УДК 512.536

O. V. GUTIK, M. B. KHYLYNSKYI

ON LOCALLY COMPACT SHIFT CONTINUOUS TOPOLOGIES ON THE SEMIGROUP $B_{[0,\infty)}$ WITH AN ADJOINED COMPACT IDEAL

O. V. Gutik, M. B. Khylynskyi. On locally compact shift continuous topologies on the semigroup $B_{[0,\infty)}$ with an adjoined compact ideal, Mat. Stud. **61** (2024), 10–21.

Let $[0,\infty)$ be the set of all non-negative real numbers. The set $B_{[0,\infty)} = [0,\infty) \times [0,\infty)$ with the following binary operation $(a,b)(c,d) = (a + c - \min\{b,c\}, b + d - \min\{b,c\})$ is a bisimple inverse semigroup. In the paper we study Hausdorff locally compact shift-continuous topologies on the semigroup $B_{[0,\infty)}$ with an adjoined compact ideal of the following tree types. The semigroup $B_{[0,\infty)}$ with the induced usual topology τ_u from \mathbb{R}^2 , with the topology τ_L which is generated by the natural partial order on the inverse semigroup $B_{[0,\infty)}$, and the discrete topology are denoted by $B_{[0,\infty)}^1$, $B_{[0,\infty)}^2$, and $B_{[0,\infty)}^{\mathfrak{d}}$, respectively. We show that if S_1^I (S_2^I) is a Hausdorff locally compact semitopological semigroup $B_{[0,\infty)}^1$ ($B_{[0,\infty)}^2$) with an adjoined compact ideal I then either I is an open subset of S_1^I (S_2^I) or the topological space S_1^I (S_2^I) is compact. As a corollary we obtain that the topological space of a Hausdorff locally compact shift-continuous topology on $S_0^1 = B_{[0,\infty)}^1 \cup \{0\}$ (resp. $S_0^2 = B_{[0,\infty)}^2 \cup \{0\}$) with an adjoined zero $\mathbf{0}$ is either homeomorphic to the one-point Alexandroff compactification of the topological space $B_{[0,\infty)}^1$ (resp. $B_{[0,\infty)}^2$) or zero is an isolated point of S_0^1 (resp. S_0^2). Also, we proved that if S_0^I is a Hausdorff locally compact semitopological semigroup $B_{[0,\infty)}^{\mathfrak{d}}$ with an adjoined compact ideal I then I is an open subset of S_0^I .

1. Introduction and preliminaries. In this paper we shall follow the terminology of [13, 14, 15, 16, 18, 32, 35].

A semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse of* $x \in S$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*. On an inverse semigroup S the semigroup operation determines the following partial order $\preccurlyeq : s \preccurlyeq t$ if and only if there exists $e \in E(S)$ such that s = te. This partial order is called the natural partial order on S.

Remark 1. For arbitrary elements s, t of an inverse semigroup S the following conditions are equivalent (see [32, Chap. 3]):

$$(\alpha) \ s \preccurlyeq t; \quad (\beta) \ s = ss^{-1}t; \quad (\gamma) \ s = ts^{-1}s.$$

C O. V. Gutik, M. B. Khylynskyi, 2024

²⁰²⁰ Mathematics Subject Classification: 22A15.

Keywords: semigroup; semitopological semigroup; topological semigroup; locally compact; compact ideal; adjoined zero; remainder; one-point Alexandroff compactification; isolated point. doi:10.30970/ms.61.1.10-21

A topological space X is called *locally compact* if every poin x of X has an open neighbourhood with the compact closure.

A (*semi*)*topological semigroup* is a topological space with a (separately) continuous semigroup operation. An inverse topological semigroup with continuous inversion is called a *topological inverse semigroup*.

A topology τ on a semigroup S is called:

- a semigroup topology if (S, τ) is a topological semigroup;
- an *inverse semigroup* topology if (S, τ) is a topological inverse semigroup;
- a shift-continuous topology if (S, τ) is a semitopological semigroup.

The bicyclic monoid $\mathscr{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The semigroup operation on $\mathscr{C}(p,q)$ is determined as follows:

$$q^{k}p^{l} \cdot q^{m}p^{n} = q^{k+m-\min\{l,m\}}p^{l+n-\min\{l,m\}}$$

It is well known that the bicyclic monoid $\mathscr{C}(p,q)$ is a bisimple (and hence simple) combinatorial *E*-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p,q)$ is a group congruence [15].

The bicyclic monoid admits only the discrete semigroup Hausdorff topology [17]. Bertman and West in [12] extended this result for the case of Hausdorff semitopological semigroups. If a Hausdorff (semi)topological semigroup T contains the bicyclic monoid $\mathscr{C}(p,q)$ as a dense proper semigroup then $T \setminus \mathscr{C}(p,q)$ is a closed ideal of T [17, 23]. Moreover, the closure of $\mathscr{C}(p,q)$ in a locally compact topological inverse semigroup can be obtained (up to isomorphism) from $\mathscr{C}(p,q)$ by adjoining the additive group of integers in a suitable way [17].

Stable and Γ -compact topological semigroups do not contain the bicyclic monoid [5, 30, 31]. The problem of embedding the bicyclic monoid into compact-like topological semigroups was studied in [6, 7, 11, 29].

In [1] Ahre considered the following semigroup. Let $[0, \infty)$ be the set of all non-negative real numbers. The set $\boldsymbol{B}_{[0,\infty)} = [0,\infty) \times [0,\infty)$ with the following binary operation

$$(a,b)(c,d) = (a+c-\min\{b,c\}, b+d-\min\{b,c\}) = \begin{cases} (a+c-b,d), & \text{if } b < c;\\ (a,d), & \text{if } b = c;\\ (a,b+d-c), & \text{if } b > c \end{cases}$$

is a bisimple inverse semigroup. The semigroup $B_{[0,\infty)}$ and the bicyclic monoid $\mathscr{C}(p,q)$ are partial cases of bicyclic extensions of linearly ordered groups which are presented in [19, 20, 21, 28]. It is obvious that semigroup $B_{[0,\infty)}$ is isomorphic to the semigroup of partial bijections, namely as the semigroup of shifts of closed rays in the half-line (see [28]). This representation shows the closed relation of the semigroup $B_{[0,\infty)}$ to the bicyclic semigroup, which also has a similar representation by shifts of rays in the set of positive integers.

By $\boldsymbol{B}_{[0,\infty)}^1$ we denote the semigroup $\boldsymbol{B}_{[0,\infty)}$ with the usual topology. It is obvious that $\boldsymbol{B}_{[0,\infty)}^1$ is a locally compact topological inverse semigroup [1]. In [2, 3] it is shown that the closure of $\boldsymbol{B}_{[0,\infty)}^1$ in a locally compact topological inverse semigroup can be obtained (up to isomorphism) from $\boldsymbol{B}_{[0,\infty)}^1$ by adjoining the additive group of reals in a suitable way.

