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We study temperate distributions and measures with discrete support in Euclidean space
and their Fourier transforms with special attention to almost periodic distributions. In parti-
cular, we prove that if distances between points of the support of a measure do not quickly
approach 0 at infinity, then this measure is a Fourier quasicrystal (Theorem 1).

We also introduce a new class of almost periodicity of distributions, close to the previous one,
and study its properties. Actually, we introduce the concept of s-almost periodicity of temperate
distributions. We establish the conditions for a measure µ to be s-almost periodic (Theorem
2), a connection between s-almost periodicity and usual almost periodicity of distributions
(Theorem 3). We also prove that the Fourier transform of an almost periodic distribution with
locally finite support is a measure (Theorem 4), and prove a necessary and sufficient condition
on a locally finite set E for each measure with support on E to have s-almost periodic Fourier
transform (Theorem 5).

1. Introduction. The Fourier quasicrystal concept was inspired by the experimental di-
scovery of nonperiodic atomic structures with diffraction patterns consisting of spots, made
in the middle of 80’s. A number of papers has appeared, in which the properties of Fouri-
er quasicrystals are studied. Conditions for support of Fourier quasicrystals to be a finite
union of discrete lattices were found, and nontrivial examples of Fourier quasicrystals were
constructed ( [2, 4–6,9–11,13–16,18–20,22])

These studies have been extended to a more general setting of temperate distributions
with discrete support and spectrum ( [3, 7, 8, 17, 21]). Note that these studies used, most
often implicitly, the properties of almost periodic measures and distributions. The goal of
the paper proposed here is to make these connections explicit.

The structure of this article is as follows. In Section 2 we give the necessary notation
and definitions. In Section 3 we prove some properties of distributions with locally finite
support and spectrum. These results are very close to the results of [3]. Here we also prove
that if distances between points of the support of a measure do not quickly approach 0 at
infinity, then this measure is a Fourier quasicrystal (Theorem 1). In Section 4 we introduce
the concept of s-almost periodicity of temperate distributions. Here we show conditions for
a measure µ to be s-almost periodic (Theorem 2), a connection between s-almost periodicity
and usual almost periodicity of distributions (Theorem 3). We also prove that the Fourier
transform of an almost periodic distribution with locally finite support is a measure (Theorem
4), and prove a necessary and sufficient condition on a locally finite set E for each measure
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with support on E to have s-almost periodic Fourier transform (Theorem 5). In Section 5
we give proofs of theorems from Section 4.

2. Notation and definitions. Denote by S(Rd) the Schwartz space of test functions φ ∈
C∞(Rd) with the finite norms

Nn,m(φ) = sup
Rd

{max{1, |x|n} max
∥k∥≤m

|Dkφ(x)|}, n,m = 0, 1, 2, . . . ,

where
k = (k1, . . . , kd) ∈ (N ∪ {0})d, ∥k∥ = k1 + · · ·+ kd, D

k = ∂k1x1
. . . ∂kdxd

.

These norms generate the topology on S(Rd). Elements of the space S∗(Rd) of continuous li-
near functionals on S(Rd) are called temperate distributions. For each temperate distribution
f there are C <∞ and n, m ∈ N ∪ {0} such that for all φ ∈ S(Rd)

|f(φ)| ≤ CNn,m(φ). (1)

Moreover, this estimate is sufficient for the distribution f to belong to S∗(Rd) (see [25, Ch.3]).
The Fourier transform of a temperate distribution f is defined by the equality

f̂(φ) = f(φ̂) for all φ ∈ S(Rd),

where
φ̂(y) =

∫
Rd

φ(x) exp{−2πi⟨x, y⟩}dx

is the Fourier transform of the function φ. By φ̌ we denote the inverse Fourier transform of
φ. The Fourier transform is the bijection of S(Rd) on itself and the bijection of S∗(Rd) on
itself. The support of f̂ is called spectrum of f .

We will say that a set A ⊂ Rd is locally finite if the intersection of A with any ball is
finite, A is relatively dense if there is R <∞ such that A intersects with each ball of radius
R, and A is uniformly discrete, if A is locally finite and has a strictly positive separating
constant

η(A) := inf{|x− x′| : x, x′ ∈ A, x ̸= x′}.

