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There is considered an interpolation problem f(λn) = bn in the class of holomorphic in the
unit disk U(0; 1) = {z ∈ C : |z| < 1} functions of finite η-type, i.e such that

(∃A > 0)(∀z ∈ U(0; 1)) : |f(z)| ≤ exp
(
Aη
( A

1− |z|

))
,

where η : [1; +∞) → [0; +∞) is an increasing convex function with respect to ln t and ln t =
o (η(t)) (t → +∞). There were received sufficient conditions of the interpolation problem
solvability in terms of the counting functions

N(r) =

∫ r

0

(n(t)− 1)
+

t
dt and Nλn(r) =

∫ r

0

(nλn
(t)− 1)

+

t
dt.

Earlier, in 2004, necessary conditions were obtained (Ukr. Math. J., 56 (2004), №3) in these
terms. For the moderate growth of f (when the majorant η = ψ satisfies the condition ψ (2x) =
O (ψ (x)) , x → +∞) that problem was solved in J. Math. Anal. Appl., 414 (2014), №1.
In this paper, we remove any restrictions on the growth of η and construct an interpolation
function f such that

(∃A′ > 0)(∀z ∈ U(0; 1)) : |f(z)| ≤ exp
( A′

(1− |z|)3/2
η
( A′

1− |z|

))
.

1. Introduction and main results. Let η : [1; +∞) → [0; +∞) be an increasing function
convex in ln t and ln t = o (η(t)) as t → +∞; Λ = (λn) be a non-zero sequence of different
complex numbers such that 0 < |λn| ↗ 1 ;

N (r) =

∫ r

0

(n(t)− 1)+

t
dt; Nζ (r) =

∫ r

0

(nζ (t)− 1)+

t
dt,

where
n(t) := n (t; Λ) =

∑
|λn|≤t

1, nζ (t) := nζ (t; Λ) =
∑

|λn−ζ|≤t 1,

are the counting functions, x+ := max{0;x}.
Consider an interpolation problem

f(λn) = bn (1)
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in the class of holomorphic functions in the unit disk U(0; 1) = {z ∈ C : |z| < 1} such that

(∃A > 0)(∀z ∈ U(0; 1)) : |f(z)| ⩽ exp
{
Aη
( A

1− |z|

)}
(2)

(which are called functions of finite η-type).
In 2004 prof. B.V. Vynnyt’skyi and author obtained [1] conditions of the solvability of

the interpolation problem (1). The next assertion was proved.

Theorem A ([1]). In order that for every sequence (bn) of complex numbers with the
property

(∃A1 > 0)(∀n ∈ N) : |bn| ≤ exp

(
A1η

(
A1

1− |λn|

))
(3)

interpolation problem (1) have a solution from the class (2) it is necessary that

(∃A2 > 0)(∀r ∈ (0; 1)) : N(r) ≤ A2η

(
A2

1− r

)
(4)

(∃A3 > 0)(∀δ ∈ (0; 1))(∀n) : Nλn(δ(1− |λn|)) ≤ A3η

(
A3

1− |λn|

)
(5)

are it is sufficient that there exists a holomorphic function L from class (2) with simple zeros
in (λn) and for some A4 > 0 and for all n ∈ N:

ln |(1− |λn|)L′(λn))| ≥ −A4η

(
A4

1− |λn|

)
. (6)

In this theorem, the necessary and sufficient conditions are different. The problem arises:
to deduce sufficient conditions in terms of the counting functions N(r) and Nλn(r).

We note that interpolation problem in various subclasses of functions holomorphic in
the unit disk was considered by a number of mathematicians. Carleson [12] and Jones [13]
obtained results for bounded functions. K. Seip [14], A. Hartmann and X. Massaneda [15]
studied interpolation sequences in the class of power functions. Spreading Seip’s idea of
construction peak function, A. Borichev, R. Dhuez and K. Kellay [16], solved an interpolation
problem in the class of functions of arbitrary growth in the unit disc. But those results has
lower limit of growth. In that case the majorant grows faster than ln 1

1−r (more detailed
analysis see in [2]).