For any non-negative real number α we denote the following subsets in $B_{[0,\infty)}$:

$$L_{\alpha}^{+} = \{(x, x + \alpha) \colon x \ge 0\} \quad \text{and} \quad L_{\alpha}^{-} = \{(x + \alpha, x) \colon x \ge 0\}.$$

It obvious that $B_{[0,\infty)} = \bigsqcup_{\alpha \ge 0} L_{\alpha}^+ \sqcup \bigsqcup_{\alpha > 0} L_{\alpha}^-$ and $L_0^+ = L_0^-$. Put τ_L be a topology on $B_{[0,\infty)}$

which is generating by the bases

and

$$\mathcal{B}(x, x + \alpha) = \{ U_{\varepsilon}(x, x + \alpha) = \{ (x + y, x + y + \alpha) \in L_{\alpha}^{+} \colon |y| < \varepsilon \} \colon \varepsilon > 0 \}$$

$$\mathcal{B}(x+\alpha,x) = \{U_{\varepsilon}(x+\alpha,x) = \{(x+y+\alpha,x+y) \in L_{\alpha}^{-} \colon |y| < \varepsilon\} : \varepsilon > 0\}$$

at any points $(x, x+\alpha) \in L^+_{\alpha}$ and $(x+\alpha, x) \in L^-_{\alpha}$, respectively, for arbitrary $\alpha \in [0, +\infty)$. The semigroup $\boldsymbol{B}_{[0,\infty)}$ with the topology τ_L is denoted by $\boldsymbol{B}^2_{[0,\infty)}$. The definitions of the topology τ_L and the natural partial order on $\boldsymbol{B}_{[0,\infty)}$ imply that τ_L is generated by the natural partial order of $\boldsymbol{B}_{[0,\infty)}$ (see [22]). We observe that $\boldsymbol{B}^2_{[0,\infty)}$ is a Hausdorff locally compact topological inverse semigroup [4]. Moreover for any non-negative real number α , L^+_{α} and L^-_{α} are openand-closed subsets of $\boldsymbol{B}^2_{[0,\infty)}$ which are homeomorphic to $[0, +\infty)$ with the usual topology, i.e.,

$${oldsymbol B}^2_{[0,\infty)}=igoplus_{lpha\geqslant 0}L^+_lpha\oplusigoplus_{lpha>0}L^-_lpha.$$

The closure of the topological inverse semigroup $B^2_{[0,\infty)}$ in (locally compact) topological semigroups is studied in [4].

By $B^{\mathfrak{d}}_{[0,\infty)}$ we denote the semigroup $B_{[0,\infty)}$ with the discrete topology. It is obvious that $B^{\mathfrak{d}}_{[0,\infty)}$ is a locally compact topological inverse semigroup.

In the paper [23] it is proved that every Hausdorff locally compact shift-continuous topology on the bicyclic monoid with adjoined zero is either compact or discrete. This result was extended by Bardyla onto the a polycyclic monoid [8] and graph inverse semigroups [9], and by Mokrytskyi onto the monoid of order isomorphisms between principal filters of \mathbb{N}^n with adjoined zero [34]. In [24] the results of the paper [23] were extended to the monoid IN_{∞} of all partial cofinite isometries of positive integers with adjoined zero. In [27] the similar dichotomy was proved for so called bicyclic extensions $B^{\mathscr{F}}_{\omega}$ when a family \mathscr{F} consists of inductive non-empty subsets of ω . Algebraic properties on a group G such that if the discrete group G has these properties then every locally compact shift continuous topology on G with adjoined zero is either compact or discrete studied in [33]. Also, in [26] it is proved that the extended bicyclic semigroup $\mathscr{C}^0_{\mathbb{Z}}$ with adjoined zero admits continuum many shiftcontinuous topologies, however every Hausdorff locally compact semigroup topology on $\mathscr{C}^0_{\mathbb{Z}}$ is discrete. In [10] Bardyla proved that a Hausdorff locally compact semitopological McAlister semigroup \mathcal{M}_1 is either compact or discrete. However, this dichotomy does not hold for the McAlister semigroup \mathcal{M}_2 and moreover, \mathcal{M}_2 admits continuum many different Hausdorff locally compact inverse semigroup topologies [10].

In this paper we extend the results of paper [23] onto the topological monoids $\boldsymbol{B}_{[0,\infty)}^1$ and $\boldsymbol{B}_{[0,\infty)}^2$. In particular we show that if S_1^I (S_2^I) is a Hausdorff locally compact semitopological semigroup $\boldsymbol{B}_{[0,\infty)}^1$ ($\boldsymbol{B}_{[0,\infty)}^2$) with an adjoined compact ideal I then either I is an open subset of S_1^I (S_2^I) or the semigroup S_1^I (S_2^I) is compact. Also, we proved that if $S_{\mathfrak{d}}^I$ is a Hausdorff locally compact ideal I then I is an open subset is an open subset of subset of subset semitopological semigroup $\boldsymbol{B}_{[0,\infty)}^{\mathfrak{d}}$ with an adjoined compact ideal I then I is an open subset of $S_{\mathfrak{d}}^I$.

2. A locally compact semigroup $B_{[0,\infty)}^1$ with an adjoined compact ideal. Later in this section by S_1^I we denote a Hausdorff locally compact semitopological semigroup which is the semigroup $B_{[0,\infty)}^1$ with an adjoined non-open compact ideal I.

Lemma 1. Let S be a Hausdorff locally compact semitopological semigroup with a compact ideal I. Then for any open neighbourhood U(I) of the ideal I and any $x \in S$ there exists an open neighbourhood V(I) of I with the compact closure $\overline{V(I)}$ such that $x \cdot V(I) \subseteq U(I)$ and $V(I) \cdot x \subseteq U(I)$.

Proof. Fix an arbitrary open neighbourhood U(I) of the ideal I and any $x \in S$. Since I is an ideal of S, for any $\alpha \in I$ there exists $\beta \in I$ such that $x \cdot \alpha = \beta$. Since U(I) is an open neighbourhood of β , separate continuity of the semigroup operation in S implies that there exists an open neighbourhood $V(\alpha)$ of α in S such that $x \cdot V(\alpha) \subseteq U(I)$. The local compactness of the space S implies that without loss of generality we may assume that the neighbourhood $V(\alpha)$ has the compact closure $\overline{V(\alpha)}$. Then the family $\{V(\alpha) : \alpha \in I\}$ is an open cover of I. Since I is compact, $I \subseteq V(\alpha_1) \cup \ldots \cup V(\alpha_n)$ for finitely many $\alpha_1, \ldots, \alpha_n \in I$. Put $V_1(I) = V(\alpha_1) \cup \ldots \cup V(\alpha_n)$. Then $\overline{V_1(I)} = \overline{V(\alpha_1)} \cup \ldots \cup \overline{V(\alpha_n)}$ is a compact subset of S such that $x \cdot V_1(I) \subseteq U(I)$. Similarly we get that there exists an open neighbourhood $V_2(I)$ of I with the compact closure $\overline{V_2(I)}$ such that $V_2(I) \cdot x \subseteq U(I)$. Put $V(I) = V_1(I) \cap V_2(I)$. Then V(I) is an open neighbourhood of I with the compact closure $\overline{V_2(I)}$ such that $x \cdot V(I) \subseteq U(I)$ and $V(I) \cdot x \subseteq U(I)$.