Also, we will say that A is polynomially discrete, or shortly p-discrete, if there are positive
numbers c, h such that

|x− x′| ≥ cmin{1, |x|−h, |x′|−h} ∀x, x′ ∈ A, x ̸= x′. (2)

A set A is of bounded density if it is locally finite and

sup
x∈Rd

#A ∩B(x, 1) <∞.

As usual, #E is a number of elements of the finite set E, and B(x, r) is the ball with center
at the point x and radius r.

An element f ∈ S∗(Rd) is called a crystalline measure if f and f̂ are complex-valued
measures on Rd with locally finite supports.

Denote by |µ|(A) the variation of the complex-valued measure µ on A. If both measures
|µ| and |µ̂| have locally finite supports and belong to S∗(Rd), we say that µ is a Fourier
quasicrystal. A measure µ =

∑
λ∈Λ aλδλ with aλ ∈ C and countable Λ is called purely point,
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here δy is the unit mass at the point y ∈ Rd. If this is the case, we will replace aλ with µ(λ)
and write supp µ = {λ : µ(λ) ̸= 0}.
3. Temperate distributions with locally finite support. By [24], every distribution f
on Rd with locally finite support Λ has the form

f =
∑
λ∈Λ

( ∑
∥k∥≤Kλ

pk(λ)D
k

)
δλ with pk(λ) ∈ C, Kλ <∞.

Note that ord f = supλKλ(x) ≤ ∞.

Proposition 1. Suppose f ∈ S∗(Rd) has a locally finite support Λ. Then
i) ord f <∞, hence,

f =
∑
λ∈Λ

∑
∥k∥≤K

pk(λ)D
kδλ, k ∈ (N ∪ {0})d, K = ord f ; (3)

in particular, if f has a locally finite spectrum Γ, then ord f̂ <∞ and

f̂ =
∑
γ∈Γ

∑
∥j∥≤J

qj(γ)D
jδγ, j ∈ (N ∪ {0})d, J = ord f̂ . (4)

ii) If Λ is p-discrete, then there exist C, T <∞ such that for all k

|pk(λ)| ≤ Cmax{1, |λ|T} for all λ ∈ Λ. (5)

Moreover, there exists T1 <∞ such that∑
λ∈Λ,|λ|<R

∑
∥k∥≤K

|pk(λ)| = O(RT1) as R → ∞. (6)

Proof of Proposition 1. i) Let λ ∈ Λ and ε ∈ (0, 1) be such that

inf{|λ− λ′| : λ′ ∈ Λ, λ′ ̸= λ} > ε.

Let φ be a non-negative function on R such that

φ(|x|) ∈ C∞(Rd), φ(|x|) = 0 for |x| > 1/2, φ(|x|) = 1 for |x| ≤ 1/3. (7)

Then set

φλ,k,ε(x) =
(x− λ)k

k!
φ

(
|x− λ|
ε

)
∈ S(Rd),

where, as usual, k! = k1! · · · kd!. It is easily shown that

f(φλ,k,ε) = (−1)∥k∥pk(λ).

Let f satisfy (1) with some m, n. We get

|f(φλ,k,ε)| ≤ C sup
|x−λ|<ε

max{1, |x|n}
∑

∥α+β∥≤m

c(α, β)

∣∣∣∣Dαφ

(
|x− λ|
ε

)
Dβ

(
(x− λ)k

k!

)∣∣∣∣ ,
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where α, β ∈ (N ∪ {0})d and c(α, β) <∞. Note that∣∣∣∣Dαφ

(
|x− λ|
ε

)∣∣∣∣ ≤ ε−∥α∥c(α) for |λ− x| < ε/3,

and this derivative vanishes for |λ− x| ≥ ε/2. Also,

Dβ(x− λ)k =

{
0 if kj < βj for at least one j;
c(k, β)(x− λ)k−β if kj ≥ βj ∀j.

.

Since
max{1, |x|n} ≤ 2nmax{1, |λ|n}

for x ∈ suppφλ,k,ε, we get

|pk(λ)| ≤
∑

∥α+β∥≤m,βj≤kj ∀j

c(k, α, β)max{1, |λ|n}ε∥k∥−∥α+β∥.

