈Vx

x ⊢ (y ⊣ Wx,y) =
⋃
x∈U

x ⊢ (
⋃
y∈Vx

y ⊣ Wx,y) ∈ U ⊢ (V ⊣ W),

we conclude A ∈ (U ⊢ (V ⊣ W).
In the same way one can check that (U ⊣ V) ⊢ W ⊃ U ⊣ (V ⊢ W) for any upfamilies

U ,V ,W ∈ υ(D).

3. Some properties of the doppelsemigroup (υ(D),⊣,⊢). By definition, the center of
a doppelsemigroup (D,⊣,⊢) is the set

C(D,⊣,⊢) = {a ∈ D : a ⊣ x = x ⊣ a and a ⊢ x = x ⊢ a for all x ∈ D}.
It follows from this definition that C(D,⊣,⊢) = C(D,⊣) ∩ C(D,⊢).

Proposition 3. If the center C(D,⊣,⊢) of the doppelsemigroup (D,⊣,⊢) is non-empty,
then it is a subdoppelsemigroup of a doppelsemigroup (D,⊣,⊢).

Proof. Let a, b ∈ C(D,⊣,⊢). Taking into account that the centers of the semigroups (D,⊣)
and (D,⊢) are subsemigroups of the semigroups (D,⊣) and (D,⊢) respectively, and

(a ⊣ b) ⊢ x = (b ⊣ a) ⊢ x = b ⊣ (a ⊢ x) = b ⊣ (x ⊢ a) = (x ⊢ a) ⊣ b = x ⊢ (a ⊣ b),
(a ⊢ b) ⊣ x = (b ⊢ a) ⊣ x = b ⊢ (a ⊣ x) = b ⊢ (x ⊣ a) = (x ⊣ a) ⊢ b = x ⊣ (a ⊢ b),

we conclude that a ⊣ b, a ⊢ b ∈ C(D,⊣,⊢) and we are done.

Proposition 4. The center of a doppelsemigroup (υ(D),⊣,⊢) contains the center of
(D,⊣,⊢). If (D,⊣,⊢) is a group doppelsemigroup, then C(υ(D),⊣,⊢) = C(D,⊣)∩C(D,⊢).

Proof. Let a ∈ C(D,⊣,⊢). Then for every upfamily U ∈ υ(D) we get

a ⊣ U = {a ⊣ U : U ∈ U} = {U ⊣ a : U ∈ U} = U ⊣ a,
a ⊢ U = {a ⊢ U : U ∈ U} = {U ⊢ a : U ∈ U} = U ⊢ a,

which means that (the principal ultrafilter generated by) a belongs to the center of the
doppelsemigroup (υ(D),⊣,⊢).

If (D,⊣,⊢) is a group doppelsemigroup, then applying [13, Theorem 2] we obtain
C(υ(D),⊣) = C(D,⊣) and C(υ(D),⊢) = C(D,⊢), and hence

C(υ(D),⊣,⊢) = C(D,⊣) ∩ C(D,⊢).

An element z of a doppelsemigroup (D,⊣,⊢) is called a zero (resp. a left zero, a right
zero) if a ⊣ z = z ⊣ a = a ⊢ z = z ⊢ a = z (resp. z ⊣ a = z ⊢ a = z, a ⊣ z = a ⊢ z = z) for
any a ∈ D.
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Proposition 5. Let (D,⊣,⊢) be a doppelsemigroup. For an element z ∈ D ⊂ υ(D) the
following conditions are equivalent: 1) z is a left (right) zero of a semigroup (D,⊣); 2) z is
a left (right) zero of a doppelsemigroup (D,⊣,⊢); 3) z is a left (right) zero of a semigroup
(D,⊢); 4) z is a left (right) zero of a semigroup (υ(D),⊢); 5) z is a left (right) zero of
a doppelsemigroup (υ(D),⊣,⊢); 6) z is a left (right) zero of a semigroup (υ(D),⊣).

Proof. The implications (2) ⇒ (3), (5) ⇒ (6) and (6) ⇒ (1) are trivial.
(1) ⇒ (2) Assume that z is a left zero of a semigroup (D,⊣). Taking into account that

for any a ∈ D, z ⊢ a = (z ⊣ a) ⊢ a = z ⊣ (a ⊢ a) = z, we conclude that z is also a left zero
of a semigroup (D,⊢), and hence z is a left zero of a doppelsemigroup (D,⊣,⊢).