A subset A of $B_{[0,\infty)}$ is called *unbounded* if for any positive real number a there exist $(x, y) \in A$ such that $x \ge a$ and $y \ge a$.

Lemma 2. For any open neighbourhood U(I) of the ideal I in S_1^I the set $U(I) \cap \mathbf{B}_{[0,\infty)}$ is unbounded.

Proof. Suppose to the contrary that there exists a positive real number m such that x < m or y < m for any $(x, y) \in U(I) \cap \mathbf{B}_{[0,\infty)}$. Lemma 1 implies that there exists an open neighbourhood $V(I) \subseteq U(I)$ of I such that $V(I) \cdot (0, 2m) \subseteq U(I)$. Again, by Lemma 1, there exists an open neighbourhood $W(I) \subseteq V(I)$ of I such that $(2m, 0) \cdot W(I) \subseteq V(I)$. Then choose any $(x, y) \in W(I) \setminus I$ and observe that (a, b) = (2m, 0)(x, y)(0, 2m) has the desired property: $\min\{a, b\} \ge m$. The obtained contradiction implies the statement of the lemma.

Proposition 1. For any open neighbourhood U(I) of the ideal I in S_1^I there exists a compact subset $A_a = [0, a] \times [0, a]$ in $\mathbf{B}_{[0,\infty)}^1$ such that $S_1^I \setminus U(I) \subseteq A_a$.

Proof. Suppose to the contrary that there exists an open neighbourhood U(I) of the ideal I in S_1^I such that $S_1^I \setminus U(I) \notin A_n$ for any positive integer n. By Lemma 1 without loss of generality we may assume that the closure $\overline{U(I)}$ is a compact subset of S_1^I . By Lemma 2 the set $U(I) \cap \mathbf{B}_{[0,\infty)}$ is unbounded in $\mathbf{B}_{[0,\infty)}$. Since $\mathbf{B}_{[0,\infty)}^1 \cap U(I)$ is an open subset in $\mathbf{B}_{[0,\infty)}^1$, the assumption of the proposition implies that for any positive integer n there exists an element $(x_n, y_n) \in \overline{U(I)} \setminus U(I)$ such that $(x_n, y_n) \notin A_n$. This implies that the set $\overline{U(I)} \setminus U(I)$ is unbounded in $\mathbf{B}_{[0,\infty)}$, a contradiction.

Proposition 1 implies the following theorem.

Theorem 1. Let S_1^I be a Hausdorff locally compact semitopological semigroup $\boldsymbol{B}_{[0,\infty)}^1$ with an adjoined compact ideal *I*. Then either *I* is an open subset of S_1^I or the space S_1^I is compact.

Example 1 and Proposition 2 show that if the ideal I of the semigroup S_1^I is trivial, i.e., the ideal I is a singleton, then the semigroup S_1^I admits the unique Hausdorff compact shift-continuous topology.

Example 1. Let S_1^0 be the semigroup $B_{[0,\infty)}^1$ with an adjoint zero **0**. We extend the topology of $B^1_{[0,\infty)}$ up to a compact topology τ^1_{Ac} on S^0_1 in the following way. We define

$$\mathscr{B}^{1}_{\mathsf{Ac}}(\mathbf{0}) = \{ U_{n}(\mathbf{0}) = \{ 0 \} \cup \{ (x, y) \colon x > n \text{ or } y > n \} : n \in \mathbb{N} \}$$

is the system of open neighbourhoods of zero in τ_{Ac}^1 .

Proposition 2. (S_1^0, τ_{Ac}^1) is a compact Hausdorff semitopological semigroup with continuous inversion.

Proof. By [2, 3], $B^1_{[0,\infty)}$ is a topological inverse semigroup, and hence it sufficient to show that the semigroup operation on (S_1^0, τ_{Ac}^1) is separately continuous at zero.

It is obvious that $\mathbf{0} \cdot U_n(\mathbf{0}) = U_n(\mathbf{0}) \cdot \mathbf{0} = \{\mathbf{0}\} \subseteq U_n(\mathbf{0})$ for any positive integer n.

Next we shall show that $(x, y) \cdot U_{2n}(\mathbf{0}) \subseteq U_n(\mathbf{0})$ for any positive integer $n > \max\{x, y\} + 1$. We consider the possible cases.

1. Suppose that a > 2n. Then for any $b \in \mathbb{R}$ the equality

$$(x,y)(a,b) = \begin{cases} (x-y+a,b), & \text{if } y < a; \\ (x,b), & \text{if } y = a; \\ (x,y-a+b), & \text{if } y > a, \end{cases}$$
(1)

x;x;

implies that (x, y)(a, b) = (x - y + a, b). By the assumptions $n > \max\{x, y\} + 1$ and a > 2n, we get that x - y + a > -n + 2n = n, and hence $(x - y + a, b) \in U_n(\mathbf{0})$.

2. Suppose that $n \leq a \leq 2n$ and b > 2n. By (1) we have that (x, y)(a, b) = (x - y + a, b). The assumption $n > \max\{x, y\} + 1$ implies that x - y + a > -n + n = 0. Since b > 2n we get that $(x - y + a, b) \in U_n(\mathbf{0})$.

3. Suppose that $0 \leq a < n$ and b > 2n. By (1) we have that

$$(x, y)(a, b) = (x - y + a, b) \in U_n(\mathbf{0})$$

in the case when y < a, and if $y \ge a$ then y - a + b > 2n, and hence $(x, y - a + b) \in U_n(\mathbf{0})$. Similar arguments and the equality

$$(a,b)(x,y) = \begin{cases} (a-b+x,y), & \text{if } b < x; \\ (a,y), & \text{if } b = x; \\ (a,b-x+y), & \text{if } b > x, \end{cases}$$

imply that for any positive integer $n > \max\{x, y\} + 1$ the inclusion $U_{2n}(\mathbf{0}) \cdot (x, y) \subseteq U_n(\mathbf{0})$ holds. The above inclusions imply that the semigroup operation on (S_1^0, τ_{Ac}^1) is separate continuous.

Since $(U_n(\mathbf{0}))^{-1} = U_n(\mathbf{0})$ for any $n \in \mathbb{N}$ the inversion on $(S_1^{\mathbf{0}}, \tau_{\mathsf{Ac}}^1)$ is continuous.

It is obvious that τ_{Ac}^1 is a compact Hausdorff topology on S_1^0 . Moreover (S_1^0, τ_{Ac}^1) is the one-point Alexandroff compactification of the locally compact space $B^1_{[0,\infty)}$ such that the singleton set $\{0\}$ which consists of the zero of S_1^0 is its remainder.

Theorem 1 and Proposition 2 imply the following theorem.