For ∥k∥ > m we take ε→ 0 and obtain pk(λ) = 0.
Since f̂ ∈ S∗(Rd), we obtain (4).
ii) Let Λ be p-discrete and (5) be not satisfy. Then there is k, ∥k∥ ≤ K, and a sequence

λs → ∞ such that |λs+1| > 1 + |λs| for all s and

log |pk(λs)|
log |λs|

→ ∞, s→ ∞. (8)

Put βs = c|λs|−h with c from (2) and

ψs,k(x) =
(x− λs)

k

k!
φ

(
|x− λs|
βs

)
, Ψk(x) =

∞∑
s=1

ψs,k(x)

pk(λs)
.

We can assume that λ1 is so large that supp ψs,k ∩ supp ψs′,k = ∅, s ̸= s′. Then by (8),

1/pk(λs) = o(1/|λs|T ), |λs| → ∞, for every T <∞.

Since
Dj(ψs,k(x)) = O(|λs|h∥j∥), j ∈ (N ∪ {0})d,

we see that
Dj(Ψk(x)) = o(1/|x|T−h∥j∥), x→ ∞,

and Ψk ∈ S(Rd).
Since Λ is p-discrete, we get λ ̸∈ B(λs, c|λs|−h) for all λ ∈ Λ \ {λs}. Therefore, f(Ψk) is

equal to∑
λ∈Λ

∑
∥l∥≤K

∑
s

(−1)∥l∥pl(λ)pk(λs)
−1Dl(ψs,k)(λ) =

∑
s

∑
∥l∥≤K

(−1)∥l∥pl(λs)pk(λs)
−1Dl(ψs,k)(λs).

Since Dl(ψs,k)(λs) = 0 for l ̸= k and Dk(ψs,k)(λs) = 1, we obtain the contradiction.

Estimate (6) follows immediately from (5) and the following simple lemma:
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Lemma 1 (cf. [8], a part of the proof of Theorem 6). If S is p-discrete set, then #S ∩
B(0, R) = O(RT ′

) as R → ∞ with T ′ <∞.

Remark. V. Palamodov [21] proved Proposition 1 for temperate distributions with uniformly
discrete support.

Proposition 2. Let µ ∈ S∗(Rd) be a measure. Then |µ| belongs to S∗(Rd) if and only if
there is T <∞ such that |µ|(B(0, R)) = O(RT ) as R → ∞.

Indeed, any non-negative measure ν on Rd satisfying the condition ν(B(0, R)) = O(RT ) as
R → ∞ belongs to S∗(Rd) (cf. [24]). The converse statement see, for example, [6, Lemma 1].

It follows from Propositions 1 and 2.

Theorem 1 (cf. [8]). If µ ∈ S∗(Rd) is a measure with p-discrete support, then |µ| ∈ S∗(Rd).
In particular, every crystalline measure with p-discrete support and p-discrete spectrum is
a Fourier quasicrystal.

M. Kolountzakis, J. Lagarias proved in [10] that the Fourier transform of every measure
µ on the line R with locally finite support of bounded density, bounded masses µ(x), and
locally finite spectrum is also a measure

µ̂ =
∑

γ∈Γ qγδγ

with uniformly bounded qγ. The following proposition generalizes this result for distributions
from S∗(Rd).

Proposition 3. Suppose f ∈ S∗(Rd) has form (3) with some K and countable Λ, and f̂ has
form (4) with the locally finite support Γ. If

ρf (r) :=
∑
|λ|<r

∑
∥k∥≤K

|pk(λ)| = O(rd+H), r → ∞, H ≥ 0,

then ord f̂ ≤ H; if ρf (r) = o(rd+H) as r → ∞, then ord f̂ < H.
Furthermore, in the case of integer H and ∥j∥ = H we get

|qj(γ)| ≤ C ′max{1, |γ|K};

for the case of uniformly discrete Γ this estimate with the same K takes place for all j.

Corollary 1. If f ∈ S∗(Rd) has form (3) with countable Λ, locally finite spectrum Γ, and
ρf (r) = O(rd) as r → ∞, then f̂ is a measure, and

f̂ =
∑
γ∈Γ

q(γ)δγ, |q(γ)| ≤ C ′ max{1, |γ|K}.