(3) ⇒ (4) Let z be a left zero of a semigroup (D,⊢). Then for every upfamily U ∈ υ(D)
we get z ⊢ U = ⟨z ⊢ U : U ∈ U⟩ = ⟨{z} : U ∈ U⟩ = z, which means that (the principal
ultrafilter generated by) z is a left zero of a semigroup (υ(D),⊢).

(4) ⇒ (5) Assume that z is a left zero of a semigroup (υ(D),⊢). Taking into account that
for any U ∈ υ(D), z ⊣ U = (z ⊢ U) ⊣ U = z ⊢ (U ⊣ U) = z, we conclude that z is also a left
zero of a semigroup (υ(D),⊣), and hence z is a left zero of a doppelsemigroup (υ(D),⊣,⊢).

In the same way one can check the right zero case.

A doppelsemigroup (D,⊣,⊢) is said to be a left (right) zero doppelsemigroup if each of its
elements is a left (right) zero. By LOX (ROX) we denote the left (right) zero doppelsemigroup
on a set X. If X is finite of cardinality |X| = n, then instead of LOX and ROX we use LOn

and ROn respectively.
Let us note that for a subdoppelsemigroup (T,⊣,⊢) of a doppelsemigroup (D,⊣,⊢) the

homomorphism i : υ(T ) → υ(D), i : U → ⟨U⟩D is injective, and thus we can identify the
doppelsemigroup (υ(T ),⊣,⊢) with the doppelsubsemigroup i((υ(T ),⊣,⊢)) ⊂ (υ(D),⊣,⊢).
Therefore, for each family B of nonempty subsets of T we identify the upfamilies
⟨B⟩T = {U ∈ T | ∃B ∈ B(B ⊂ U)} ∈ υ(T ) and ⟨B⟩D = {U ∈ D | ∃B ∈ B(B ⊂ U)} ∈ υ(D).

Proposition 6. If T is a left (right) zero subdoppelsemigroup of a doppelsemigroup
(D,⊣,⊢), then υ(T ) is a left (right) zero subdoppelsemigroup of a doppelsemigroup
(υ(D),⊣,⊢) as well.

Proof. Let T be a left zero subdoppelsemigroup of a doppelsemigroup (D,⊣,⊢). Then for
any U ,V ∈ υ(T ),

U ⊣ V =
〈 ⋃

a∈U

a ⊣ Va : U ∈ U , U ⊂ T, Va ∈ V , Va ⊂ T for all a ∈ U
〉
=

=
〈 ⋃

a∈U

{a} : U ∈ U
〉
= U .

Therefore, by Proposition 5, (υ(T ),⊣,⊢) is a left zero subdoppelsemigroup of a doppelsemi-
group (υ(D),⊣,⊢) as well.

For a right zero subdoppelsemigroup the proof is similar.

Propositions 5 and 6 imply the following corollary.

Corollary 1. Let (D,⊣,⊢) be a doppelsemigroup. Then the following conditions are equi-
valent:
1) (D,⊣) is a left (right) zero semigroup; 2) (D,⊣,⊢) is a left (right) zero doppelsemigroup;
3) (D,⊢) is a left (right) semigroup; 4) (υ(D),⊢) is a left (right) zero semigroup;
5) (υ(D),⊣,⊢) is a left (right) zero doppelsemigroup; 6) (υ(D),⊣) is a left (right) zero
semigroup.



ON THE UPFAMILY EXTENSION OF A DOPPELSEMIGROUP 129

An element e of a doppelsemigroup (D,⊣,⊢) is called an identity (resp. a left identity,
a right identity) if a ⊣ e = e ⊣ a = a ⊢ e = e ⊢ a = a (resp. e ⊣ a = e ⊢ a = e,
a ⊣ e = a ⊢ e = a) for any a ∈ D.

Proposition 7. Let (D,⊣,⊢) be a doppelsemigroup. For an element e ∈ D ⊂ υ(D) the
following conditions are equivalent: 1) e is a left (right) identity of a doppelsemigroup
(D,⊣,⊢); 2) e is a left (right) identity of a doppelsemigroup (υ(D),⊣,⊢).