Theorem 2. Let S_1^0 be a Hausdorff locally compact semitopological semigroup $B_{[0,\infty)}^1$ with an adjoined zero **0**. Then either **0** is an isolated point of S_1^0 or the topology of S_1^0 coincides with τ_{Ac}^1 .

Since the bicyclic monoid does not embeds into any Hausdorff compact topological semigroup [5] and the semigroup contains many isomorphic copies of the bicyclic semigroup, Theorems 1 and 2 imply the following corollaries.

Corollary 1. Let S_1^I be a Hausdorff locally compact topological semigroup $B_{[0,\infty)}^1$ with an adjoined compact ideal *I*. Then *I* is an open subset of S_1^I .

Corollary 2. Let S_1^0 be a Hausdorff locally compact topological semigroup $B_{[0,\infty)}^1$ with an adjoined zero **0**. Then **0** is an isolated point of S_1^0 .

3. A locally compact semigroup $B_{[0,\infty)}^2$ with an adjoined compact ideal. Later in this section by S_2^I we denote a Hausdorff locally compact semitopological semigroup which is the semigroup $B_{[0,\infty)}^2$ with an adjoined non-open compact ideal I.

The proof of Lemma 3 is similar to Lemma 2.

Lemma 3. For any open neighbourhood U(I) of the ideal I in S_1^I the set $U(I) \cap \mathbf{B}_{[0,\infty)}$ is unbounded.

Lemma 4. Let U(I) be any open neighbourhood of the ideal I in S_2^I with the compact closure $\overline{U(I)}$. Then there exist finite subsets B and C of non-negative real numbers such that

$$S_2^I \setminus U(I) \subseteq \bigsqcup_{\alpha \in B} L_{\alpha}^+ \sqcup \bigsqcup_{\alpha \in C} L_{\alpha}^-.$$

Proof. Since $\overline{U(I)} \setminus U(I)$ is compact subset in S_2^I , $\overline{U(I)} \setminus U(I)$ is compact subset in $\boldsymbol{B}_{[0,\infty)}^2$. The equality $\boldsymbol{B}_{[0,\infty)}^2 = \bigoplus_{\alpha \in [0,+\infty)} L_{\alpha}^+ \bigoplus_{\alpha \in (0,+\infty)} L_{\alpha}^-$ implies the statement of the lemma. \Box

Lemma 5. For any non-negative real number α the sets $L^+_{\alpha} \cup I$ and $L^-_{\alpha} \cup I$ are compact.

Proof. First we show that there exists a non-negative real number α_0 such that the sets $L^+_{\alpha_0} \cup I$ and $L^-_{\alpha_0} \cup I$ are compact. We fix an arbitrary open neighbourhood U(I) of the ideal I in S_2^I . By Lemma 4 $L^+_{\alpha} \cup L^-_{\alpha} \subseteq U(I)$ for almost all but finitely many $\alpha \in [0, +\infty)$. Without loss of generality we may assume that the closure $\overline{U(I)}$ of U(I) is a compact subset of S_2^I . Fix $\alpha_0 \in [0, +\infty)$ such that $L^+_{\alpha_0} \cup L^-_{\alpha_0} \subseteq U(I)$. Since $L^+_{\alpha_0}$ and $L^-_{\alpha_0}$ are open subsets of S_2^I , we get that

$$L^+_{\alpha} \cup I = S^I_2 \setminus \left(\bigcup_{\alpha_0 \neq \alpha \ge 0} L^+_{\alpha} \cup \bigcup_{\alpha > 0} L^-_{\alpha} \right) \quad \text{and} \quad L^-_{\alpha} \cup I = S^I_2 \setminus \left(\bigcup_{\alpha > 0} L^+_{\alpha} \cup \bigcup_{\alpha_0 \neq \alpha \ge 0} L^-_{\alpha} \right)$$

are closed subsets of $\overline{U(I)}$, and hence they are compact.

We observe that

 $(x, x + \alpha_0) \cdot (\alpha_0, \alpha) = (x, x + \alpha)$ and $(\alpha, \alpha_0) \cdot (x + \alpha_0, x) = (x + \alpha, x)$

in $\boldsymbol{B}_{[0,\infty)}$ for any non-negative real numbers α , α_0 and x. This implies that $\rho_{(\alpha_0,\alpha)}(L_{\alpha_0}^+) = L_{\alpha}^+$ and $\lambda_{(\alpha,\alpha_0)}(L_{\alpha_0}^-) = L_{\alpha}^-$, where $\rho_{(\alpha_0,\alpha)} \colon S_2^I \to S_2^I$ and $\lambda_{(\alpha,\alpha_0)} \colon S_2^I \to S_2^I$ are right and left shifts on elements (α_0, α) and (α, α_0) , respectively. Since S_2^I is a semitopological semigroup, the sets $\rho_{(\alpha_0,\alpha)}(L_{\alpha_0}^+ \cup I) \cup I = L_{\alpha}^+ \cup I$ and $\lambda_{(\alpha,\alpha_0)}(L_{\alpha_0}^- \cup I) \cup I = L_{\alpha}^- \cup I$ are compact. \Box

Lemma 6. Let U(I) be any open neighbourhood of the ideal I in S_2^I with compact closure $\overline{U(I)}$. Then for any non-negative real number α the sets $L^+_{\alpha} \setminus U(I)$ and $L^-_{\alpha} \setminus U(I)$ are compact.

Proof. By Lemma 5 for any non-negative real number α the sets $L^+_{\alpha} \cup I$ and $L^-_{\alpha} \cup I$ are compact. Since $L^+_{\alpha} \setminus U(I)$ and $L^-_{\alpha} \setminus U(I)$ are closed subsets of $L^+_{\alpha} \cup I$ and $L^-_{\alpha} \cup I$, they are compact.

Lemmas 3, 4, 5, and 6 imply the following theorem.

Theorem 3. Let S_2^I be a Hausdorff locally compact semitopological semigroup $\boldsymbol{B}_{[0,\infty)}^2$ with an adjoined compact ideal *I*. Then either *I* is an open subset of S_2^I or the space S_2^I is compact.

Next we need some notions for the further construction. For the natural partial order \preccurlyeq on the semigroup $B_{[0,\infty)}$ and any $(a,b) \in B_{[0,\infty)}$ we denote

$$\uparrow_{\preccurlyeq}(a,b) = \left\{ (x,y) \in \boldsymbol{B}_{[0,\infty)} \colon (a,b) \preccurlyeq (x,y) \right\};$$
$$\downarrow_{\preccurlyeq}(a,b) = \left\{ (x,y) \in \boldsymbol{B}_{[0,\infty)} \colon (x,y) \preccurlyeq (a,b) \right\};$$
$$\downarrow_{\preccurlyeq}^{\circ}(a,b) = \downarrow_{\preccurlyeq}(a,b) \setminus \{(a,b)\}.$$

The following statement describes the natural partial order \preccurlyeq on the semigroup $B_{[0,\infty)}$ and it follows from Lemma 1 of [25].