Proof of Proposition 3. Let γ ∈ Γ and pick ε ∈ (0, 1) such that

inf{|γ − γ′| : γ′ ∈ Γ, γ′ ̸= γ} > ε.

Let φ be the same as in the proof of Proposition 1. Put

φγ,l,ε(y) =
(y − γ)l

l!
φ(|y − γ|/ε) ∈ S(Rd).
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We have
(−1)∥l∥ql(γ) =

∑
∥j∥≤J

qj(γ)D
jδγ(φγ,l,ε(y)) = (f̂ , φγ,l,ε) = (f, φ̂γ,l,ε).

Note that

φ̂γ,l,ε(x) = e−2πi⟨x,γ⟩(l!)−1(−2πi)−∥l∥Dl(φ̂(·/ε)) = c(l)e−2πi⟨x,γ⟩εd+∥l∥(Dlφ̂)(εx).

Therefore,

Dk(φ̂γ,l,ε)(x) = εd+∥l∥
∑

α+β=k

c(α, β)Dα
[
e−2πi⟨x,γ⟩]Dβ[(Dlφ̂)(εx)] =

=
∑

α+β=k

c(α, β)(−2πi)∥α∥γαe−2πi⟨x,γ⟩εd+∥l∥+∥β∥(Dβ+lφ̂)(εx).

Since φ̂(εx) ∈ S(Rd), we get for every x ∈ Rd and n ∈ N ∪ {0}

|Dβ+l(φ̂)(εx)| ≤ Nn,∥β+l∥(φ̂)(max{1, |εx|n})−1.

Therefore for every k, ∥k∥ ≤ K,

|Dk(φ̂γ,l,ε)(x)| ≤ C(K,n)εd+∥l∥max{1, |γ|K}(max{1, |εx|n})−1,

where C(k, n) depends on φ. Now we may estimate (f, φ̂γ,l,ε) as∣∣∣∣∣∑
k

∑
λ

pk(λ)D
k(φ̂γ,l,ε)(λ)

∣∣∣∣∣ ≤ C(K,n)εd+∥l∥max{1, |γ|K}
∫ ∞

0

ρf (dt)

max{1; (εt)n}
. (9)

If ρf (r) = O(rd+H) for r → ∞, take t0 such that
|ρ(t)| < C0t

d+H for t > t0.
If ρf (r) = o(rd+H), fix any η > 0 and take t0 = t0(η) such that

|ρ(t)| < ηtd+H for t > t0.
Then pick n > d + H and ε < 1/t0. Integrating by parts and using the estimate for ρf (t),
we obtain∫ ∞

0

max{1, (εt)n}−1ρf (dt) = ρf (1/ε) +

∫ ∞

1/ε

(εt)−nρf (dt) ≤
nC0

εn

∫ ∞

1/ε

td+H−n−1dt.

Therefore, the left-hand side of (9) not more than ε∥l∥−HC0C
′max{1, |γ|K}, and

|ql(γ)| ≤ C ′C0max{1, |γ|K}ε∥l∥−H .

If ∥l∥ > H, we take ε→ 0 and get ql(γ) = 0, hence, J = ord f̂ ≤ H.
If H is integer, we get |ql(γ)| ≤ C ′C0max{1, |γ|K} for ∥l∥ = H.
If ρf (r) = o(rd+H), we replace C0 by η and note that η is arbitrary small for ε small

enough. Hence, ql(γ) = 0 for ∥l∥ = H.
Finally, if Γ is uniformly discrete, we take ε = ε0 < η(Γ)/2 for all γ ∈ Γ and obtain the

bound
|ql(γ)| ≤ ε−H

0 C ′C0max{1, |γ|K} ∀l, ∥l∥ ≤ J.
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4. Almost periodic distributions and their properties. Recall that a continuous functi-
on g on Rd is almost periodic if for any ε > 0 the set of ε-almost periods of g{

τ ∈ Rd : sup
x∈Rd

|g(x+ τ)− g(x)| < ε
}

is a relatively dense set in Rd (cf.,for example, [1]).
Almost periodic functions are uniformly bounded on Rd. The class of almost periodic

functions is closed with respect to taking absolute values, and finite linear combinations; the
limit of a uniformly in Rd convergent sequence of almost periodic functions is also almost
periodic.