In 2014, I. Chyzhykov and author [2] solved an interpolation problem (1) for the moderate
growth of f . There was proved the next assertion

Theorem B ([2]). Let ψ : [1,+∞) → R+ be a function such that ψ (2x) = O (ψ (x)) , x →
+∞. If

(∀n ∈ N) : Nλn

(1− |λn|
2

)
≤ ψ

( 1

1− |λn|

)
,

then for any sequence (bn) satisfying

ln |bn| ≤ ψ̃

(
1

1− |λn|

)
, n ∈ N,

there exists an analytic function f in U(0; 1) with the properties (1) and

lnM(r, f) ≤ C2ψ̃

(
1

1− r

)
,

where C2 > 0, ψ̃ (x) =
∫ x
1
ψ(t)
t
dt.
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Theorem B solves the shortcomings of results from [16], but the majorant η grows not
faster than (1− r)−ρ, ρ > 0.

The aim of the paper is finding conditions of the solvability problem (1) in the class of
finite η-type for arbitrary growth of majorante η by the method of construction interpolation
series as in [1, 2, 3]. For the goal we need to prove the existence such a finite η-type function
L satisfying (6). We need to use the next results from [4].

Theorem C ([4]). If conditions (4) and∣∣∣ 1
2k

∑
r1<|λν |⩽r2

1

λkν

∣∣∣ ≤ A2

rk1
η

(
B2

1− r1

)
+
A2

rk2
max

{
1;

1

k lnσ2

}
η

(
B2

1− σ2r2

)
(7)

are fulfilled for some A2 > 0 and B2 > 0 and all k ∈ N, r1 ∈ (0; 1), r2 ∈ (r1; 1), σ2 ∈ (1; 1/r2),
then there exists a holomorphic in U(0; 1) function L for which (λν) is a sequence of zeros
and ( 1

2π

∫ 2π

0

∣∣ln ∣∣L(reiφ)∣∣∣∣2 dφ)1/2 ⩽ A3η

(
B3

1− σr

)(
1 +

6
√
ln 2√
lnσ

)
(8)

for some positive constants A3 > 0, B3 > 0 and all r ∈ (0; 1), σ ∈ (1; 1/r) .

The goal of the paper is proving the next assertion.

Theorem 1. If conditions (4), (5) hold then for each sequence (bn) with the property (3)
interpolation problem (1) has a solution in the class of holomorphic functions f satisfying

(∀z ∈ U(0; 1)) : |f(z)| ≤ exp

(
A′

(1− |z|)3/2
η

(
A′

1− |z|

))
(9)

for some A′ > 0.

At first, we will prove following propositions.

Theorem 2. If condition (4) holds for the sequence (λν), then there exists a function L̃
holomorphic in the unit disk, satisfying

(∀z ∈ U (0; 1)) :

(
1

2π

∫ 2π

0

∣∣∣ln |L̃(reiφ)|∣∣∣2 dφ)1/2

≤ A

1− r
η

(
A

1− r

)
, (10)

for which (λν) is a subsequence of zeros.

Theorem 3. If condition (4) holds for the sequence (λν), then there exists a function L̃
holomorphic in the unit disk, satisfying (9), for which (λν) is zeros subsequence.

2. Proof of the main results.

Proof of Theorem 2. We have to construct a sequence Λ̃ := (λ̃ν) with the property (4) and
(7). For that we use Beck’s construction (see, for example, [5, 6]). It is an analogue of Miles’s
construction for entire functions [7]. We will repeat this process. We supplement the sequence
Λ with a sequence Λ∗ := (λ∗ν) as follows. Put Rm = 1 − 2−m, m ∈ N. Let us take those λν
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from Λ lying in the annulus {z : Rm ≤ |z| < Rm+1} for some fixed m. These are numbers
λν = |λν |eiθν , 0 ≤ θν < 2π, ν ∈ 1, p, p = n(Rm+1)− n(Rm). Define

sm(θ) := −2

p∑
ν=1

∞∑
n=1

(Rm−1/|λν |)nein(θ−θν);

hm(θ) := Re (sm(θ)) ; fm(θ) := hm(θ) +
2pRm

1−Rm

.