Lemma 7. Let (a, b) and (c, d) be arbitrary elements of the semigroup $B_{[0,\infty)}$. Then the following statements are equivalent:

- (i) $(a,b) \preccurlyeq (c,d);$
- (*ii*) $a \ge c$ and a b = c d;
- (*iii*) $b \ge d$ and a b = c d.

Lemma 7 implies that for any non-negative real number α the set L^+_{α} coincides with all elements of $\mathbf{B}_{[0,\infty)}$ which are comparable with $(0,\alpha)$, and the set L^-_{α} coincides with all elements of $\mathbf{B}_{[0,\infty)}$ which are comparable with $(\alpha, 0)$ with the respect to the natural partial order \preccurlyeq on the semigroup $\mathbf{B}_{[0,\infty)}$. Hence we have that $L^+_{\alpha} = \downarrow_{\preccurlyeq}(0,\alpha)$ and $L^-_{\alpha} = \downarrow_{\preccurlyeq}(\alpha, 0)$.

Simple calculations and routine verifications show the following proposition.

Proposition 3. Let α and β be non-negative real numbers. Then the following statements hold:

(i) $L^+_{\alpha} \cdot L^+_{\beta} = L^+_{\alpha+\beta};$

$$(ii) \ L^{-}_{\alpha} \cdot L^{-}_{\beta} = L^{-}_{\alpha+\beta}$$

(*iii*)
$$L^+_{\alpha} \cdot L^-_{\beta} = \begin{cases} L^+_{\alpha-\beta}, & \text{if } \alpha \ge \beta; \\ L^-_{\beta-\alpha}, & \text{if } \alpha \leqslant \beta; \end{cases}$$

 $(iv) \ L_{\beta}^{-} \cdot L_{\alpha}^{+} = \downarrow_{\preccurlyeq}(\beta, \alpha) \subseteq \begin{cases} L_{\alpha-\beta}^{+}, & \text{if } \alpha \ge \beta; \\ L_{\beta-\alpha}^{-}, & \text{if } \alpha \leqslant \beta. \end{cases}$

Lemma 8. For arbitrary $(a_0, b_0), (a_1, b_1) \in \mathbf{B}_{[0,\infty)}$ there exists $(c, d) \in \mathbf{B}_{[0,\infty)}$ such that $(a_0, b_0) \cdot (c, d) \preccurlyeq (a_1, b_1) [(c, d) \cdot (a_0, b_0) \preccurlyeq (a_1, b_1)].$

Moreover, $(a_0, b_0) \cdot (x, y) \preccurlyeq (a_1, b_1) [(x, y) \cdot (a_0, b_0) \preccurlyeq (a_1, b_1)]$ for any $(x, y) \preccurlyeq (c, d)$ in $B_{[0,\infty)}$.

Proof. We assume that $c \ge a_1 + a_0 + b_0$ and $d = a_0 + c - b_0 - a_1 + b_1$. The semigroup operation of $B_{[0,\infty)}$ implies that

$$(a_0, b_0) \cdot (c, d) = (a_0, b_0) \cdot (c, a_0 + c - b_0 - a_1 + b_1) = (a_0 - b_0 + c, a_0 + c - b_0 - a_1 + b_1)$$

Then $a_0 - b_0 + c \ge a_1$ and

 $(a_0 - b_0 + c) - (a_0 + c - b_0 - a_1 + b_1) = a_0 - b_0 + c - a_0 - c + b_0 + a_1 - b_1 = a_1 - b_1,$

and hence by Lemma 7 we get that $(a_0, b_0) \cdot (c, d) \preccurlyeq (a_1, b_1)$. The last statement of the lemma follows from Proposition 1.4.7 of [32]. The proof of the dual statement is similar.

Lemma 8 implies the following proposition.

Proposition 4. If $(a_0, b_0) \cdot \downarrow_{\preccurlyeq} (c_0, d_0) \subseteq \downarrow_{\preccurlyeq} (a_1, b_1) [\downarrow_{\preccurlyeq} (c_0, d_0) \cdot (a_0, b_0) \subseteq \downarrow_{\preccurlyeq} (a_1, b_1)]$ for some $(a_0, b_0), (a_1, b_1), (c_0, d_0) \in \mathbf{B}_{[0,\infty)}$, then

$$(a_0, b_0) \cdot \downarrow^{\circ}_{\preccurlyeq}(c_0, d_0) \subseteq \downarrow^{\circ}_{\preccurlyeq}(a_1, b_1) \left[\downarrow^{\circ}_{\preccurlyeq}(c_0, d_0) \cdot (a_0, b_0) \subseteq \downarrow^{\circ}_{\preccurlyeq}(a_1, b_1) \right].$$

Example 2. Let $S_2^{\mathbf{0}}$ be the semigroup $\boldsymbol{B}_{[0,\infty)}^2$ with an adjoined zero $\mathbf{0}$. We extend the topology of $\boldsymbol{B}_{[0,\infty)}^2$ up to a compact topology τ_{Ac}^2 on the semigroup $S_2^{\mathbf{0}}$ in the following way. For any $(a_1, b_1), \ldots, (a_k, b_k) \in \boldsymbol{B}_{[0,\infty)}^1$ we put

$$U_{\mathbf{0}}[(a_1, b_1), \dots, (a_k, b_k)] = S_2^{\mathbf{0}} \setminus (\uparrow_{\preccurlyeq}(a_1, b_1) \cup \dots \cup \uparrow_{\preccurlyeq}(a_k, b_k))$$

and define

$$\mathscr{B}^{2}_{\mathsf{Ac}}(\mathbf{0}) = \left\{ U_{\mathbf{0}}[(a_{1}, b_{1}), \dots, (a_{k}, b_{k})] \colon (a_{1}, b_{1}), \dots, (a_{k}, b_{k}) \in \mathbf{B}_{[0, \infty)}, k \in \mathbb{N} \right\}$$

is the system of open neighbourhoods of zero in τ_{Ac}^2 .

Proposition 5. (S_2^0, τ_{Ac}^2) is a compact Hausdorff semitopological semigroup with continuous inversion.

Proof. It is obvious that τ_{Ac}^2 is a compact Hausdorff topology on S_2^0 . Moreover (S_2^0, τ_{Ac}^2) is the one-point Alexandroff compactification of the locally compact space $B_{[0,\infty)}^2$ such that the singleton set $\{0\}$ which consists of the zero of S_2^0 is its remainder.

By [4], $B_{[0,\infty)}^2$ is a topological inverse semigroup, and hence it sufficient to show that the the semigroup operation on (S_2^0, τ_{Ac}^2) is separately continuous at zero.