Proof. The implication (2) ⇒ (1) is trivial.
(1) ⇒ (2) Let e be a left identity of a doppelsemigroup (D,⊣,⊢). Then for every upfamily

U ∈ υ(D) we get
e ⊢ U = {e ⊢ U : U ∈ U} = {U : U ∈ U} = U , e ⊣ U = {e ⊣ U : U ∈ U} = {U : U ∈ U} = U ,
which means that (the principal ultrafilter generated by) e is a left identity of a doppelsemi-
group (υ(D),⊣,⊢).

In the same way one can check the right identity case.

Remark 1. In general case, a left (right) identity of a semigroup (D,⊣) is not a left
(right) identity of a doppelsemigroup (D,⊣,⊢). For the doppelsemigroup ({0, 1},min, ∗),
where a ∗ b = 0 for any a, b ∈ {0, 1}, the semigroup ({0, 1},min) is a monoid while the
semigroup ({0, 1}, ∗) contains no left (right) identity.

A non-empty subset I of a doppelsemigroup (D,⊣,⊢) is called an ideal (resp. a left ideal,
a right ideal) if (S ⊣ I) ∪ (S ⊢ I) ∪ (I ⊣ S) ∪ (I ⊢ S) ⊂ I (resp. (S ⊣ I) ∪ (S ⊢ I) ⊂ I,
(I ⊣ S) ∪ (I ⊢ S) ⊂ I).

Proposition 8. If I is a left (right) ideal of a doppelsemigroup (D,⊣,⊢), then υ(I) is a left
(right) ideal of the upfamily extension (υ(D),⊣,⊢) as well.

Proof. Indeed, let U ∈ υ(D), M ∈ υ(I). Then

U ⊣ M =
〈 ⋃

a∈U

a ⊣Ma : U ∈ U , Ma ∈ M, Ma ⊂ I for all a ∈ U
〉
=

=
〈 ⋃

a∈U

a ⊣Ma : U ∈ U , {Ma}a∈U ⊂ M,
⋃
a∈U

a ⊣Ma ⊂ I
〉
∈ υ(I).

By analogy U ⊢ M ∈ υ(I), and therefore υ(I) is a left ideal of the doppelsemigroup
(υ(D),⊣,⊢).

In the same way one can check the right ideal case.

By definition, the minimal ideal of a doppelsemigroup (D,⊣,⊢) is an ideal containing no
other ideal of (D,⊣,⊢). It is also called the kernel of a doppelsemigroup (D,⊣,⊢), denoted
K(D).

Proposition 9. If a doppelsemigroup (D,⊣,⊢) contains a left (right) zero, then the minimal
ideal K(D) of (D,⊣,⊢) coincides with the set of all left (right) zeros of (D,⊣,⊢).

Proof. Let Z be the supdoppelsemigroup of all left zeros of (D,⊣,⊢). Then for every d, t ∈ D
and every z ∈ Z we get (d ⊣ z) ⊣ t = d ⊣ (z ⊣ t) = d ⊣ z and (d ⊢ z) ⊣ t = d ⊢ (z ⊣ t) =
d ⊢ z. By Proposition 5, d ⊣ z, d ⊢ z ∈ Z, that is D ⊣ Z ∪D ⊢ Z ⊂ Z, and hence Z is a left
(right) ideal. It follows from definition of left zeros that Z ⊣ D = Z ⊢ D = Z. This shows
that Z is an ideal of (D,⊣,⊢). It suffices to check that Z lies in each ideal I of (D,⊣,⊢).
Indeed, Z = Z ⊣ I ⊂ D ⊣ I ⊂ I.

In the same way one can check the right zero case.
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A semigroup (S, ∗) is said to be right simple if a∗S = S for any a ∈ S. Taking into account
that according to Proposition 18 of [13], for a right simple semigroup (S, ∗) the semigroup
(υ(S), ∗) contains a right zero, we conclude by Proposition 5 the following proposition.