Then |hm(θ)| ≤ |sm(θ)| ≤ 2pRm

1−Rm
and 0 ≤ fm(θ) ≤ 4pRm

1−Rm
. Let lm = [ 1

2π

∫ 2π

0
fm(θ)dθ], where

[a] is the entire part of a. For every k, k ∈ 1, lm, by (θ∗k), k ∈ 1, lm we denote a monotonous
sequence such that 1

2π

∫ θ∗k
0
fm(θ)dθ = k. We make a sequence Λ∗ =

⋃
m≥2 Λ

∗
m, where Λ∗

m =

{Rm−1e
iθ∗k : k ∈ 1, lm}. Then Λ̃ = Λ ∪ Λ∗. (Note that if λν coincides with λ∗ν we will use

them once). By construction

lm ⩽
4pRm

1−Rm

=
4Rm(n(Rm+1)− n(Rm))

1−Rm

,

and therefore (here n∗(r) := n(r; Λ∗), ñ(r) := n(r; Λ̃)),

n∗(r) ≤
4rn

(
r+1
2

)
1− r

,

consequently ñ(r) ≤
(
1 + 4r

1−r

)
n
(
r+1
2

)
. Since for every σ ∈ (1; 1/s)

N (σs) ≥
∫ σs

s

n(t)

t
dt ≥ n(s) lnσ,

then n(s) ≤ 1
lnσ
N(σs). So,

ñ(r) ≤ 4

(1− r) lnσ
N

(
σ
r + 1

2

)
≤ 4A2

(1− r) lnσ
η

(
A2

1− σ r+1
2

)
≤ A′

2

(1− r)
η

(
A′

2

1− r

)
(11)

if σ = r+3
2(1+r)

.
In addition, the newly formed sequence satisfies condition (9). Really, let r1, r2 be arbi-

trary numbers from (0; 1) and r1 < r2. There exist such natural numbers p1 and p2, that

Rp1 ⩽ r1 < Rp1+1 < . . . < Rp2 ⩽ r2 < Rp2+1,

where Rk = 1 − 1
2k

, k ∈ N . The annulus U(0; r1; r2) is covering by annuli U(0;Rm;Rm+1),
where m ∈ [p1; p2]. For some positive constant A2, B2 there holds∣∣∣∣∣∣1k

∑
r1<|λ̃ν |⩽r2

1

λ̃kν

∣∣∣∣∣∣ ⩽ 1

k

∣∣∣∣∣∣
∑

r1<|λν |⩽Rp1+2

1

λkν

∣∣∣∣∣∣+ 1

k

∣∣∣∣∣∣
∑

Rp1+2<|λν |⩽Rp1+3

1

λkν
+

∑
|λ∗ν |=Rp1+1

1

λ∗ν
k

∣∣∣∣∣∣+ . . .+

+
1

k

∣∣∣∣∣∣
∑

Rp2−1<|λν |⩽Rp2

1

λkν
+

∑
|λ∗ν |=Rp2−2

1

λ∗ν
k

∣∣∣∣∣∣+ 1

k

∣∣∣∣∣∣
∑

Rp2<|λν |⩽r2

1

λkν
+

∑
|λ∗ν |=Rp2−1

1

λ∗ν
k

∣∣∣∣∣∣+
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+
1

k

∣∣∣∣∣∣
∑

|λ∗ν |=Rp2

1

λ∗kν

∣∣∣∣∣∣ ≤ 1

k

∣∣∣∣∣∣
∑

r1<|λν |⩽Rp1+2

1

λkν

∣∣∣∣∣∣+ 32

p2−1∑
j=p1+1

1

Rk
j

+
1

k

∣∣∣∣∣∣
∑

|λ∗ν |=Rp2

1

λ∗kν

∣∣∣∣∣∣ =
+
1

k

∣∣∣∣∣∣
∑

Rp2<|λν |⩽r2

1

λkν

∣∣∣∣∣∣ ≤ n(Rp1+2)

kr1k
+ 32

p2∑
j=p1+1

1

Rk
j

+
n (r2)− n(Rp2)

kr2k
,

because as proved in [5, 7],∣∣∣∣∣∣
∑

Rp1+j<|λν |≤Rp1+j+1

1

λkν
+

∑
|λ′ν |=Rp1+j−1

1

λ′kν

∣∣∣∣∣∣ ≤ 32k

Rk
p1+j−1

.

Moreover, Rp1+2 ≤ Rp2 ≤ r2, Rp1+2 ≤ Rp1+3

4
≤ r1+3

4
, Rp2+1 ≤ 1+r2

2
and since function

φ(t) = 1
tk

is decreasing, then

p2∑
j=p1+1

1

Rk
j

≤ 1

Rk
p1+1

+

∫ p2

p1+1

dt(
1−

(
1
2

)t)k =
1

rk1
+

1

ln 2

∫ Rp2

Rp1+1

dt

tk(1− t)
≤

≤ 1

rk1
+

1

rk1 ln 2

∫ r2

r1

dt

1− t
≤ 3

rk1
ln

1

1− r1
.