Fix an arbitrary $U_{\mathbf{0}}[(a_1, b_1), \ldots, (a_k, b_k)] \in \mathscr{B}^2_{\mathsf{Ac}}(\mathbf{0}).$

It is obvious that

$$\mathbf{0} \cdot U_{\mathbf{0}}[(a_1, b_1), \dots, (a_k, b_k)] = U_{\mathbf{0}}[(a_1, b_1), \dots, (a_k, b_k)] \cdot \mathbf{0} = \{\mathbf{0}\} \subseteq U_{\mathbf{0}}[(a_1, b_1), \dots, (a_k, b_k)].$$

By Lemma 8 for an arbitrary $(a, b) \in \mathbf{B}_{[0,\infty)}$ there exist

$$(c_1, d_1), \ldots, (c_k, d_k), (x_1, y_1), \ldots, (x_k, y_k) \in \mathbf{B}_{[0,\infty)}$$

such that $(a,b) \cdot (c_i, d_i) \preccurlyeq (a_i, b_i)$ and $(x_i, y_i) \cdot (a, b) \preccurlyeq (a_i, b_i)$ for all $i = 1, \ldots, k$. By Proposition 4 we have that $(a,b) \cdot \downarrow_{\preccurlyeq}^{\diamond}(c_i, d_i) \subseteq \downarrow_{\preccurlyeq}^{\diamond}(a_i, b_i)$ and $\downarrow_{\preccurlyeq}^{\diamond}(x_i, y_i) \cdot (a, b) \subseteq \downarrow_{\preccurlyeq}^{\diamond}(a_i, b_i)$ for all $i = 1, \ldots, k$. This and Proposition 3 imply that

$$(a,b) \cdot U_{\mathbf{0}}[(c_1,d_1),\ldots,(c_k,d_k)] \subseteq U_{\mathbf{0}}[(a_1,b_1),\ldots,(a_k,b_k)]$$

and

$$U_{\mathbf{0}}[(x_1, y_1), \dots, (x_k, y_k)] \cdot (a, b) \subseteq U_{\mathbf{0}}[(a_1, b_1), \dots, (a_k, b_k)],$$

and hence the semigroup operation on $(S_2^{\mathbf{0}},\tau_{\mathsf{Ac}}^2)$ is separately continuous.

Since $(U_{\mathbf{0}}[(a_1, b_1), \dots, (a_k, b_k)])^{-1} = U_{\mathbf{0}}[(b_1, a_1), \dots, (b_k, a_k)$ for any $(a_1, b_1), \dots, (a_k, b_k) \in \mathbf{B}_{[0,\infty)}$ the inversion on $(S_2^{\mathbf{0}}, \tau_{\mathsf{Ac}}^2)$ is continuous.

Theorem 3 and Proposition 5 imply the following theorem.

Theorem 4. Let S_2^0 be a Hausdorff locally compact semitopological semigroup $\boldsymbol{B}_{[0,\infty)}^2$ with an adjoined zero **0**. Then either **0** is an isolated point of S_2^0 or the topology of S_2^0 coincides with τ_{Ac}^2 .

Since the bicyclic monoid does not embeds into any Hausdorff compact topological semigroup [5] and the semigroup $B_{[0,\infty)}$ contains many isomorphic copies of the bicyclic semigroup, Theorems 3 and 4 imply the following corollaries.

Corollary 3. Let S_2^I be a Hausdorff locally compact topological semigroup $\boldsymbol{B}_{[0,\infty)}^2$ with an adjoined compact ideal *I*. Then *I* is an open subset of S_2^I .

Corollary 4. Let S_2^0 be a Hausdorff locally compact topological semigroup $B_{[0,\infty)}^2$ with an adjoined zero **0**. Then **0** is an isolated point of S_2^0 .

4. A locally compact semigroup $B^{\mathfrak{d}}_{[0,\infty)}$ with an adjoined compact ideal. Later in this section by $S^{\mathfrak{d}}_{\mathfrak{d}}$ we denote a Hausdorff locally compact semitopological semigroup which is the semigroup $B^{\mathfrak{d}}_{[0,\infty)}$ with an adjoined zero **0**.

Lemma 9. Let $U(\mathbf{0})$ be an open neighbourhood of zero with the compact closure $U(\mathbf{0})$ in $S_{\mathbf{0}}^{\mathbf{0}}$. Then for any $(a,b) \in \mathbf{B}_{[0,\infty)}$ the set $\uparrow_{\preccurlyeq}(a,b) \cap U(\mathbf{0})$ is finite.

Proof. Suppose to the contrary that there exists an open neighbourhood of zero with the compact closure $\overline{U(\mathbf{0})}$ in $S^{\mathbf{0}}_{\mathfrak{d}}$ such that the set $\uparrow_{\preccurlyeq}(a,b) \cap U(\mathbf{0})$ is infinite. By Remark 1 we have that

$$\uparrow_{\preccurlyeq}(a,b) = \{(x,y) \in \mathbf{B}_{[0,\infty)} \colon (a,a)(x,y) = (a,b)\},\$$

and hence the Hausdorffness of $S^0_{\mathfrak{d}}$ and separate continuity of the semigroup operation on $S^0_{\mathfrak{d}}$ imply that $\uparrow_{\preccurlyeq}(a, b)$ is a closed subset of $S^0_{\mathfrak{d}}$. Hence, $\uparrow_{\preccurlyeq}(a, b) \cap U(\mathbf{0})$ is a compact infinite discrete space, a contradiction. The obtained contradiction implies the statement of the lemma.

We observe that since $B^{\mathfrak{d}}_{[0,\infty)}$ is a discrete subspace of $S^{\mathfrak{0}}_{\mathfrak{d}}$, any open neighbourhood of zero $U(\mathfrak{0})$ is closed. Lemma 9 implies the following corollary.

Corollary 5. For any open compact neighbourhood $U(\mathbf{0})$ of zero in $S^{\mathbf{0}}_{\mathfrak{d}}$ and any real number $\alpha \in [0, \infty)$ the set $L^+_{\alpha} \cap U(\mathbf{0})$ $(L^-_{\alpha} \cap U(\mathbf{0}))$ either contains a maximal elements (with the respect to the natural partial order on $B_{[0,\infty)}$) or is empty.

Lemma 10. If $S_{\mathfrak{d}}^{\mathbf{0}}$ admits the structure of a Hausdorff locally compact semitopological semigroup with a nonisolated zero, then there exists no open compact neighbourhood $U(\mathbf{0})$ of zero in $S_{\mathfrak{d}}^{\mathbf{0}}$ such that the sets $L_{\alpha}^{+} \cap U(\mathbf{0})$ and $L_{\alpha}^{+} \cap U(\mathbf{0})$ are finite for all $\alpha \in [0, \infty)$.