A typical example of an almost periodic function is an absolutely convergent exponential
sum ∑

cn exp{2πi⟨x, ωn⟩}

with ωn ∈ Rd, cn ∈ C.
A measure µ on Rd is called almost periodic if the function

(ψ ⋆ µ)(t) =

∫
Rd

ψ(t− x)dµ(x)

is almost periodic in t ∈ Rd for each continuous function ψ on Rd with compact support. A
distribution f ∈ S∗(Rd) is almost periodic if the function (ψ ⋆ f)(t) = f(ψ(t− ·)) is almost
periodic in t ∈ Rd for each ψ ∈ C∞ with compact support (see [12,18–20,23]). Clearly, every
almost periodic distribution has a relatively dense support. But there are measures that are
almost periodic temperate distributions, but are not almost periodic as measures (see [18]).

Definition. A distribution f ∈ S∗(Rd) is s-almost periodic, if the function
(ψ ⋆ f)(t) = f(ψ(t− ·))

is almost periodic in t ∈ Rd for each ψ ∈ S(Rd).

The following theorem plays a very important role in our investigations.

Theorem 2. If f is a temperate distribution and its Fourier transform f̂ is a purely point
measure such that

|f̂ |(B(0, r)) = O(rT )

for r → ∞ with some T <∞, then f is s-almost periodic distribution.

Proof of Theorem 2. It is very easy. Let f̂ =
∑

γ∈Γ b(γ)δγ, M(r) = |f̂ |(B(0, r)). For any
ψ ∈ S(Rd) we get

f(ψ(t− ·)) = (f̂(y), ψ̂(y)e2πi⟨t,y⟩) =
∑
γ∈Γ

b(γ)ψ̂(γ)e2πi⟨t,γ⟩. (10)

Since |ψ̂(y)| ≤ NT+1,0(ψ̂)|y|−T−1 for |y| > 1 and∑
γ∈Γ

|b(γ)||ψ̂(γ)| ≤ C0 + C1

∫ ∞

1

r−T−1M(dr) <∞,

we see that the series in (10) absolutely converges, and the function (f ⋆ ψ)(t) is almost
periodic.
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From Proposition 2 it follows the following corollary.

Corollary 2. If f ∈ S∗(Rd), f̂ is purely point measure, and |f̂ | ∈ S∗(Rd), then f is s-
almost periodic distribution. In particular, every Fourier quasicrystal is s-almost periodic
distribution.

Using Proposition 1, we also get

Corollary 3. Let f ∈ S∗(Rd) have p-discrete spectrum, and the Fourier transform f̂ is a
measure. Then f is s-almost periodic distribution.

Corollary 4. Let f ∈ S∗(Rd) of form (3) have locally finite spectrum Γ with polynomial
growth of numbers #(Γ ∩B(0, r)). If∑

∥k∥≤K

∑
|λ|<r

|pk(λ)| = O(rd) for r → ∞,

then f is s-almost periodic distribution.

Indeed, by Corollary 1, f̂ is a measure with polynomially growth coefficients.

Evidently, every s-almost periodic distribution is an almost periodic distribution too.
Conversely, the following assertion is valid:

Theorem 3. Every almost periodic (in sense of distributions) non-negative measure µ ∈
S∗(Rd) is s-almost periodic distribution. The same implication is valid if µ is a complex-
valued measure on Rd such that

sup
x∈Rd

|µ|(B(x, 1)) <∞. (11)

It is easy to check that every almost periodic in the sense of distributions measure µ
under condition (11) is almost periodic in sense of measures.

Proofs of Theorem 3 and the following ones are given in the next Section 5.

Theorem 4. If f ∈ S∗(Rd) is an almost periodic distribution with locally finite spectrum Γ,
then f̂ is a measure.

Show that p-discreteness of support of a measure is closely connected with s-almost
periodicity of its Fourier transform:

Theorem 5. In order for each measure µ ∈ S∗(Rd) with support in a fixed locally finite set
A ⊂ Rd to have s-almost periodic Fourier transform µ̂, it is necessary and sufficient that A
be p-discrete.