Proposition 10. Let (D,⊣,⊢) be a doppelsemigroup. If (D,⊣) or (D,⊢) is a right simple
semigroup, then the doppelsemigroup (υ(D),⊣,⊢) contains a right zero, and hence the mi-
nimal ideal K(υ(D)) of (υ(D),⊣,⊢) coincides with the set of all right zeros of (υ(D),⊣,⊢).

Corollary 2. If (G,⊣,⊢) is a group doppelsemigroup, then the doppelsemigroup (υ(G),⊣,⊢)
contains a right zero, and hence the minimal ideal K(υ(G)) of (υ(G),⊣,⊢) coincides with
the set of all right zeros of (υ(G),⊣,⊢).

4. The upfamily functor in the category DSG. A map φ : D1 → D2 is called a
homomorphism of doppelsemigroups (D1,⊣1,⊢1) and (D2,⊣2,⊢2) if

φ(a ⊣1 b) = φ(a) ⊣2 φ(b) and φ(a ⊢1 b) = φ(a) ⊢2 φ(b)
for all a, b ∈ D1.

A bijective homomorphism is called an isomorphism of doppelsemigroups. If there exists
an isomorphism between the doppelsemigroups (D1,⊣1,⊢1) and (D2,⊣2,⊢2), then
(D1,⊣1,⊢1) and (D2,⊣2,⊢2) are said to be isomorphic, denoted (D1,⊣1,⊢1) ∼= (D2,⊣2,⊢2).
An isomorphism ψ : D → D is called an automorphism of a doppelsemigroup (D,⊣,⊢). By
Aut(D,⊣,⊢) we denote the automorphism group of a doppelsemigroup (D,⊣,⊢).

According to Proposition 8 of [13], each homomorphism φ : D1 → D2 of doppelsemigroups
(D1,⊣1,⊢1) and (D2,⊣2,⊢2) induces the homomorphism

υ(φ) : υ(D1) → υ(D2), υ(φ) : U 7→
〈
φ(U) ⊂ D2 : U ∈ U

〉
,

of doppelsemigroups (υ(D1),⊣1,⊢1) and (υ(D2),⊣2,⊢2).
Denote by DSG the category of doppelsemigroups whose objects are doppelsemigroups

and morphisms are doppelsemigroup homomorphisms.
A covariant functor F : C → D from a category C to a category D consists of an object

map F : vC → vD which assigns to each a ∈ vC, an object F (a) ∈ vD and a morphism map
F which assigns to each morphism f : a → b in C, a morphism F (f) : F (a) → F (b) in D
such that

1) F (ida) = idF (a) for each a ∈ vC;

2) F (f ◦g) = F (f)◦F (g) for all morphisms f, g ∈ C for which the composition f ◦g exists.

Consider υ : DSG → DSG which assigns to each doppelsemigroup (D,⊣,⊢) the doppel-
semgroup (υ(D),⊣,⊢) of upfamilies onD, its morphism map assigns to each doppelsemigroup
homomorphism φ : D1 → D2, the doppelsemigroup homomorphism υ(φ) : υ(D1) → υ(D2).
Taking into account that for any U ∈ υ(D),

υ(idD)(U) =
〈
idD(U) : U ∈ U

〉
=

〈
U : U ∈ U

〉
= U = idυ(D)(U),

υ(φ) ◦ υ(ψ)(U) = υ(φ)(
〈
ψ(U) : U ∈ U

〉
) =

〈
φ ◦ ψ(U) : U ∈ U

〉
= υ(φ ◦ ψ)(U),

we conclude that υ(idD) = idυ(D) and υ(φ ◦ ψ) = υ(φ) ◦ υ(ψ), and hence this construction
defines the covariant functor υ : DSG → DSG. This functor is said to be the upfamily
functor in the category of doppelsemigroups.

Combining Propositions 2, 5 and 7 with Corollary 1, we get the following proposition.

Proposition 11. The upfamily functor υ in DSG preserves strong doppelsemigroups,
doppelsemigroups with left (right) zero, doppelsemigroups with left (right) identity, left
(right) zeros doppelsemigroups.
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Recall that every Abelian group (G,⊣) is isomorphic to each of its interassociates (G,⊢),
and hence a doppelsemigroup (G,⊣,⊢) is commutative. The following proposition show that
the upfamily functor υ in DSG does not preserve commutative doppelsemigroups and group
doppelsemigroups.