Proof. Suppose to the contrary that there exists an open compact neighbourhood $U(\mathbf{0})$ of zero in $S^{\mathbf{0}}_{\mathfrak{d}}$ such that the sets $L^+_{\alpha} \cap U(\mathbf{0})$ and $L^+_{\alpha} \cap U(\mathbf{0})$ are finite for all $\alpha \in [0, \infty)$. Separate continuity of the semigroup operation in $S^{\mathbf{0}}_{\mathfrak{d}}$ implies that there exists an open compact neighbourhood $V(\mathbf{0}) \subseteq U(\mathbf{0})$ of zero in $S^{\mathbf{0}}_{\mathfrak{d}}$ such that $(1,0) \cdot V(\mathbf{0}) \cdot (0,1) \subseteq U(\mathbf{0})$. This inclusion implies that $U(\mathbf{0}) \setminus V(\mathbf{0})$ is an infinite subsets of isolated points, which contradicts the compactness of $U(\mathbf{0})$. The obtained contradiction implies the statement of the lemma. \Box

Lemma 11. If $S^{\mathbf{0}}_{\mathfrak{d}}$ admits the structure of a Hausdorff locally compact semitopological semigroup with a nonisolated zero, then for any open compact neighbourhood $U(\mathbf{0})$ of zero in $S^{\mathbf{0}}_{\mathfrak{d}}$ the sets $L^+_{\alpha} \cap U(\mathbf{0})$ and $L^-_{\alpha} \cap U(\mathbf{0})$ are infinite for all $\alpha \in [0, \infty)$.

Proof. By Lemma 10 there exists $\alpha_0 \in [0, \infty)$ such that at least one of the sets $L^+_{\alpha_0} \cap U(\mathbf{0})$ or $L^-_{\alpha_0} \cap U(\mathbf{0})$ is infinite. Without loss of generality we may assume that the set $L^+_{\alpha_0} \cap U(\mathbf{0})$ is infinite. Separate continuity of the semigroup operation of $S^0_{\mathfrak{d}}$ implies that there exists an open compact neighbourhood $V(\mathbf{0}) \subseteq U(\mathbf{0})$ of zero in $S^0_{\mathfrak{d}}$ such that $V(\mathbf{0}) \cdot (\alpha_0, 0) \subseteq U(\mathbf{0})$. Since $B^{\mathfrak{d}}_{[0,\infty)}$ is a discrete subspace of $S^0_{\mathfrak{d}}$ and $U(\mathbf{0})$ is compact, the set $L^+_0 \cap U(\mathbf{0})$ is infinite. By the similar way we get that for any $\beta_0 \in (0,\infty)$ there exists an open compact neighbourhood $W(\mathbf{0}) \subseteq U(\mathbf{0})$ such that $(\beta_0, 0) \cdot W(\mathbf{0}) \subseteq U(\mathbf{0})$ and $W(\mathbf{0}) \cdot (0, \beta_0) \subseteq U(\mathbf{0})$. Since $W(\mathbf{0})$ and $U(\mathbf{0})$ are compact, $L^+_0 \cap W(\mathbf{0})$ is an infinite set, and hence the sets $L^+_{\beta_0} \cap U(\mathbf{0})$ and $L^-_{\beta_0} \cap U(\mathbf{0})$ are infinite.

Lemma 12. If $S^{\mathbf{0}}_{\mathfrak{d}}$ admits the structure of a Hausdorff locally compact semitopological semigroup with a nonisolated zero, then there exists an open compact neighbourhood $U(\mathbf{0})$ of zero in $S^{\mathbf{0}}_{\mathfrak{d}}$ such that $L^+_{\mathfrak{0}} \cap U(\mathbf{0}) = \emptyset$.

Proof. By Lemma 11 for any compact open neighbourhood U(0) of zero in $S_{\mathfrak{d}}^{\mathbf{0}}$ the set $L_{\mathfrak{d}}^{+} \cap U(\mathbf{0})$ is infinite. For any positive integer n_0 by Lemma 9 the set $\uparrow_{\preccurlyeq}(n_0, n_0) \cap U(\mathbf{0})$ is finite. This implies that the set $L_{\mathfrak{d}}^{+} \cap U(\mathbf{0})$ is countable. Let $L_{\mathfrak{d}}^{+} \cap U(\mathbf{0}) = \{(a_i, a_i) : a_i \in \mathbf{B}_{[0,\infty)}^{\mathfrak{d}}, i \in \omega\}$. Put $M = \{a_j - a_i : i, j \in \omega, i < j\}$. The set M is countable as a countable union of a family of countable sets. Then there exists $\alpha \in (0, \infty) \setminus M$. Then for any open compact neighbourhood $V(\mathbf{0}) \subseteq U(0)$ of zero in $S_{\mathfrak{d}}^{\mathbf{0}}$ the following inclusion $(\alpha, 0) \cdot V(\mathbf{0}) \cdot (0, \alpha) \subseteq U(0)$ does not hold, because $(\alpha, 0) \cdot L_{\mathfrak{d}}^{+} \cdot (0, \alpha) \subseteq L_{\mathfrak{d}}^{+}$. This contradicts the separate continuity of the semigroup operation of $S_{\mathfrak{d}}^{\mathfrak{d}}$. The obtained contradiction implies the statement of the lemma.

If we assume that $S_{\mathfrak{d}}^{\mathbf{0}}$ admits the structure of a Hausdorff locally compact semitopological semigroup with a nonisolated zero, then we get Lemma 12 and Lemma 11. But the statement of Lemma 12 contradicts to Lemma 11. Hence the following theorem holds.

Theorem 5. Let $S^0_{\mathfrak{d}}$ be a Hausdorff locally compact semitopological semigroup which is the semigroup $B^{\mathfrak{d}}_{[0,\infty)}$ with an adjoined zero **0**. Then **0** is an isolated point of $S^0_{\mathfrak{d}}$.

Later we need the following trivial lemma, which follows from separate continuity of the semigroup operation in semitopological semigroups.

Lemma 13. Let S be a Hausdorff semitopological semigroup and I be a compact ideal in S. Then the Rees-quotient semigroup S/I with the quotient topology is a Hausdorff semitopological semigroup.

Theorem 6. Let $S_{\mathfrak{d}}^{I} = \boldsymbol{B}_{[0,\infty)}^{\mathfrak{d}} \sqcup I$ be a Hausdorff locally compact semitopological semigroup which is the semigroup $\boldsymbol{B}_{[0,\infty)}^{\mathfrak{d}}$ with an adjoined compact ideal I. Then I is an open subset of $S_{\mathfrak{d}}^{I}$.

Proof. Suppose to the contrary that I is not open $S_{\mathfrak{d}}^{I}$. By Lemma 13 the Rees-quotient semigroup $S_{\mathfrak{d}}^{I}/I$ with the quotient topology τ_{q} is a semitopological semigroup. Let $\pi: S_{\mathfrak{d}}^{I} \to S_{\mathfrak{d}}^{I}/I$ be the natural homomorphism which is a quotient map. It is obvious that the Reesquotient semigroup $S_{\mathfrak{d}}^{I}/I$ is isomorphic to the semigroup $S_{\mathfrak{d}}^{\mathfrak{0}}$, and hence without loss of generality we may assume that $\pi(S_{\mathfrak{d}}^{I}) = S_{\mathfrak{d}}^{\mathfrak{0}}$ and the image $\pi(I)$ is zero of $S_{\mathfrak{d}}^{\mathfrak{0}}$. By Lemma 3.16 of [24] there exists an open neighbourhood U(I) of the ideal I with the compact closure $\overline{U(I)}$. Since every point of $B^{\mathfrak{d}}_{[0,\infty)}$ is isolated in $S^{I}_{\mathfrak{d}}$ we have that $U(I) = \overline{U(I)}$ and its image $\pi(U(I))$ is a compact-and-open neighbourhood of zero in $S^{\mathfrak{0}}_{\mathfrak{d}}$. Hence $S^{\mathfrak{0}}_{\mathfrak{d}}$ is Hausdorff locally compact space. By Theorem 5, **0** is an isolated point of $S^{\mathfrak{0}}_{\mathfrak{d}}$. Since $\pi: S^{I}_{\mathfrak{d}} \to S^{I}_{\mathfrak{d}}/I$ is a quotient map, I is an open subset of $S^{I}_{\mathfrak{d}}$.