If β := r1
r2

≥ r1, then

1− r2k1
r2k2

= (1− β)(1 + β + β2 + ...+ β2k−1) ⩽ (1− β)2k ⩽ (1− r1)2k.

Thereby from (4) and inequality n(r) ≤ 2
1−rN

(
r+1
2

)
we obtain∣∣∣∣∣∣1k

∑
r1<|λ̃ν |⩽r2

1

λ̃kν

∣∣∣∣∣∣ ⩽ n (Rp1+2)

k

(
1

rk1
− 1

rk2

)
+

96

rk1
ln

1

1− r1
+
n(r2)

kr2k
≤

≤ 16

rk1
N

(
r1 + 7

8

)
+

96

rk1
ln

1

1− r1
+

2

k lnσ2rk2
N (σ2r2) ≤

≤ A2

r1k
η

(
B2

1− r1

)
+
A2

r2k
max

{
1;

1

k lnσ2

}
η

(
B2

1− σ2r2

)
.

The next we use Theorem C for the sequence Λ̃. But it should be noted, that in the
proof of theorem C (Theorem 2 in [4]) we, actually, use the condition n(r) ≤ 1

lnσ
η
(
A2

1−r

)
(see

Lemmas 3 – 5 from [4]). So, if the sequence Λ̃ satisfies conditions (7) and (11), there exists a
function L̃ holomorphic in the unit disk, satisfying (10). And (λν) is a subsequence of zeros
of function L̃.

Proof of Theorem 3. There are well known relations for holomorphic function L in the unit
disk (see, for example, [8], [9], p. 84) for some A > 0 and all R ∈ (r; 1)

ln |L(reiφ)| ⩽ AMp(R;L)(R− r)−1/p,
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where

Mp(R;L) =

(
1

2π

∫ 2π

0

∣∣ln |L(Reiφ)|∣∣p dφ)1/p

.

So, for the function L̃ from Theorem 2, when p = 2 and R = r+1
2

we have

ln |L̃(reiφ)| ⩽ 2A

(1− r)3/2
η

(
2A

1− r

)
. (12)

Now we prove the next assertion.
Lemma 1. If condition (5) holds for Λ then it also holds for Λ̃.

Proof. Since n∗
λn
(t) ⩽ c1nλn

(
t+1
2

)
for some c1 > 0, then for some A′

3 > 0, δ′ ∈ (δ; 1) one has

Ñλn(δ(1− |λn|)) =
∫ δ(1−|λn|)

0

ñλn(t)− 1

t
dt =

∫ δ(1−|λn|)

0

nλn(t)− 1

t
dt+

+

∫ δ(1−|λn|)

0

(n∗
λn
(t)− 1)+

t
dt ≤ Nλn(δ(1− |λn|)) + c1Nλn(δ

′(1− |λn|)) ≤ A′
3η

(
A′

3

1− |λn|

)
.

Proof of Theorem 1. If condition (4) holds then from Theorem 2 we have an existence of the
holomorphic function L̃ in U(0; 1) from class (10) which has simple zeros in (λ̃n). So, from
the Jensen equality for L̃(λn+ z) on a circle ∂U(λn; δ(1−|λn|)) for every δ > 0 there follows∫ δ(1−|λn|)

0

ñλn(t)− 1

t
dt =

1

2π

∫ 2π

0

ln |L̃(λn + δ(1− |λn|)eiφ)|dφ− ln
∣∣∣δ(1− |λn|)L̃′(λn)

∣∣∣ .
Then by Lemma 1 and inequality

1

2π

∫ 2π

0

∣∣∣ln |L̃(reiφ)|∣∣∣ dφ ≤
(

1

2π

∫ 2π

0

∣∣∣ln |L̃(reiφ)|∣∣∣2 dφ)1/2

≤ A

1− r
η

(
A

1− r

)
we have such an estimate

− ln
∣∣∣(1− |λn|)L̃′(λn)

∣∣∣ = Ñλn (δ(1− |λn|))−
1

2π

∫ 2π

0

ln |L̃(λn + δ(1− |λn|)eiφ)|dφ ≤

≤ A4

1− |λn|
η

(
A4

1− |λn|

)
. (13)

The next step of the proof is a construction of interpolation function. We will use methods
from [1], [3], [2]. Then

f(z) =
+∞∑
k=1

bn

L̃′(λn)

L̃(z)

(z − λn)

(
1− |λn|2

1− λ̄nz

)sn−1

,

where (sn) is a certain sequence of natural numbers which will be choose later.
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Since the function tη(t) is convex in ln t then from [10] it folllows an existence of the
entire function ψ such that (c0 ≥ 4(A2 + A4 + A1))

lnMψ(t) = (1 + o(1))c0tη(c0t), t→ +∞.