Proposition 12. For any group doppelsemigroup (G,⊣,⊢) of order |G| > 1 the doppelsemi-
group (υ(G),⊣,⊢) is neither commutative nor a group doppelsemigroup.

Proof. According to Corollary 3 of [13] for any group (G,⊣) the center of the semigroup
(υ(G),⊣) coincides with the center of (G,⊣). Since |υ(G)| > |G| for |G| > 1, we conclude that
(υ(G),⊣) is not commutative, and hence the doppelsemigroup (υ(G),⊣,⊢) is not commuta-
tive as well.

Taking into account that for any group (G,⊣) of order |G| > 1 the semigroup (υ(G),⊣)
contains at least two right zeros: {G} and ⟨{g} : g ∈ G⟩, see [13, Prop. 15, 18], we conclude
that (υ(G),⊣) is not a group, and hence the doppelsemigroup (υ(G),⊣,⊢) is not a group
doppelsemigroup.

5. Automorphism groups of the upfamily extension of doppelsemigroups. Taking
into account that the construction υ defines a covariant functor in the category of doppelsemi-
groups, we conclude the following proposition.

Proposition 13. If ψ : D1 → D2 is an isomorphism from a doppelsemigroup (D1,⊣1,⊢1) to
a doppelsemigroup (D2,⊣2,⊢2), then υ(ψ) : υ(D1) → υ(D2) is an isomorphism as well.

Corollary 3. If ψ : D → D is an automorphism of a doppelsemigroup (D,⊣,⊢), then
υ(ψ) : υ(D) → υ(D) is an automorphism of the upfamily extension (υ(D),⊣,⊢).

The set υ(D) of upfamilies on a set D possesses the unary operation
⊥ : υ(D) → υ(D), ⊥ : U 7→ U⊥ = {A ⊂ D : ∀U ∈ U (A ∩ U ̸= ∅)}

called the transversality map. This operation is involutive in the sense that (U⊥)⊥ = U for
any U ∈ υ(D), see [13].

The following proposition was proved in [13].

Proposition 14. For a semigroup (S, ∗) the extended associative operation ∗ : υ(S) → υ(S)
commutes with the transversality map in the sense that (U∗V)⊥ = U⊥∗V⊥ for any upfamilies
U ,V ∈ υ(S).

Corollary 4. The transversality map ⊥ : υ(D) → υ(D) is an involutive automorphism of
the doppelsemigroup (υ(D),⊣,⊢).

In the following proposition we show that the automorphism group of the upfamily
extension of a doppelsemigroup (D,⊣,⊢) contains a subgroup, isomorphic to the group
C2 × Aut(D,⊣,⊢).

Proposition 15. The automorphism group Aut(υ(D),⊣,⊢) of the extension (υ(D),⊣,⊢)
of a doppelsemigroup (D,⊣,⊢) of cardinality |D| ≥ 2 contains a subgroup, isomorphic to
C2 × Aut(D,⊣,⊢).
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Proof. By Corollary 3, for any automorphism ψ : D → D of a doppelsemigroup (D,⊣,⊢)
its upfamily extension υ(ψ) : υ(D) → υ(D) is an automorphism of (υ(D),⊣,⊢). Taking
into account that the restriction of the transversality automorphism ⊥ : υ(D) → υ(D)
to D ⊂ β(D) is the identity automorphism of D and the extension υ(idD) of the identi-
ty automorphism idD of (D,⊣,⊢) is the identity automorphism idυ(D) of (υ(D),⊣,⊢), we
conclude that ⊥/∈ {υ(ψ) : ψ ∈ Aut(D,⊣,⊢)} ∼= Aut(D,⊣,⊢).

Let us show that υ(ψ)◦ ⊥ =⊥ ◦υ(ψ) for any ψ ∈ Aut(D,⊣,⊢). Indeed, for any U ∈ υ(D),

υ(ψ)◦ ⊥ (U) = υ(ψ)(U⊥) = ⟨ψ(A) ⊂ D : A ∈ U⊥⟩ =
= ⟨ψ(A) ⊂ D : ∀U ∈ U (A ∩ U ̸= ∅)⟩ = ⟨V ⊂ D : ∀U ∈ U (ψ−1(V ) ∩ U ̸= ∅)⟩ =

= ⟨V ⊂ D : ∀U ∈ U (V ∩ ψ(U) ̸= ∅)⟩ = ⟨ψ(U) : U ∈ U⟩⊥ = ⊥ ◦υ(ψ)(U).