Acknowledgements. The authors acknowledge the Referee for his/her valuable comments and suggestions.

REFERENCES

- K.R. Ahre, Locally compact bisimple inverse semigroups, Semigroup Forum 22 (1981), №3, 387–389. doi: 10.1007/BF02572817
- K.R. Ahre, On the closure of B¹_{[0,∞)}, İstanbul Tek. Üniv. Bül. 36 (1983), №4, 553–562.
- 3. K.R. Ahre, On the closure of $B^1_{[0,\infty)}$, Semigroup Forum 33 (1986), 269–272. doi: 10.1007/BF02573200
- 4. K.R. Ahre, On the closure of $B^2_{[0,\infty)}$, Bull. Tech. Univ. Istanbul **42** (1989), N²3, 387–390.
- L.W. Anderson, R.P. Hunter, R.J. Koch, Some results on stability in semigroups, Trans. Amer. Math. Soc. 117 (1965), 521–529. doi: 10.2307/1994222
- T. Banakh, S. Dimitrova, O. Gutik, The Rees-Suschkiewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), №2, 211–218.
- T. Banakh, S. Dimitrova, O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), №18, 2803–2814. doi: 10.1016/j.topol.2010.08.020
- S. Bardyla, Classifying locally compact semitopological polycyclic monoids, Mat. Visn. Nauk. Tov. Im. Shevchenka 13 (2016), 21–28.
- S. Bardyla, On locally compact semitopological graph inverse semigroups, Mat. Stud. 49 (2018), №1, 19–28. doi: 10.15330/ms.49.1.19-28
- 10. S. Bardyla, On topological McAlister semigroups, J. Pure Appl. Algebra **227** (2023), №4, 107274. doi: 10.1016/j.jpaa.2022.107274
- S. Bardyla, A. Ravsky, Closed subsets of compact-like topological spaces, Appl. Gen. Topol. 21 (2020), №2, 201–214. doi: 10.4995/agt.2020.12258.
- M.O. Bertman, T.T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. A76 (1976), №21–23, 219–226.
- J.H. Carruth, J.A. Hildebrant, R.J. Koch, The theory of topological semigroups, V.I, Marcel Dekker, Inc., New York and Basel, 1983.
- 14. J.H. Carruth, J.A. Hildebrant, R.J. Koch, The theory of topological semigroups, V.II, Marcel Dekker, Inc., New York and Basel, 1986.
- A.H. Clifford, G.B. Preston, The algebraic theory of semigroups, V.I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
- A.H. Clifford, G.B. Preston, The algebraic theory of semigroups, V. II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- C. Eberhart, J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115–126. doi: 10.1090/S0002-9947-1969-0252547-6
- 18. R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
- V.A. Fortunatov, Congruences on simple extensions of semigroups, Semigroup Forum 13 (1976), 283– 295. doi: 10.1007/BF02194949
- G.L. Fotedar, On a semigroup associated with an ordered group, Math. Nachr. 60 (1974), 297–302. doi: 10.1002/mana.19740600128
- 21. G.L. Fotedar, On a class of bisimple inverse semigroups, Riv. Mat. Univ. Parma (4) 4 (1978), 49-53.
- G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, Continuous lattices and domains. Cambridge Univ. Press, Cambridge, 2003.

- 23. O. Gutik, On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero, Visnyk L'viv Univ., Ser. Mech.-Math. 80 (2015), 33–41.
- 24. O. Gutik, P. Khylynskyi, On a locally compact submonoid of the monoid cofinite partial isometries of N with adjoined zero, Topol. Algebra Appl. 10 (2022), №1, 233–245. doi: 10.1515/taa-2022-0130
- 25. O.V. Gutik, K.M. Maksymyk, On semitopological bicyclic extensions of linearly ordered groups, Mat. Metody Fiz.-Mekh. Polya 59 (2016), №4, 31–43. Reprinted version: O.V. Gutik, K.M. Maksymyk, On semitopological bicyclic extensions of linearly ordered groups, J. Math. Sci. 238 (2019), №1, 32–45. doi: 10.1007/s10958-019-04216-x
- 26. O.V. Gutik, K.M. Maksymyk, On a semitopological extended bicyclic semigroup with adjoined zero, Mat. Metody Fiz.-Mekh. Polya 62 (2019), №4, 28–38. Reprinted version: O.V. Gutik, K.M. Maksymyk, On a semitopological extended bicyclic semigroup with adjoined zero, J. Math. Sci. 265 (2022), №3, 369–381. doi: 10.1007/s10958-022-06058-6
- O. Gutik, M. Mykhalenych, On a semitopological semigroup B^ℱ_ω when a family ℱ consists of inductive non-empty subsets of ω, Mat. Stud. 59 (2023), №1, 20–28. doi: 10.30970/ms.59.1.20-28
- O. Gutik, D. Pagon, K. Pavlyk, Congruences on bicyclic extensions of a linearly ordered group, Acta Comment. Univ. Tartu. Math. 15 (2011), №2, 61–80. doi: 10.12697/ACUTM.2011.15.10
- O. Gutik, D. Repovš, On countably compact 0-simple topological inverse semigroups, Semigroup Forum 75 (2007), №2, 464–469. doi: 10.1007/s00233-007-0706-x
- J.A. Hildebrant, R.J. Koch, Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), 65–85. doi: 10.1007/BF02573183
- R.J. Koch, A.D. Wallace, *Stability in semigroups*, Duke Math. J. 24 (1957), №2, 193–195. doi: 10.1215/S0012-7094-57-02425-0
- 32. M. Lawson, Inverse semigroups. The theory of partial symmetries, Singapore: World Scientific, 1998.
- K. Maksymyk, On locally compact groups with zero, Visn. Lviv Univ., Ser. Mekh.-Mat. 88 (2019), 51–58. (in Ukrainian).
- 34. T. Mokrytskyi, On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of \mathbb{N}^n with adjoined zero, Visn. Lviv Univ., Ser. Mekh.-Mat. 87 (2019), 37–45.
- W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984. doi: 10.1007/BFb0073675

Ivan Franko National University of Lviv Lviv, Ukraine oleg.gutik@lnu.edu.ua markian.khylynskyi@lnu.edu.ua

> Received 12.12.2023 Revised 25.02.2024