Moreover, if µ̂ ⋆ ψ(t) is bounded for all ψ ∈ S(Rd) and µ ∈ S∗(Rd) with supp µ ⊂ A,
then A is p-discrete.
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5. Proofs of Theorems 3–5.

Proof of Theorem 3. Let φ be C∞ non-negative function with compact support such that
φ(x) ≡ 1 for x ∈ B(0, 1). Since φ ⋆ µ(t) is an almost periodic function, we see that it is
uniformly bounded. If µ ≥ 0, we get

µ(B(x, 1)) < C

for all x ∈ Rd. Set µt(x) := µ(t − x) with t ∈ Rd. For every complex-valued measure µ
subject to (11) we get

M(r) := |µt|(B(0, r)) < Crd

for all r > 1, where the constant C is the same for all t. Take ψ ∈ S(Rd). Then
|ψ(x)| ≤ C1|x|−d−1

for |x| > 1. For any ε > 0 there is R <∞ that does not depend on t and such that∣∣∣∣∫
|x|>R

ψ(x)µt(dx)

∣∣∣∣ ≤ C1

∫ ∞

R

r−d−1M(dr) ≤ C1(d+ 1)

∫ ∞

R

M(r)r−d−2dr < ε/3.

Therefore for all t ∈ Rd∣∣∣∣∫
|t−x|>R

ψ(t− x)µ(dx)

∣∣∣∣ = ∣∣∣∣∫
|x′|>R

ψ(x′)µt(dx′)

∣∣∣∣ < ε/3. (12)

Let ξ(x) be C∞-function on Rd such that

0 ≤ ξ ≤ 1, ξ(x) ≡ 1 for |x| < R, ξ(x) ≡ 0 for |x| > R + 1.

The function (ξψ) ⋆ µ(t) is almost periodic, hence there are a relatively dense set E ⊂ Rd

such that for any τ ∈ E and all t ∈ Rd

|(ξψ) ⋆ µ(t+ τ)− (ξψ) ⋆ µ(t)| < ε/3.

Applying (12) to (1− ξ(t+ τ))ψ(t+ τ) and (1− ξ(t))ψ(t), we obtain

|ψ⋆µ(t+τ)−ψ⋆µ(t)| ≤ |(ξψ)⋆µ(t+τ)−(ξψ)⋆µ(t)|+|(1−ξ)ψ⋆µ(t+τ)|+|(1−ξ)ψ⋆µ(t)| < ε.

Hence, E is the set of ε-almost periods for the function ψ ⋆ µ.

Proof of Theorem 4. Let f be an almost periodic temperate distribution with a locally finite
spectrum Γ. By Proposition 1, f̂ has form (4). Suppose that J ̸= 0 and qj′(γ′) ̸= 0 for some
γ′ ∈ Γ and j′ = (j′1, . . . , j

′
d), ∥j′∥ = J . Without loss of generality suppose that j′1 ̸= 0. Set

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , ed = (0, . . . , 0, 1), (13)

and j′′ = j′ − e1. Pick ε < min{|γ′ − γ| : γ ∈ Γ}, and set

φγ′,j′′,ε(y) =
(y − γ′)j

′′

j′′!
φ

(
|y − γ′|

ε

)
,

where φ is defined in (7). We have

f̂(e2πi⟨y,t⟩φγ′,j′′,ε(y)) =
∑
γ∈Γ

∑
∥j∥≤J

(−1)∥j∥qj(γ)D
j(e2πi⟨y,t⟩φγ′,j′′,ε(y))(γ) (14)
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Since

Dj(φγ′,j′′,ε(y))(γ) =

{
0, if γ ̸= γ′ or j ̸= j′′;

1, if γ = γ′ and j = j′′,

we see that expression (14) is equal to

(−1)Jqj′(γ
′)2πit1e

2πi⟨γ′,t⟩ + (−1)J
d∑

s=2

qj′′+es(γ
′)2πitse

2πi⟨γ′,t⟩ + (−1)J−1qj′′(γ
′)e2πi⟨γ

′,t⟩.