Thus, Aut(υ(D),⊣,⊢) contains the subgroup {⊥, idυ(D)} × {υ(ψ) : ψ ∈ Aut(D,⊣,⊢)}
which is isomorphic to C2 × Aut(D,⊣,⊢).

6. Doppelsemigroups of upfamilies over two-element doppelsemigroups. Firstly,
recall some useful facts which we shall often use in this section. In fact, each semigroup
(S,⊣) can be consider as a (strong) doppelsemigroup (S,⊣,⊣) with the automorphism group
Aut(S,⊣,⊣) = Aut(S,⊣), and we denote this trivial doppelsemigroup by S. As always, we
denote by (S,⊣a) a variant of a semigroup (S,⊣), where x ⊣a y = x ⊣ a ⊣ y.

A semigroup (S,⊣) is called a null semigroup if there exists an element z ∈ S such that
x ⊣ y = z for any x, y ∈ S. In this case the element z is the zero of (S,⊣). All null semigroups
on the same set are isomorphic. By OX we denote a null semigroup on a set X. If X is finite
of cardinality |X| = n, then instead of OX we use On.

Following the algebraic tradition, we take for a model of the class of cyclic groups of
order n the multiplicative group Cn = {z ∈ C : zn = 1} of n-th roots of 1. For a set X by
SX we denote the group of all bijections of X.

Let (D1,⊣1,⊢1) be a doppelsemigroup such that for each doppelsemigroup (D2,⊣2,⊢2)
the isomorphisms (D2,⊣2) ∼= (D1,⊣1) and (D2,⊢2) ∼= (D1,⊢1) imply the isomorphism
(D2,⊣2,⊢2) ∼= (D1,⊣1,⊢1). If S and T are model semigroups of classes of semigroups isomor-
phic to (D1,⊣1) and (D1,⊢1), respectively, then by S ≬ T we denote a model doppelsemigroup
of the class of doppelsemigroups isomorphic to (D1,⊣1,⊢1).

It is well-known that there are exactly five pairwise non-isomorphic semigroups having
two elements: the multiplicative cyclic group C2 = {−1, 1}, the linear semilattice L2 = {0, 1}
with min-operation, the null semigroup O2 = {0, 1} with zero 0, the left zero semigroup LO2

with operation ab = a, and the right zero semigroup RO2 with operation ab = b.
It was proved in [19] that there exist 6 pairwise non-isomorphic commutative 2-element

doppelsemigroups: C2, C2 ≬ C−1
2 = ({−1, 1}, ·, ·−1), L2, O2, L2 ≬ O2 = ({0, 1},min,min0),

and O2 ≬ L2 = ({0, 1},min0,min), and two non-isomorphic non-commutative doppelsemi-
groups of order 2: LO2 and RO2. All two-element doppelsemigroups are strong.

The following Table 2 of all two-element doppelsemigroups and their automorphism
groups is taken from [19].

In the following we describe the structure of upfamily extensions of all two-element
doppelsemigroups and their automorphism groups. Since all two-element doppelsemigroups
are strong and by Proposition 2 the upfamily extension of a strong doppelsemigroup is a
strong doppelsemigroup, we conclude that all the following extensions are strong doppelsemi-
groups.
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D C2 C2 ≬ C
−1
2 L2 O2 L2 ≬ O2 O2 ≬ L2 LO2 RO2

Aut(D) C1 C1 C1 C1 C1 C1 C2 C2

Tab. 2: Two-element doppelsemigroups and their automorphism groups

6.1. The doppelsemigroup υ(C2). For the cyclic group C2, the doppelsemigroup υ(C2) is a
non-commutative strong doppelsemigroup of order 4. In addition to two principal ultrafilters,
it contains two upfamilies Z = {C2} and Z⊥ = ⟨{g} : g ∈ C2⟩ which are right zeros in υ(C2),
see [13]. The subdoppelsemigroup I = υ(C2) \ C2 = {Z,Z⊥} of right zeros of υ(C2) is
the unique proper ideal of υ(C2). Taking into account that Aut(C2) ∼= C1 and the identity
automorphism of C2 can be extended to an automorphism of υ(C2) in exactly two ways

idυ(C2) : U 7→ U and ⊥ : U 7→ U⊥,
we conclude that Aut(υ(C2)) ∼= C2.
6.2. The doppelsemigroup υ(C2 ≬ C−1