Since
µψ(t) ≤Mψ(t) ≤ (1 + 1/ε)µψ((1 + ε)t), ε > 0,

where µψ(t) = max{|ψn|tn} and ψn = ψ(n)(0)/n!, then

µψ(t) ≤ exp(2c0tη(c0t)), µψ(t) ≥ exp((c0/4)tη(c0t/2)), t ≥ t0. (14)

Let us choose (sn) such, that

χsn(ψ̂) ≤
1

1− |λn|
< χsn+1(ψ̂),

(here ψ̂(z) =
∑+∞

n=0 ψ̂nz
n is the Newton majorant of ψ, χn(ψ̂) = |ψ̂n−1/ψ̂n| ). Then [11]

µψ
(
(1− |λn|)−1

)
= ψ̂sn(1− |λn|)−sn , µψ(t) ≥ ψ̂snt

sn . (15)

So, from (3), (12)–(15) and relation (see, for example, [2])∣∣∣∣∣1− λnz

λn

L̃(z)

z − λn

∣∣∣∣∣ ≤ exp

(
2A

(1− r)3/2
η

(
A

1− r

))
we get

|f(z)| ≤ exp

(
2A

(1− r)3/2
η

(
A

1− r

)) ∞∑
n=1

|bn|
|(1− |λn|)L̃′(λn)|

ψ̂sn(2/(1− r))sn

ψ̂sn(1− |λn|)−sn
≤

≤ exp

(
2A

(1− r)3/2
η

(
A

1− r

)
+

2c0
(1− r)

η

(
2c0
1− r

))
×

×
∞∑
n=1

exp

(
A1η

(
A1

1− |λn|

)
+

A4

1− |λn|
η

(
A4

1− |λn|

)
− c0/4

1− |λn|
η

(
c0/2

1− |λn|

))
≤

≤ exp

(
A′

(1− r)3/2
η

(
A′

1− r

)) ∞∑
n=1

exp

(
− A2

1− |λn|
η

(
2A2

1− |λn|

))
≤

≤ exp

(
A′

(1− r)3/2
η

(
A′

1− r

)) ∞∑
n=1

exp(−n) ≤ exp

(
A′

(1− r)3/2
η

(
A′

1− r

))
.

Hence, the function f belongs to the class of holomorphic in the unit disk functions with
property (9).

Remark 3. We can see that a majorant of the class (9) differs from that’s one of the
class (2) by a multiplier 1

(1−r)3/2 , but in the case when η(t) = o(η(At)), (A > 1), as t →
∞, a multiplier 1

(1−r)3/2 does not play a role in the product 1
(1−r)3/2η(

1
1−r ). So, Theorem 1

complements Theorem B in a certain sense.
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Example 1. The function η(t) = tln t satisfies given conditions on the majorant η. In this
case, class (12) coincides with the class (2).

Example 2. The function η(t) = tln ln t satisfies given conditions too, and classes (12) and
(2) coincide.

Acknowledgment. The author thank to prof. I. Chyzhykov for the advice that improved
result and to the referee for valid comments that made it possible to improve the paper.
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11. G. Polya, G. Szegö, Aufgaben und Lesätze aus der Analysis, Bd.II, Springer-Verlag, Berlin-Göttingen-

Heidelberg-New York, 1964.
12. L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921–

930.
13. P. Jones, Carleson measures and the Fefferman-Stein decomposition of BMO(R), Ann. Math., 111

(1980), 197–208.
14. K. Seip, Beurling type density theorems in the unit disc, Invent. Math., 113 (1993), 21–39.
15. A. Hartmann, X. Massaneda, Interpolating sequences for holomorphic functions of restricted growth, Ill.

J. Math., 46 (2002), №3, 929–945.
16. A. Borichev, R. Dhuez, K. Kellay, Sampling and interpolation in large Bergman and Fock space, J. Funct.

Analysis, 242 (2007), 563–606.

Drohobych Ivan Franko State Pedagogical University
Drohobych, Ukraine
irsheparovych@gmail.com

Received 08.02.2024

Revised 11.06.2024