The first summand is unbounded in t1 ∈ R, hence the function

f(φ̂γ′,j′′,ε(x− t)) = f̂(e2πi⟨y,t⟩φγ′,j′′,ε(−y))

is unbounded and not almost periodic. We obtain the contradiction, therefore, J = 0 and f̂
is a measure.

To prove Theorems 5 we need the following proposition:

Proposition 4. Let λn, τn ∈ Rd be two sequences such that τn → 0, |λn| > |λn−1| + 1 for
all n, and

log |τn|
log |λn|

→ −∞ as n→ ∞. (15)

Let µ be any measure from S∗(Rd) such that its restriction for each ball B(λn, 1/(2|λn|))
equals |τn|−2/3(δλn+τn − δλn). Then there is ψ ∈ S(Rd) such that µ̂ ⋆ ψ̂(t) is unbounded. In
particular, µ̂ is not s-almost periodic distribution.

Proof of Proposition 4. By thinning out the sequence τn, we can assume that for all n∑
p<n

|τp|−1/3 < (1/3)|τn|−1/3, (16)

and ∑
p>n

|τp|2/3 < (2/(3π))|τn|2/3. (17)

Set
ψ(x) =

∑
n

|τn|1/3φ(|λn||x− λn|),

where φ is defined in (7). By (15), |τn| = o(1/|λn|T ) as n→ ∞ for every T <∞. Therefore,
for all k ∈ (N ∪ {0})d, N ∈ N we get Dkψ(x) = o(|λn|−N) for x ∈ B(λn, 1/(2|λn|)). Hence,
(Dkψ)(x)(1 + |x|N) is bounded on Rd for all N and k, i.e., ψ ∈ S(Rd). By (7), ψ(x) = 0 for
x ̸∈ ∪nB(λn, 1/(2λn)). Hence, for every t ∈ Rd

µ̂(ψ̂(t− y)) = µ(ψ(x)e−2πi⟨x,t⟩) =
∞∑
n=1

|τn|−1/3[φ(|τn||λn|)e−2πi⟨(λn+τn),t⟩ − φ(0)e−2πi⟨λn,t⟩].

|τn| < 1/(3|λn|) for large n, therefore, φ(|τn||λn|) = φ(0) = 1. Besides, for t = τn/(2|τn|2)

|e−2πi⟨(λn+τn),t⟩ − e−2πi⟨λn,t⟩| = |e−2πi⟨τn,t⟩ − 1| = 2.
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Therefore,

|µ̂(ψ̂(t− y))| ≥ 2|τn|−1/3 − 2
∑
p<n

|τp|−1/3 −
∑
p>n

|τp|−1/3|e−2πi⟨τp,t⟩ − 1|. (18)

Taking into account (16), (17), and the estmates

|e−2πi⟨τp,t⟩ − 1| ≤ 2π|τp||t| = π|τp||τn|−1,

we obtain that (18) is more than 2|τn|−1/3/3. Hence the convolution (µ̂ ⋆ ψ̂)(t) is unbounded
on the sequence τn/(2|τn|2), and the distribution µ̂ is not s-almost periodic.

Proof of Theorem 5. Suppose that A is a not p-discrete set. Then there are two sequences
λn, λ

′
n ∈ A such that λn and τn := λ′n−λn satisfy (15) and |λn| > 1+ |λn−1|. Check that the

measure
µ =

∑
n

|τn|−2/3[δλ′
n
− δλn ]

belongs to S∗(Rd).
For any ϕ ∈ S(Rd)

|(µ, ϕ)| ≤
∑
n

|τn|−2/3|ϕ(λ′n)− ϕ(λn)| ≤
∑
n

|τn|1/3N0,1(ϕ),

where N0,1(ϕ) is defined in (1). By (15), τn = O(n−T ) for any T < ∞, therefore the sum
converges, µ satisfies (1), and µ is a temperate distribution. Applying Proposition 4, we
obtain that µ̂ is not s-almost periodic.

Proposition 4 actually implies that the convolution µ̂ ⋆ ψ̂ with some ψ ∈ S(Rd) is
unbounded, which proves the last part of the theorem.

Sufficiency follows from Corollary 3.
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