2 ). Let us consider non-trivial two-element group
doppelsemigroup C2 ≬ C−1

2 = ({−1, 1}, ·, ·−1), where a ·−1 b = a(−1)b = −ab. According to
Proposition 5, right zeros Z = {C2} and Z⊥ = ⟨{g} : g ∈ C2⟩ of the semigroup (υ(C2), ·)
are right zeros of the doppelsemigroup υ(C2 ≬ C

−1
2 ) as well. By Proposition 4, the center of

the doppelsemigroup υ(C2 ≬ C−1
2 ) coincide with C({−1, 1}, ·) ∩ C({−1, 1}, ·−1) = {−1, 1}.

It follows that υ(C2 ≬ C
−1
2 ) is a non-commutative strong doppesemigroup.

Taking into account that Aut(C2 ≬ C−1
2 ) ∼= C1 and the identity automorphism of

C2 ≬ C
−1
2 can be extended to an automorphism of υ(C2 ≬ C

−1
2 ) in exactly two ways

idυ(C2) : U 7→ U and ⊥ : U 7→ U⊥,
we conclude that Aut(υ(C2 ≬ C

−1
2 )) ∼= C2.

6.3. The doppelsemigroup υ(L2). For the linear semilattice L2 = {0, 1} with min-
operation the semigroup υ(L2) of order 4 is a semilattice as well, see [4]. In addition to
two principal ultrafilters, it contains two upfamilies Z = {L2} and Z⊥ = ⟨{g} : g ∈ L2⟩.

The order structure of the semilattice υ(L2) is described in the following diagram:
1

Z

??

Z⊥

``

0

__ >>

Looking at this diagram we see that the semilattice υ(L2) is not linear.
Taking into account that Aut(L2) ∼= C1 and the identity automorphism of L2 can be

extended to an automorphism of υ(L2) in exactly two ways
idυ(L2) : U 7→ U and ⊥ : U 7→ U⊥,

we conclude that Aut(υ(L2)) ∼= C2.
6.4. The doppelsemigroup υ(O2). It was proved in [18] that the upfamily extension of
a null semigroup is a null semigroup as well, and Aut(υ(On)) = S|υ(On)|−1 for n > 1. We
conclude that υ(O2) ∼= O4 and Aut(υ(O2)) ∼= S3.
6.5. The doppelsemigroups υ(L2 ≬ O2) and υ(O2 ≬ L2). For the doppelsemigroups
L2 ≬ O2 = ({0, 1},min,min0) and O2 ≬ L2 = ({0, 1},min0,min) the semigroup υ(O2) ∼= O4

is a variant (generated by 0) of the semilattice υ(L2).



134 V. M. GAVRYLKIV

By Proposition 2.3 of [19], Aut(υ(L2 ≬ O2)) ∼= Aut(υ(O2 ≬ L2)) ∼= Aut(υ(L2)) ∼= C2.
6.6. The doppelsemigroups υ(LO2) and υ(RO2). It is well-known that Aut(LOn) ∼= Sn

and Aut(ROn) ∼= Sn.
Taking into account that by Corollary 1, the upfamily extension of a left (right) zero

doppelsemigroup is a left (right) zero doppelsemigroup as well, we conclude that
υ(LO2) ∼= LO4, υ(RO2) ∼= RO4, and hence Aut(υ(LO2)) ∼= Aut(υ(RO2)) ∼= S4.

We summarize the obtained results on the automorphism groups of the upfamily exten-
sions of two-element (strong) doppelsemigroups in the following Table 3.

D C2 C2 ≬ C
−1
2 L2 O2 L2 ≬ O2 O2 ≬ L2 LO2 RO2

Aut(υ(D)) C2 C2 C2 S3 C2 C2 S4 S4

Tab. 3: Automorphism groups of the upfamily extensions of two-element doppelsemigroups
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